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Abstract

Path integral expressions for three canonical formalisms – Ostrograd-

ski’s one, constrained one and generalized one – of higher-derivative the-

ories are given. For each fomalism we consider both nonsingular and

singular cases. It is shown that three formalisms share the same path

integral expressions. In paticular it is pointed out that the generalized

canonical formalism is connected with the constrained one by a canonical

transformation.
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1 Introduction

Higher-derivative theories appear in various scenes of physics,1),2). Higher-
derivate terms occur as quantum corrections; nonlocal theories, e.g. string theo-
ries, are essentially higher-derivative theories; Einstein gravity supplemented by
curvature squared terms has attracted attention because of its renormalizability.3)

A canonical formalism for higher-derivative theories was first developed by
Ostrogradski about one and a half centuries ago.4) He treated only nonsingu-
lar cases, where the Hessian matrices of Lagrangians with respect to highest
derivatives are nonsingular. For singular cases, Dirac’s algorithm5) for con-
strained Hamiltonian systems was shown to be applicable.6),7) Though being
self-consistent, these formulations for nonsingular and singular cases look differ-
ent from the conventional canonical formalism: highest derivatives are discrimi-
nated from lower ones, only the highest ones enjoying Legendre transformations.
If we regard the original higher-derivative systems as equivalent first-derivative
systems with constraints and apply the Dirac’s algolithm to the latter ones,
we could give the foundation of the ordinary canonical formalism to the Os-
trogradski’s canonical one. This program, constrained canonical formulation of
higher-derivative theories, has bee! n carried out in Refs. 6) and 8) for both
nonsingular and singular cases. A generalization of the constrained canonical
formalism has been discussed in Ref. 9).

In all these approaches the sets of canonical equations provided by the re-
spective formalisms have mainly been considered, and their equivalence to the
set of Euler-Lagrange equations has been shown. To go to quantum theory,
however, the equivalence of the sets of equations of motion is not enough. We
have to confirm the equivalence of off-shell imformation. That is, comparing
path integral expressions of the respective formalisms is essentially important.
This is the subject of the present paper. We give path integral expressions for
each formalism and show they are equivalent to one another. In paticular it
is pointed out that the generalized canonical formalism is connected with the
constrained canonical one by a canonical transformation.

In §2, path integral expressions of the Ostrogradski’s canonical formalism
are given for both singular and nonsingular cases. In §3, path integral expres-
sions of the constrained canonical formalism are given and it is shown that the
constrained one is equivalent to the Ostrogradski’s one. In §4, path integral
expressions of the generalized canonical formalism are given. A further gener-
alization of the formalism described in Ref. 9) is developed. It is shown by
doing a canonical transformation that the generalized one is equivalent to the
Ostrogradski’s. Section 5 gives summary and descussion.
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2 Ostrogradski’s canonical formalism

We consider a system described by a generic Lagrangian which contains up to
na-th derivative of xa(t) (a = 1, · · · , N)

L = L(xa, ẋa, ẍa, · · · , x
(na)
a ), (1)

where

x(ra)a

def
≡

draxa

dtra
. (ra = 1, · · · , na) (2)

The canonical formalism of Ostrogradski regards x
(sa)
a (sa = 1, · · · , na − 1) as

independent coordinates qsa+1
a :

x(sa)a → qsa+1
a , (3)

L(xa, ẋa, · · · , x
(na)
a ) → Lq(q

1
a, · · · , q

na

a , q̇na

a ). (4)

The momenta conjugate to qna

a is defind as usual by

pna

a

def
≡

∂Lq

∂q̇na

a

. (5)

The Hessian matrix of Lq is defined by

Aab

def
≡

∂2Lq

∂q̇na

a ∂q̇nb

b

. (6)

We say that the system is nonsingular if detAab 6= 0, while singular if detAab = 0.
Nonsingular case (detAab 6= 0)
In this case, the relation (5) can be inverted to give q̇na

a as functions of
qr(r = 1, · · · , n) and pn :

q̇na

a = q̇na

a (qr, pn). (7)

The Hamiltonian is defined by

HO
def
≡ psaa q

sa+1
a + pna

a q̇na

a (qr, pn)− Lq (q
r, q̇n(qr, pn)) . (8)

It is seen that this construction of the Hamiltonian has several peculiarities
from the view point of the ordinary Legendre transformation:

1. What appears in Eq.(8) is just a function Lq(q
1, · · · , qn, q̇n) whose Euler

derivatives do not produce any meaningful equations of motion.

2. The momenta ps (s = 1, · · · , n− 1) are multiplied by qs+1 not by q̇s.

3. The momenta ps(s = 1, · · · , n − 1) are not defined from the Lagrangian
through relations like ∂L

∂q̇s
, but just introduced as independent canonical

variables; only pn’s enjoy special treatment, defined by Eq.(5) as usual.
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Time development of the system is described by the canonical equations of
motion: q̇ = ∂HO

∂p
, ṗ = −∂HO

∂q
. That suggests the path integral is given by

ZO =

∫

Dqraa Dpraa exp i

∫

dt[praa q̇
ra
a −HO(p

r, qr)]. (9)

At this stage we do not enter into the problem whether or not this expression
can be well-defined. Integrations with respect to psaa (sa = 1, · · · , na − 1) offer

a factor
∏na−1

sa=1 δ(q̇
sa
a − qsa+1

a ) . We can further integrate with respect qsa+1
a ,

obtaining

ZO =

∫

Dq1aDp
na

a exp i

∫

dt[pna

a q1(na)
a − ĤO(q

1, q1(s), pn)], (10)

where

ĤO(q
1, q1(s), pn)

def
≡ pna

a q̇na

a (q1, q1(s), pn)−Lq

(

q1, q1(s), q̇n(q1, q1(s), pn)
)

, (11)

q1(sa)a

def
≡

dsaq1a
dtsa

. (12)

Singular case(detAab = 0, rankAab = N − ρ)
In this case, the relation (5) can not be inverted. We have ρ primary con-

straints:
φA(q

r, pn) ≈ 0, (A = 1, · · · , ρ) (13)

such that
det{φA, φB}P 6= 0. (14)

By using Lagrange multipliers λA, we define the Hamiltonian as usual:

H̄S(q
r, pr) = HS(q

r, pr) + λAφA(q
r, pn), (15)

where

HS(q
r, pr)

def
≡ psaa q

sa+1
a + pna

a q̇na

a − Lq(q
r, q̇n). (16)

Since det{φA, φB}P 6= 0, the primary constraints (13) are second-class ones.
The consistency of the primary constraints (13) under their time developments
determines all the Lagrange multipliers λA. The path integral is

ZOs =

∫

Dqraa Dpraa det
1

2 {φA, φB}Pδ (φA(q
r, pn)) exp i

∫

dt[praa q̇
ra
a −HS]. (17)

Integrations with respect to psaa and qsa+1
a give

ZOs =

∫

Dq1aDp
na

a det
1

2 {φA, φB}Pδ (φA(q
r, pn)) exp i

∫

dt[pna

a q1(na)
a −ĤS(q

1, q1(s), pn)],

(18)
where

ĤS(q
1, q1(s), pn)

def
≡ pna

a q̇na

a − Lq(q
1, q1(s), q̇n). (19)

3



3 Constrained canonical formalism

It has been seen that the Ostrogradski’s formalism gives special treatment to
the highest derivatives qna

a . To treat all the derivatives equally, we introduce
Lagrangian multipriers µsa

a and start with the following Lagrangian:

LD(q
r, q̇r, µs)

def
≡ Lq(q

r, q̇n) + µsa
a (q̇saa − qsa+1

a ). (20)

The conjugate momenta

πsa
a

def
≡

∂LD

∂µ̇sa
a

= 0, (21)

psaa
def
≡

∂LD

∂q̇saa
= µsa

a , (22)

pna

a

def
≡

∂LD

∂q̇na

a

=
∂Lq

∂q̇na

a

(23)

provide the following primary constraints:

πsa
a ≈ 0, (24)

ψsa
a

def
≡ psaa − µsa

a ≈ 0. (25)

Nonsingular case(detAab 6= 0)
In this case, the relation (23) can be inverted to give q̇na

a as functions of qr

and pn:
q̇na

a = q̇na

a (qr, pn). (26)

By introducing Lagrange multipliers λ̄
(1)sa
a and λ̄

(2)sa
a , the Hamiltonian is de-

fined by

H̄D(q
r, pr) = πsa

a µ̇sa
a + praa q̇

ra
a − LD + λ̄(1)saa πsa

a + λ̄(2)saa ψsa
a . (27)

This can be rewritten as

H̄D(q
r , pr) = HD(q

r, pr) + λ(1)saa πsa
a + λ(2)saa ψsa

a , (28)

where

HD(q
r, pr)

def
≡ psaa q

sa+1
a + pna

a q̇na

a − Lq(q
r, q̇n), (29)

λ(1)saa

def
≡ λ̄(1)saa + µ̇sa

a , (30)

λ(2)saa

def
≡ λ̄(2)saa + q̇saa − qsa+1

a . (31)

The Poisson brackets between the primary constraints (24) and (25) are

{πsa
a , ψsb

b }P = δabδsasb , (32)

otherwise = 0.
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Thus, these primary constraints are of the second class. The path integral is

ZD =

∫

Dqraa Dpraa Dµsa
a Dπsa

a δ(πs)δ(ψs) exp i

∫

dt[praa q̇
ra
a +πsa

a µ̇sa
a −HD]. (33)

Integrations with respect to πsa
a and µsa

a give

ZD =

∫

Dqraa Dpraa exp i

∫

dt[psaa (q̇saa − qsa+1
a ) + pna

a (q̇na

a − q̇na

a (qr, pn))− Lq].

(34)
We can further integrate with respect to psaa and qsa+1

a , obtaining

ZD =

∫

Dq1aDp
na

a exp i

∫

dt[pna

a q1(na)
a − ĤD(q

1, q1(s), pn)], (35)

where

ĤD(q
1, q1(s), pn) = pna

a q̇na

a (q1, q1(s), pn)− Lq

(

q1, q1(s), q̇n(q1, q1(s), pn)
)

. (36)

This shows that the path integral ZD is the same as ZO given by Eq.(10).
Singular case (detAab = 0, rankAab = N − ρ)
In this case, the relation (23) provides ρ additional constraints besides (24)

and (25):
φA(q

r , pn) ≈ 0 (A = 1, · · · , ρ) (37)

such that
det{φA, φB}P 6= 0. (38)

By using Lagrange multipliers λA, λ
(1)sa
a and λ

(2)sa
a , the Hamiltonian is defined

by
H̄Ds(q

r, pr) = HD(q
r, pr) + λ(1)saa πsa

a + λ(2)saa ψsa
a + λAφA, (39)

where

HDs(q
r, pr)

def
≡ psaa q

sa+1
a + pna

a q̇na

a − Lq(q
r, q̇n). (40)

The Poisson brackets between the primary constraints are

{πsa
a , ψ

sb
b }P = δabδsasb , (41)

{ψsa
a , φB}P = −

∂φB

∂qsaa
, (42)

{φA, φB}P
def
≡ cAB, (43)

otherwise = 0.

All the constraints Φα

def
≡ (πsa

a , ψsa
a , φA) form a set of second-class constraints

because the determinant of the matrix ({Φα,Φβ}P) is non-zero:

det{Φα,Φβ}P = detcAB 6= 0. (44)
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The consistency of these constraints under their time developments fixes all the
Lagrange multipliers. The path integral is

ZDs =

∫

Dqraa Dpraa Dµsa
a Dπsa

a det
1

2 cABδ(π
sa
a )δ(ψsa

a )δ(φA) exp i

∫

dt[praa q̇
ra
a +πsa

a µ̇
sa
a −HDs].

(45)
Integrations with respect to µsa

a , π
sa
a , psaa and qsa+1

a give

ZDs =

∫

Dq1aDp
na

a det
1

2 cABδ(φA) exp i

∫

dt[pna

a q1(na)
a − ĤDs(q

1, q1(s), pn)],

(46)
where

ĤDs(q
1, q1(s), pn)

def
≡ pna

a q̇na

a − Lq

(

q1, q1(s), q̇n
)

. (47)

This shows that the path integral ZDs is the same as ZOs given by (18).

4 Generalized canonical formalism

In this section we consider a further generalization of the formalism described
in Ref. 9).

We regard x
(sa)
a and x

(na)
a as independent coordinates qsa+1

a and va respec-
tively:

x(sa)a → qsa+1
a , (48)

x(na)
a → va, (49)

L(x, ẋ, ẍ, · · · , x(n)) → Lq(q
1, · · · , qn, v). (50)

The other generalized coordinates Qra
a are introduced as arbitary functions of

qr

Qra
a = Qra

a (qr) (51)

shch that

det
∂Qrb

b

∂qraa
6= 0. (52)

Eq. (51) can be inverted to give qr as functions of Qr:

qraa = qraa (Qr). (53)

Defferentiating Eq. (51) and (53) with respect to time gives

q̇raa = Q̇rb
b

∂qraa (Qr)

∂Qrb
b

, (54)

Q̇ra
a = q̇rbb

∂Qra
a (qr)

∂qrbb
. (55)
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We introduce new variables defined by

Va
def
≡ qsb+1

b

∂Qna

a

∂qsbb
+ vb

∂Qna

a

∂qnb

b

, (56)

where we assume that Qna

a ’s satisfy

det
∂Qnb

b

∂qna

a

6= 0. (57)

Eq. (56) can be inverted with respect to v as

va =

(

∂Qnb

b

∂qna

a

)

−1(

Vb − qsc+1
c

∂Qnb

b

∂qscc

)

. (58)

Functions Q̄sa
a are defined by

Q̄sa
a

def
≡

(

qsb+1
b

∂Qsa
a

∂qsbb
+ vb

∂Qsa
a

∂qnb

b

)

|
q=q(Q)
v=v(Q,V ). (59)

We introduce Lagrange multipliersM ra
a and start from the following generalized

Lagrangian:

LG(Q
r, Q̇r, V,M r)

def
≡ LQ(Q

r, V ) +M sa
a (Q̇sa

a − Q̄sa
a ) +Mna

a (Q̇na

a − Va), (60)

where

LQ(Q
r, V )

def
≡ Lq(q

r, v)|
q=q(Q)
v=v(Q,V ). (61)

Here it is interesting to consider a special case of the generalized Lagrangian.
Choose

Qr = qr, V = v. (62)

Then the Lagrangian (60) reduces to

Lg(q
r, q̇r, v, µr) = Lq(q

r, v) + µsa
a (q̇saa − qsa+1

a ) + µna

a (q̇na

a − va). (63)

This Lagrangian is similar to the Lagrangian (20), except for term containing
the variables v. The equivalence between the two Lagrangians is proved later.

For the Lagrangian (60) the conjugate momenta

Πra
a

def
≡

∂LG

∂Ṁ ra
a

= 0, (64)

P ra
a

def
≡

∂LG

∂Q̇ra
a

=M ra
a , (65)

Θa

def
≡

∂LG

∂V̇a
= 0 (66)
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provide the following primary constraints:

Πra
a ≈ 0, (67)

Ψra
a

def
≡ P ra

a −M ra
a ≈ 0, (68)

Θa ≈ 0. (69)

The consistency of the primary constraints under their time developments pro-
duces a secondary constraint:

Γa

def
≡ −P sb

b

∂Q̄sb
b

∂Va
− Pna

a +
∂LQ

∂Va
. (70)

By introducing Lagrange multipliers Λ
(1)ra
a ,Λ

(2)ra
a ,Λ

(3)
a and Λ

(4)
a , the Hamilo-

nian is given by

H̄G = HG(Q
r, P r, V ) + Λ(1)ra

a Πra
a + Λ(2)ra

a Ψra
a + Λ(3)

a Θa + Λ(4)
a Γa, (71)

where

HG(Q
r, P r, V )

def
≡ P sa

a Q̄sa
a + Pna

a Va − LQ(Q
r, V ). (72)

The Poisson brackets between the constraints are

{Πra
a ,Ψ

rb
b }P = δabδrarb , (73)

{Ψra
a ,Γb}P = P sc

c

∂2Q̄sc
c

∂Qra
a ∂Vb

−
∂2LQ

∂Qra
a ∂Vb

, (74)

{Θa,Γb}P = −
∂2LQ

∂Va∂Vb
, (75)

{Γa,Γb}P
def
≡ Cab, (76)

otherwise = 0.

All the consraints Σα

def
≡ (Θa,Ψ

ra
a ,Π

ra
a ,Γa) give for the determinant of the

matrix ({Σα,Σβ}P)

det{Σα,Σβ}P = −det2
∂2LQ

∂Va∂Vb
. (77)

Therefore we find that if

det
∂2LQ

∂Va∂Vb
6= 0, (78)

then the system is nonsingular; on the other hand if

det
∂2LQ

∂Va∂Vb
= 0, (79)

then it is singular.
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Nonsingular case

In this case, the constraints (67) ∼ (70) are second-class ones. Thus the con-
sistency of the constraints under their time developments fixes all the Lagrange
multiplires. The path integral is

ZG =

∫

DQra
a DP ra

a DM ra
a DΠra

a DVaDΘaδ(Π
r)δ(Ψr)δ(Θ)δ(Γ) det

∂2LQ

∂Va∂Vb

× exp i

∫

dt[P ra
a Q̇ra

a +Πra
a Ṁ

ra
a +ΘaV̇a −HG]. (80)

Integrations with respect to Πr,Θ,M r give

ZG =

∫

DQra
a DP ra

a DVaδ (Γ(Q
r, P r, V )) det

∂2LQ

∂Va∂Vb

× exp i

∫

dt[P sa
a (Q̇sa

a − Q̄sa
a ) + Pna

a (Q̇na

a − Va) + LQ]. (81)

Singular case

In this case, we have extra constraints in addition to (67) ∼ (70):

ΩA(Q
r, P s, V ) ≈ 0. (82)

Then by introducing Lagrange multipliers Λ
(1)ra
a ,Λ

(2)ra
a ,Λ

(3)
a ,Λ

(4)
a and Λ

(5)
A , the

Hamiltonian is given by

H̄Gs = HG(Q
r, P r, V ) + Λ(1)ra

a Πra
a + Λ(2)ra

a Ψra
a

+ Λ(3)
a Θa + Λ(4)

a Γa + Λ
(5)
A ΩA. (83)

The Poisson brackets between the constrains are

{Πra
a ,Ψ

rb
b }P = δabδrarb , (84)

{Ψra
a ,Γb}P = P sc

c

∂2Q̄sc
c

∂Qra
a ∂Vb

−
∂2LQ

∂Qra
a ∂Vb

, (85)

{Θa,Γb}P = −
∂2LQ

∂Va∂Vb
, (86)

{Γa,Γb}P
def
≡ Cab, (87)

{Ψra
a ,ΩA}P = −

∂ΩA

∂Qra
a

, (88)

{Θa,ΩA}P = −
∂ΩA

∂Va
, (89)

{Γa,ΩA}P =

(

−P sb
b

∂2Qsb
b

∂Qsc
c ∂Va

+
∂2LQ

∂Qsc
c ∂Va

)

∂ΩA

∂P sc
c

+
∂Q̄sc

c

∂Va

∂ΩA

∂Qsc
c

+
∂ΩA

∂Qna

a

,(90)

{ΩA,ΩB}P
def
≡ DAB, (91)

otherwise = 0.
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For all the constraints Σ
(s)
α

def
≡ (Θa,Ψ

ra
a ,Π

ra
a ,Γa,ΩA), the determinant of the

matrix
(

{Σ
(s)
α ,Σ

(s)
β }P

)

is

det{Σ(s)
α ,Σ

(s)
β }P = det















0 −
∂2LQ

∂Va∂Vb
−
∂ΩB

∂Va
∂2LQ

∂Va∂Vb
Cab {Γa,ΩB}P

∂ΩA

∂Vb
{ΩA,ΓB}P DAB















. (92)

If this determinant is nonzero, we assume this is the case, then all the constraints
are of the second class and all the Lagrange multipliers are fixed. The path
integral is

ZGs =

∫

DQrDP rDM rDΠrDV DΘδ(Πr)δ(Ψr)δ(Γ)δ(Θ)det
1

2 {Σ(s)
α ,Σ

(s)
β }P

× exp i

∫

dt[P ra
a Q̇ra

a +Πra
a Ṁ

ra
a +ΘaV̇a −HG]. (93)

Integrations with respect to M ra
a ,Πra

a and Θa give

ZGs =

∫

DQrDP rDV δ(Γa)δ(ΩA)det
1

2 {Σ(s)
α ,Σ

(s)
β }P

× exp i

∫

dt[P sa
a (Q̇sa

a − Q̄sa
a ) + Pna

a (Q̇na

a − Va) + LQ(Q, V )].(94)

Next, we consider the relations between the path integral expressions ZD

(35) and ZG (81) (or ZDs (46) and ZG (81)). In fact, these are shown to be
connected with each other through a canonical transformation.

Consider a canonical transformation (q, p) → (Q,P ). The generating func-
tion has the form

F (Q, p) = praa q
ra
a (Qr), (95)

and gives

qraa =
∂F

∂praa
= qraa (Qr), (96)

P ra
a =

∂F

∂Qra
a

= prbb
∂qrbb (Qr)

∂Qra
a

. (97)

Eqs. (96) and (97) can be inverted to give

Qra
a = Qra

a (qr), (98)

praa = P rb
b

∂Qrb
b (qr)

∂qraa
. (99)
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Nonsingular case

We start with the Lagrangian Lg (63). The conjugate momenta

πra
a

def
≡

∂Lg

∂µ̇ra
a

= 0, (100)

praa
def
≡

∂Lg

∂q̇raa
= µra

a , (101)

θa
def
≡

∂Lg

∂v̇a
= 0 (102)

provide the following primary constraints:

πra
a ≈ 0, (103)

ψra
a

def
≡ praa − µra

a ≈ 0, (104)

θa ≈ 0. (105)

We get the following secondary constraints:

γa
def
≡ pna

a −
∂Lg

∂va
. (106)

By introducing Lagrange multipliers λ
(1)ra
a , λ

(2)ra
a , λ

(3)
a and λ

(4)
a , the Hamilto-

nian is given by

H̄g = Hg(q
r , pr) + λ(1)raa πra

a + λ(2)raa ψra
a + λ(3)a θa + λ(4)a γa, (107)

where

Hg(q
r, pr)

def
≡ psaa q

sa+1
a + pna

a va − Lq(q, v). (108)

For all the constraints are σα
def
≡ (θa, ψ

ra
a , π

ra
a , γa), the determinant of the matrix

({σα, σβ}P) is

det{σα, σβ}P = −det2
∂2Lq

∂va∂vb
. (109)

If this determinant is nonzero, then all the Lagrange multipliers are determined.
The path integral is

Zg =

∫

Dqraa Dpraa Dµra
a Dπra

a DvaDθaδ(π
r)δ(ψr)δ(θ)δ(γ)det

∂2Lq

∂va∂vb

× exp i

∫

dt[praa ṗ
ra
a + πra

a µ̇
ra
a + θav̇a − H̄g]. (110)

Integrations with respect to µr, πr and θ give

Zg =

∫

Dqraa Dpraa Dvaδ(γa)det
∂2Lq

∂va∂vb

× exp i

∫

dt[psaa (q̇saa − qsa+1
a ) + pna

a (q̇na

a − va) + Lq]. (111)

11



We can futher integrate with respect psaa , q
sa+1
a and va, obtaining

Zg =

∫

Dq1aDp
na

a exp i

∫

dt[pna

a q1(na)
a − Ĥg(q

1, q1(s), pn)], (112)

where

Ĥg(q
1, q1(s), pn)

def
≡ pna

a va(q
1, q1(s), pn)− Lq

(

q1, q1(s), v(q1, q1(s), pn)
)

. (113)

Putting va = q̇na

a in this equation shows that the path integral Zg is the same
as ZO given by (10) (and also ZD in (35)).

Next, by doing the canonical transformation generated by F in (95), we show
that the path integral Zg is equivalent to ZG given by (81). Referring to Eqs.
(96) ∼ (99) and (58), the following relation is inserted into Zg in Eq. (111):

∫

DQra
a DP ra

a DVaδ (q
ra
a − qraa (Qr)) δ

(

praa − P rb
b

∂Qrb
b

∂qraa

)

×det

(

∂Qna

a

∂qnb

b

)

−1

δ

(

vb −

(

∂Qna

a

∂qnb

b

)

−1(

Va − qsc+1
c

∂Qna

a

∂qscc

)

)

= 1.(114)

Then we have

Zg =

∫

DqrDprDvDQrDP rDV δ (qr − qr(Qr)) δ (pr − pr(Qr, P r)) δ (v − v(Qr, V )) δ(γ)

×det

(

∂Qna

a

∂qnb

b

)

−1

det
∂2Lq

∂va∂vb
exp i

∫

dt[psaa (q̇saa − qsa+1
a ) + pna

a (q̇na

a − va) + Lq].(115)

Integrations with respect to qr, pr and v give

Zg =

∫

DQra
a DP ra

a DVa

[

δ

(

∂Lq

∂va
− P rb

b

∂Qrb
b

∂qna

a

)

det
∂2Lq

∂va∂vb
det

(

∂Qna

a

∂qrbb

)

−1
]

|
qr=qr(Q)
v=v(Q,V )

× exp i

∫

dt[P rb
b

∂Qrb
b

∂qraa
Q̇rc

c

∂qraa
∂Qrc

c

− P rc
c

∂Qrc
c

∂qsbb
qsb+1
b (Q)− P rc

c

∂Qrc
c

∂qnb

b

vb(Q
r, V ) + LQ].(116)

By using (56),(59) and the relations

δ (γa(q
r, pn, v)) |q=q(Q),p=p(Q,P ),v=v(Q,V ) = det

(

∂Qnb

b

∂qna

a

)

−1

δ(Γb), (117)

det
∂2Lq

∂va∂vb
|q=q(Q),v=v(Q,V ) = det2

(

∂Qna

a

∂qnb

b

)

det
∂2LQ

∂Va∂Vb
, (118)

we get

Zg =

∫

DQra
a DP ra

a DVaδ(Γa)det
∂2LQ

∂Va∂Vb

× exp i

∫

dt[P sa
a (Q̇sa

a − Q̄sa
a ) + Pna

a (Q̇na

a − Va) + LQ]. (119)
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This shows that
Zg = ZO = ZD = ZG. (120)

We have found that the generalized canonical formalism is equivalent to the Os-
trogradski’s one and these two formalisms are connected by a canonical trans-
formation.

Singular case

First, we show the equivalence between the path integrals ZDs given by (46)
and Zgs constructed from the Lagrangian Lg in (63). In this case, we choose,
without loss of generality, for extra constraints the following form:

ωA(q
r, pn−1, v)

def
≡ pnA−1

A −
∂Lq

∂qnA

A

+
∂2Lq

∂vA∂q
nb

b

vb +
∂2Lq

∂vA∂q
sb
b

qsb+1
b ≈ 0. (121)

By introducing additional multipliers λ
(5)
A , the Hamiltonian is given by

H̄gs = Hg(q
r, pr) + λ(1)raa πra

a + λ(2)raa ψra
a + λ(3)a θa + λ(4)a γa + λ

(5)
A ωA. (122)

All the constraints σ
(s)
α

def
≡ (θa, ψ

ra
a , π

ra
a , γa, ωA) give for the determinant of the

matrix
(

{σ
(s)
α , σ

(s)
β }P

)

det{σ(s)
α , σ

(s)
β }P = det















0 −
∂2Lq

∂va∂vb
−
∂ωA

∂va
∂2Lq

∂va∂vb
{γa, γb}P {γa, ωB}P

∂ωA

∂vb
{ωA, γb}P {ωA, ωB}P















. (123)

If this is nonzero, all the Lagrange multipliers are determined. The path integral
is given by

Zgs =

∫

Dqraa Dpraa Dµra
a Dπra

a DvaDθaδ(π
r)δ(ψr)δ(θ)δ(γ)δ(ωA)det

1

2 {σ(s)
α , σ

(s)
β }P

× exp i

∫

dt[praa q̇
ra
a + πra

a µ̇ra
a + θav̇a −Hgs]. (124)

Integrations with respect to µra
a , π

ra
a and θa give

Zgs =

∫

Dqraa Dpraa Dvaδ (γa(q
r, pn, v)) δ

(

ωA(q
r, pn−1, v)

)

det
1

2 {σ(s)
α , σ

(s)
β }P

× exp i

∫

dt[psaa (q̇saa − qsa+1
a ) + pna

a (q̇na

a − va) + Lq(q, v)]. (125)

Here, we consider the matrix
(

{σ
(s)
α , σ

(s)
β }P

)

. We change this into a form which

can be integrated with respect to va. The assumption that the determinant of

13



this matrix is nonzero means

rank
∂ωB

∂va
= ρ. (126)

In the matrix
(

∂2Lq

∂va∂vb

∂ωA

∂va

)

=
∂

∂va
( γb ωA ) , (127)

we select γξ (ξ = ρ+ 1, · · · , N) which satisfy

det

(

∂(γξ, ωA)

∂va

)

6= 0, (128)

to define as Ξa(q
r , pn, pn−1)

def
≡ (γξ, ωA). The determinant of the matrix (123)

reduces to

det{σ(s)
α , σ

(s)
β }P = det2

(

∂Ξa

∂va

)

det{γA, γB}P. (129)

Then the path integral (125) is given by

Zgs =

∫

Dqraa Dpraa Dvaδ(γA)δ(Ξa)det

(

∂Ξa

∂vb

)

det
1

2 {γA, γB}P

× exp i

∫

dt[psaa (q̇saa − qsa+1
a ) + pna

a (q̇na

a − va) + Lq]. (130)

Integrations with respect to va, p
sa
a and qsa+1

a give

Zgs =

∫

Dq1aDp
na

a δ (γA) det
1

2 {γA, γB}P exp i

∫

dt[pna

a q1(na)
a − Ĥgs], (131)

where

Ĥgs
def
≡ pna

a va − Lq

(

q1, q1(s), v
)

. (132)

Putting γA = φA, we have arrived at the same expression as ZDs in (46).
Next task is canonical transformation. Since the exponent in (94) is the

same as in Eq. (81), we insert Eq. (114) into the expression (125) and integrate
with respect to qr, pr and v to obtain

Zgs =

∫

DQrDP rDV δ(γa)δ(ωA)det
1

2 {σ(s)
α , σ

(s)
β }P

× det

(

∂Qnb

b

∂qna

a

)

−1

|q=q(Q),p=p(Q,P ),v=v(Q,V )

× exp i

∫

dt[psaa (Q̇sa
a − Q̄sa

a ) + Pna

a (Q̇na

a − Va) + LQ]. (133)
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By using the relations

δ(γa)|q=q(Q),p=p(Q,P ),v=v(Q,V ) = δ(Γa)det

(

∂Qnb

b

∂qna

a

)

−1

|q=q(Q), (134)

δ(ωA)|q=q(Q),p=p(Q,P ),v=v(Q,V ) = δ(ΩA)det

(

∂QnB

B

∂qnA

A

)

−1

|q=q(Q), (135)

det{σ(s)
α , σ

(s)
β }P = det4

(

∂Qnb

b

∂qna

a

)

det2
(

∂QnB

B

∂qnA

A

)

det{Σ(s)
α ,Σ

(s)
β }P, (136)

we obtain

Zgs =

∫

DQrDP rDV [δ(Γa)δ(ΩA)det
1

2 {Σ(s)
α ,Σ

(s)
β }P]

× exp i

∫

dt[P sa
a (Q̇sa

a − Q̄sa
a ) + Pna

a (Q̇na

a − Va) + LQ]. (137)

This shows
Zgs = ZOs = ZDs = ZGs. (138)

The path integrals Zgs and ZGs are connected with each other by the canonical
transformation generated by F in (95).

5 Summary and Discussion

In the present paper we have given path integral expressions for three canonical
formalisms of higher-derivative theories. For each formalism we have considerd
both nonsingular and singular cases. It has been shown that three formalisms
share the same path integral expressions. In paticular it has been pointed out
that the generalized canonical formalism is canonically transformated from the
constrained canonical one.

Here we have to mention some crucial properties involved in higher-derivative
theories. The Hamiltonian is unbounded from below in general; unitarity is vi-
olated in general; whether or not stable vacuum can be well defined is problem-
atic. That means we should worry about how to define path integral. Leaving
these problems to the future investigation, we have just assumed in this paper
that stable lowest state can be defined, and the path integral can be written
down as usual by the use of a time development operator, the Hamiltonian.
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