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Abstract

Path integral expressions for three canonical formalisms — Ostrograd-
ski’s one, constrained one and generalized one — of higher-derivative the-
ories are given. For each fomalism we consider both nonsingular and
singular cases. It is shown that three formalisms share the same path
integral expressions. In paticular it is pointed out that the generalized
canonical formalism is connected with the constrained one by a canonical
transformation.
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1 Introduction

Higher-derivative theories appear in various scenes of physics,-2). Higher-
derivate terms occur as quantum corrections; nonlocal theories, e.g. string theo-
ries, are essentially higher-derivative theories; Einstein gravity supplemented by
curvature squared terms has attracted attention because of its renormalizability.?)

A canonical formalism for higher-derivative theories was first developed by
Ostrogradski about one and a half centuries ago.*) He treated only nonsingu-
lar cases, where the Hessian matrices of Lagrangians with respect to highest
derivatives are nonsingular. For singular cases, Dirac’s algorithm® for con-
strained Hamiltonian systems was shown to be applicable.?”) Though being
self-consistent, these formulations for nonsingular and singular cases look differ-
ent from the conventional canonical formalism: highest derivatives are discrimi-
nated from lower ones, only the highest ones enjoying Legendre transformations.
If we regard the original higher-derivative systems as equivalent first-derivative
systems with constraints and apply the Dirac’s algolithm to the latter ones,
we could give the foundation of the ordinary canonical formalism to the Os-
trogradski’s canonical one. This program, constrained canonical formulation of
higher-derivative theories, has bee! n carried out in Refs. 6) and 8) for both
nonsingular and singular cases. A generalization of the constrained canonical
formalism has been discussed in Ref. 9).

In all these approaches the sets of canonical equations provided by the re-
spective formalisms have mainly been considered, and their equivalence to the
set of Euler-Lagrange equations has been shown. To go to quantum theory,
however, the equivalence of the sets of equations of motion is not enough. We
have to confirm the equivalence of off-shell imformation. That is, comparing
path integral expressions of the respective formalisms is essentially important.
This is the subject of the present paper. We give path integral expressions for
each formalism and show they are equivalent to one another. In paticular it
is pointed out that the generalized canonical formalism is connected with the
constrained canonical one by a canonical transformation.

In §2, path integral expressions of the Ostrogradski’s canonical formalism
are given for both singular and nonsingular cases. In §3, path integral expres-
sions of the constrained canonical formalism are given and it is shown that the
constrained one is equivalent to the Ostrogradski’s one. In §4, path integral
expressions of the generalized canonical formalism are given. A further gener-
alization of the formalism described in Ref. 9) is developed. It is shown by
doing a canonical transformation that the generalized one is equivalent to the
Ostrogradski’s. Section 5 gives summary and descussion.



2 Ostrogradski’s canonical formalism

We consider a system described by a generic Lagrangian which contains up to
ng-th derivative of z,(t) (a =1, -+, N)

L:L(Ia,j?a7,fa7~-~7$gna)), (1)

where e
x((l’l‘a) dECt T:ia' (,r,a — 17"'7”(1) (2)
The canonical formalism of Ostrogradski regards :v((f“)(sa =1,---,n, — 1) as

independent coordinates gS«*1:

al) = gt (3)
L(xa7ja,-.-7gca’n’a)) — Lq(Q;a"'quGaqga)' (4)

The momenta conjugate to ¢Jl* is defind as usual by

e def OLg
a - aq';la *

The Hessian matriz of Ly is defined by

of O°L
A & o0 (6)
04q" 0q"
We say that the system is nonsingular if det A,p # 0, while singular if det Agp = 0.
Nonsingular case (detAq, # 0)
In this case, the relation (E) can be inverted to give ¢/'* as functions of
q"(r=1,---,n) and p" :
o = qq"(q",p"). (7)
The Hamiltonian is defined by

def . .
Ho = piray ' +pidqge (a",p") = Lq (¢",4"(d",0")) - 8)
It is seen that this construction of the Hamiltonian has several peculiarities
from the view point of the ordinary Legendre transformation:

1. What appears in Eq() is just a function L4(g*,---,¢",¢") whose Euler
derivatives do not produce any meaningful equations of motion.
2. The momenta p* (s = 1,---,n — 1) are multiplied by ¢**! not by ¢°.

3. The momenta p°(s = 1,---,n — 1) are not defined from the Lagrangian

through relations like quS, but just introduced as independent canonical

variables; only p™’s enjoy special treatment, defined by Eq(ﬂ) as usual.



Time development of the system is described by the canonical equations of

motion: ¢ = 88%, p= —86%. That suggests the path integral is given by
Zo = [ Dagr Dol expi [ iz ~ Holwa') )

At this stage we do not enter into the problem whether or not this expression
can be well-defined. Integrations with respect to pse(s, = 1,---,n, — 1) offer
a factor H::;ll 5(gs* — gS+t1) . We can further integrate with respect g™t
obtaining

7o = /inDpZ“ expi/dt[PZ”qi("“) — Ho(q",¢'®,p")], (10)
where

Ho(q',q")p") € P (a4, p") = La (¢.4") 4" (¢"," . p™) . (11)

1(sa) def d°qq

4, = dtsa

Singular case(det A,, = 0, rankA,, = N — p)

In this case, the relation (E) can not be inverted. We have p primary con-
straints:

(12)

(bA(qupn) %07 (A: 1vap) (13)
such that
det{(bA, ¢B}p #0. (14)
By using Lagrange multipliers A4, we define the Hamiltonian as usual:
Hs(q",p") = Hs(q",p") + Xadald",p"), (15)
where ot
Hs(q",p") = paraa"™ + 0l dq” — La(q",4"). (16)

Since det{¢a,dp}p # 0, the primary constraints (@) are second-class ones.
The consistency of the primary constraints ) under their time developments
determines all the Lagrange multipliers A4. The path integral is

Zos = /DqZ“DpZ“det%{¢A,¢B}P5(¢A(qr,p"))expi/dt[pZ“dZ;“ — Hg]. (17)

Sa+1

Integrations with respect to pS+ and ¢

give
Zos = /inDpZ“det%{qm¢B}p5(¢A(qﬁp"))eXpi/dt[pZ“qi("“)—fls(ql,q1(5>7p")],
(18)

where
~ def

Hs(¢',q",p") = piedie — Lqla",d"™,q"). (19)



3 Constrained canonical formalism

It has been seen that the Ostrogradski’s formalism gives special treatment to
the highest derivatives gl'=. To treat all the derivatives equally, we introduce
Lagrangian multipriers pje and start with the following Lagrangian:

r oo sy def ron Sa (S s
Lo(q".q", 1*) = Lq(d",4") + pge (45 — a3° ™). (20)
The conjugate momenta
ef OL
me EOZD g (21)
e
def OLp
So = —— =yl 22
P g M (22)
det OLp  OLg
Ta = = 23
Pa aqga 843‘1 ( )
provide the following primary constraints:
e ~ 0, (24)
def
s Ep — s 0. (25)

Nonsingular case(detAq, # 0)
In this case, the relation (R3)) can be inverted to give ¢" as functions of ¢"
and p™:
Ga" = da"(¢",p"). (26)
By introducing Lagrange multipliers As"** and A, the Hamiltonian is de-
fined by
Ho(q",p") = mee izt + Pt ot — Lo+ A eme + AP yie. (27)

This can be rewritten as

E[D(QT,]?T) _ HD(C]T,]?T) + )\((ll)saﬂ_(sla + )\((12)5(12/1(51117 (28)
where
def -n T on
Hp(q",p") = prat +piedie — Le(q",d"), (29)
def -
e 3 @)
def -
AP = AP g — gt (31)

The Poisson brackets between the primary constraints (24) and (RF) are

{Trtsza ; 1/}§b }P = 5ab55asb7 (32)

otherwise = 0.



Thus, these primary constraints are of the second class. The path integral is
Zp = / D» Dyl Dy D 6(n°)3(4°) expi / dtlpLe 4o +mse i — Hp). (33)

Integrations with respect to 7 ¢ and pe give

o= /DqZ“DpZ“ eXPi/dt[PZ“(QZ“ ) + e (da* = dg*(a",p")) — Lal-
(34)
We can further integrate with respect to pSe and gS«!, obtaining

Zp = /DQ;DPZQ expi/dt[pga‘ﬁ(na) _E[D(qlvql(s)vpn)]v (35)
where
Hp(q", ¢, p") = p=g(¢", ¢*@), p") — Lq (q '@, " (ql,ql(s),p"))- (36)

This shows that the path integral Zp is the same as Zo given by Eq(@)
Singular case (det A,, =0, rankA,, = N — p)
In this case, the relation (@) provides p additional constraints besides (@)
and (R5):
(bA(qupn)%O(A:lv"'ap) (37)
such that
det{(;SA, ¢B}p 75 0. (38)

By using Lagrange multipliers A4, \.”** and \?**, the Hamiltonian is defined
by

Hps(q",p") = Hp(q",p") + A mie + AP 93 + Aada, (39)
where
Hos(q"p") = peaqie ™ +pledle — Lo, ")- (40)
The Poisson brackets between the primary constraints are
{ a s Wy }P = 5ab5sasb7 (41)
9¢5
Sa = - 42
{vse, o8P 9 (42)
def

{64,085} = cap, (43)

otherwise = 0.

def
All the constraints ®, = (mie Sa $p4) form a set of second-class constraints

a

because the determinant of the matrix ({®., ®g}p) is non-zero:

det{fba, (I)g}p =detcap # 0. (44)



The consistency of these constraints under their time developments fixes all the
Lagrange multipliers. The path integral is

Zps = /DqZ“DpZ“ DuleDmse det%cAB(S(wZ“)(S(U)Z“)(S((bA) expi / dt[pregre+mie iie — Hpg).

(45)
Integrations with respect to pSe, wse, pe and ¢S« *! give
Zps = /inDpZ“det%CABﬂm)expi/dt[pZ“Qi("") — Hos(q", 4", p")),
(46)
where ot
Hps(q" ¢"),p") = piedpe — Lq (ql,ql(s),qn) : (47)

This shows that the path integral Zp, is the same as Zos given by ([Lg).

4 Generalized canonical formalism

In this section we consider a further generalization of the formalism described
in Ref. 9).

We regard :v((f“) and :v((l"“) as independent coordinates ¢3¢ ! and v, respec-
tively:

ale) o it (48)
) g, (49)
L(a:,j:,fc',~-~,:c(”)) — Lq(q1,~-~,q”,v). (50)

The other generalized coordinates Q7e are introduced as arbitary functions of
q’l"

Q= Qe (g") (51)
shch that Q"
det —2 0. 52
e Dg #* (52)
Eq. (1) can be inverted to give ¢" as functions of Q"
4" = ¢4 (Q"). (53)

Defferentiating Eq. (51]) and (53) with respect to time gives

. T aqTa (QT)
re o= Qrat ) 54
qa b 8ng ( )
Nra -Th 8Q2a (qr>
Qa - qb 8(];;1) . (55)



We introduce new variables defined by

def oQm Q"
Va = sp+1 a a 56
qy 6(];17 + vp 6(];“7 ) ( )
where we assume that Q) +’s satisfy
Q"
det —2— # 0. 57
ot Gt (57)

Eq. (F6) can be inverted with respect to v as

aQrr\ ! Qe
o = Vo — gt = ). 58
° <3q3“ ) P g (58)
Functions Q3¢ are defined by
s, def (o 11 0Q5" 9Q3" \ 14=4(Q)
Qa = (qbb ang + vp aqlr)u, |v:v(Q,V)' (59)

We introduce Lagrange multipliers M+ and start from the following generalized
Lagrangian:

def

LG(QT,QT,V, MT) = LQ(QT,V) +M;G(Q2a - QZCL) +MQG(QZG - Va)7 (60)

where ot
Lo(Q" V) E Lo(q" )i 252, (61)

Here it is interesting to consider a special case of the generalized Lagrangian.

Choose
Q =q", V=0 (62)

Then the Lagrangian (f0) reduces to
Le(q" 4" v, 1") = La(q" ) + g (40 — a2 ) + po* (45 —va)- - (63)

This Lagrangian is similar to the Lagrangian (R(), except for term containing
the variables v. The equivalence between the two Lagrangians is proved later.
For the Lagrangian (E) the conjugate momenta

e & Oe g (64)
OMg"

pro & OL6 (65)
0Qa
of OL

o, X 9s_, (66)
v,



provide the following primary constraints:

e =~ 0, (67)
yre & pra _pre ~ g, (68)
0, ~ 0. (69)

The consistency of the primary constraints under their time developments pro-
duces a secondary constraint:

e Qs oL
r, < —pe @ pn. 9la

oV, “ 17

(70)

By introducing Lagrange multipliers A,(ll)T“,Ag)T“,A,(IS) and A,(14), the Hamilo-
nian is given by

He = He(Q", P", V) + A1 + AP wre + AP, + ADT,,  (71)

where ot
Ha(Q",P", V) E PiQi + PV, — Lo(Q", V). (72)
The Poisson brackets between the constraints are
{HZa, \I]Zb }P = 6ab67‘arba (73)
aQQsC aZLQ
gre T° = P’ < — 74
{ a > b}P ¢ 9QmaV, QL dV, (74)
82LQ
O.,T = - 75
{ 353 VOV, (75)
def
{Fav Fb}l:’ = Oab; (76)
otherwise = 0.
All the consraints ¥, o (O, ¥re, 117 T,) give for the determinant of the

matrix ({Xq,Xs}p)

det{Sq, S5}p = —det? OLq (77)
ay 5 P = aVaa% .
Therefore we find that if

det 2ka 40 (78)

oV, 0V, ’
then the system is nonsingular; on the other hand if
9?Lq
det = 79
Cov,ov, (79)

then it is singular.



Nonsingular case

In this case, the constraints (67) ~ () are second-class ones. Thus the con-
sistency of the constraints under their time developments fixes all the Lagrange
multiplires. The path integral is

d?Lq
OV, 0V,
X expi / dt[PreQ"e + 11" M 4+ 0,V, — Hg]. (80)

Zg = / DQ = DP!* DM DII"* DV, DO, 5(II")§(¥")5(0)5(I) det

Integrations with respect to II", ©, M" give
9?Lq
OV, 0V,

X expi / Q[P (Qr — Q50) + P (@M — Vi) + La). (81)

Ze = / DQ = DPDV,8 (I(Q", P",V)) det

Singular case
In this case, we have extra constraints in addition to (f7) ~ ([f0):

Qa(Q", P, V) =~ 0. (82)

Then by introducing Lagrange multipliers A((ll)“ , A,(f)r“, A((lg)7 A((;l) and Af), the
Hamiltonian is given by

,HGS = HG (Qru PT? V) + A((ll)TaHZa + A((f)"a \I]Za
+ A((f)@a 4 A,(14)Fa + AS))QA. (83)

The Poisson brackets between the constrains are

{Hga, \I]Zb}l:’ = 6ab6rarbu (84)
QQQZ‘C 82LQ

Qe T B -
{ a ? b}P C 5@2‘16% 6Q2aa%’ (85)
9%Lq
{04, Totpr = A (86)
T} & Cu (87)
004
e Q) = &4
{T, Qate 90L (88)
0L
{@a,QA}P _5—Va’ (89)
92Qzr 0%L 00 3QSC 0 3@
Fa Q _ _psv b Q c 4
{Ta, Qale < b 0oV, 6Q§C6Va) or T av, aor oo
Q. Q5lp € D, (91)
otherwise = 0.



For all the constraints ES) et (©g, Vra IITa . T',,Q4), the determinant of the
matrix ({ES),zgs)}p) is

. | 9L 90
oVv,ov, oV,
(s) x(s) 9?Lq
det {3 2y tp = det OV Cuwb {I'y,QB}p |- (92)
Bi9)
atr A1 BSJP AB
avf {Q4,T5} D

If this determinant is nonzero, we assume this is the case, then all the constraints
are of the second class and all the Lagrange multipliers are fixed. The path
integral is
Zas = / DQ"DP DM DI DV DOS(IT)5(¥7)8(1)5(0)det > {&), 25} p
X expi / QH[PTe Qe + T DT + O,V — Ha). (93)
Integrations with respect to M+, II'* and O, give
Zgs = / DQDP DV §(I)d(Qa)det? {SE), 2 }p
xexpi [P (@3 = Qi)+ BI(Q3 = Vi) + La(Q.V)0)
Next, we consider the relations between the path integral expressions Zp
(B3) and Ze (R1) (or Zps (1) and Zg (BI))). In fact, these are shown to be
connected with each other through a canonical transformation.

Consider a canonical transformation (¢,p) — (Q, P). The generating func-
tion has the form

F(Q,p) = pyaa" (@), (95)
and gives
r _ or _ Ta r
Qa - 8])2& - qa (Q )7 (96)
e _ OF ., 0¢,"(Q7)
Pl = a0 Dy aQr (97)
Eqgs. (Pg) and (p7) can be inverted to give
Quw = Qi (d"), (98)
S— D)
pa - Pb aqga . (99)

10



Nonsingular case
We start with the Lagrangian Ly (). The conjugate momenta

def OLg
= = 100
R (100)
def OLg
o = = p° 101
P g~ Ma" (101)
det OL
O, = £=0 102
Do, (102)
provide the following primary constraints:
ﬁga ~ 0, (103)
e S — e ~0, (104)
0. ~ 0. (105)
We get the following secondary constraints:
L
e e _ OLe (106)

Ya = Pq vy
By introducing Lagrange multipliers Afll)ra, )\512)”, )\513) and )\514), the Hamilto-
nian is given by

Hy = Hy(q",p") + A Preqgra 4 \Dragra L ABg, 4 AWy (107)

where
Hy(q",p" ) £ pegsett 4 plev, — Lo(g, ). (108)

For all the constraints are Ua = ( 0, Yoo, T v, ), the determinant of the matrix

({0, 05}p) is
2 0%Lq

8’0(181)1, '
If this determinant is nonzero, then all the Lagrange multipliers are determined.
The path integral is

det{oq,0p}p = —det (109)

r r r T T 82Lq
/Dq Dpg Dy Dy Do DO (7)) (4")5(0)d(v)det 0v,0vy

X expi/dt[pzapza + e e + 0,0, — Hy). (110)

Integrations with respect to p", 7" and 6 give

2

0% Lq
Dq "+ DpreDuy 6 (v, )det
/q Do v5(7)eavaavb

xexpi/dt[ c(g8r — gt + pla(@i —w,) + Ly].  (111)

11



We can futher integrate with respect pse, g3+ and v,, obtaining

Zy = /chiDpZ“ expi/dt[plf“q;("“) — Hy(q",¢" ™, p™)], (112)

where
S T dif T S T S n
Hy(q', q'™,p™) E plova(qt, ¢+, p") — Lq (ql,ql() v(g, ¢",p ))- (113)

Putting v, = ¢ in this equation shows that the path integral Z, is the same

as Zo given by ([L0) (and also Zp in (B3)).
Next, by doing the canonical transformation generated by F in (pg), we show

that the path integral Z, is equivalent to Zg given by (@) Referring to Egs.
(pd) ~ (P9) and (58), the following relation is inserted into Z, in Eq. ([LL])):

[ auprpvs @ — ar @) (st - G )

0Qy\ ! 0\ 519957\ ) _
xdet ( . ) ) (vb - (8(]{}” ) Vo —q; v =1(114)

Then we have

Z = / Dy Dy DDQ PP DV (" — ¢ (Q")) 6 (0 — p(Q", P™)) 6 (v — v(Q", V) ()

oQre\"' . 9L ) o
xdet(ang) detavaa‘;b expz/dt[ “(gee — gt + ple(§he — va) + Lo)(115)

Integrations with respect to ¢",p” and v give

OLq 9Qy’ 9*L Q2 \ "' o=a" @
P det Lq det a q"=q
1) (a’ua b 6 g ) € a’Uaa’Ub ( aqzb |'u:'u(Q,V)

Zy = / DQ"*DP!*DV,

. r 0Qy" . Ogp° 0Qc o 11 0Q¢e
dt[ Py it re Lo _ preCee’ gt () preS=ey (V) + Lo(116
X expl/ [ b a Ta XC 8@26 ¢ 8(]?’ 9% (Q) c 8(]{7“7 Ub(Q ) ) + Q]( )

By using (54),(F9) and the relations

ny

T n a !
5 (uld” 1" 0) y-ai@ymn@.promia) = det (S ) a(T), (117)

0%L oQne 0L
det -0 La _ = det? de 9 11
av (9’Ub|q q(Q),v=v(Q,V) et (aqb ) taVaa%’ (118)
we get
9?Lq
Ly = DQ"*DP"*DV,6(T,)det
g / Qa a Ve 5( ) € oV, a%

xexpi [P (@3 - Qi)+ (@ ~ Vi) + Lol (119)

12



This shows that
Zy =Zo = Zp = Zg. (120)

We have found that the generalized canonical formalism is equivalent to the Os-
trogradski’s one and these two formalisms are connected by a canonical trans-
formation.

Singular case

First, we show the equivalence between the path integrals Zps given by (@)
and Z, constructed from the Lagrangian L, in () In this case, we choose,
without loss of generality, for extra constraints the following form:

O0Lq 0?Lg PLq o1
- p) na + Sb q
q's BvAaqb (%Aaq

,U) = p:f‘“_l

~0. (121)

By introducing additional multipliers )\S)), the Hamiltonian is given by
Hye = Hy(q",p") + AWD7agre 4 APrayra 4 A@g, 4 Dy 4 APy, (122)

All the constraints a((l Ec

matrix ({O'((;) , Ués) }p)

(Ou, e, 7he va,wa) give for the determinant of the

0 _ BQLq _(%JA
0v,0vy Ovg
det{ol, o5 }p = det 0Lq (e wle  {Yewsle |- (123)
OvaOvp ’ ’
(%JA

6—vb {WA7 ”Yb}P {WA,WB}P

If this is nonzero, all the Lagrange multipliers are determined. The path integral
is given by

ng - / DQZGDPZGD/LZ@DWZG Dvapoa5(7TT)5(1/}T)6(0)5(")/)5(WA)det% {Ug(s), o_éb) }P
X expi/dt[pa (o + mg" f1g* + OaVa — Hys]. (124)

Integrations with respect to pl*, 7> and 6, give

a ? G.

/ Dl Dple Dvad (Ya(q" 0", v)) 8 (walq”, p" 1, v)) det? {0, o)}

X expi / dtlpie (G2 — gt + pie (@ —va) + Lalgv).  (125)

Here, we consider the matrix ({aa 05 )}p) . We change this into a form which

can be integrated with respect to v,. The assumption that the determinant of

13



this matrix is nonzero means

rank(?;;f = p. (126)
In the matrix ) 5
0 Lq (%JA
-2 , 127
((%aavb Ovg ) Ov, (% wa) (127)
we select ve (€ =p+1,---, N) which satisfy
9(ve,wa)
det ( ) #0. (128)

def
to define as Z,(q", p", p" 1) = (7e;w4). The determinant of the matrix ()
reduces to

—_

det{o®, 0 1p = det? (g:“) det{ya,v5}p- (129)
v

a

Then the path integral ([[2]) is given by

—_
—
—aq

_ 15) 1
Zgs = /’Dqg“DpZ“Dvaé(WA)é(:a)det (a—vb) det?{va,vB}pP
x eXpi/dt[pZ“ (do* = qa ™) + P (dg" —va) + Lg].  (130)
Integrations with respect to v,, pSe and g« give

Zgs = /DQ;DPZQCS(’YA)det%{”YAa’YB}P eXpi/dt[pZ"qi("“) — Hg),  (131)

where et
ﬁgs = PatVa — Lg (ql, ql(s), v) . (132)

Putting y4 = ¢4, we have arrived at the same expression as Zps in ({4).
Next task is canonical transformation. Since the exponent in (94) is the

same as in Eq. (B1), we insert Eq. ([[I4) into the expression ([[2§) and integrate
with respect to ¢",p" and v to obtain

Zy = / DQ DP DV 6(70)d(wa)det? {0, 0§}

Qe !
x det <6q3“ > |q:q(Q)7p:p(Q,P)w:v(QxV)

X expi / dtpse (O — Q%) + Pra(QM — Vi) + Lol.  (133)

14



By using the relations

8an -1
5(Ya)lg=a(Q) p=p(Q.P).v=v(Q.v) = 6(I'a)det (?é’a) lo=a(@)»  (134)

n —1
5(wa)lg=q(Q).p=p(@.P)v=v(@,v) = 0(2a)det (%qff ) lo=a(@),  (135)
det{o®, 05 }p = det’ (‘;fg) det? (%?%f) det{s$),2}p,  (136)

we obtain
Ze = / DQ DP DVIH(T)3(2a)det} {56, 56 }p]
<expi [P (@3 - Qi)+ PI(Qr = Vi) + Lo (137
This shows

Zgs = Z0s = Zps = Zas. (138)

The path integrals Zgs and Zgs are connected with each other by the canonical
transformation generated by F' in @)

5 Summary and Discussion

In the present paper we have given path integral expressions for three canonical
formalisms of higher-derivative theories. For each formalism we have considerd
both nonsingular and singular cases. It has been shown that three formalisms
share the same path integral expressions. In paticular it has been pointed out
that the generalized canonical formalism is canonically transformated from the
constrained canonical one.

Here we have to mention some crucial properties involved in higher-derivative
theories. The Hamiltonian is unbounded from below in general; unitarity is vi-
olated in general; whether or not stable vacuum can be well defined is problem-
atic. That means we should worry about how to define path integral. Leaving
these problems to the future investigation, we have just assumed in this paper
that stable lowest state can be defined, and the path integral can be written
down as usual by the use of a time development operator, the Hamiltonian.
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