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Abstract

In a previous publication [1], local gauge invariant geometric variables were introduced

to describe the physical Hilbert space of Yang-Mills theory. In these variables, the electric

energy involves the inverse of an operator which can generically have zero modes, and thus

its calculation is subtle. In the present work, we resolve these subtleties by considering a

small deformation in the definition of these variables, which in the end is removed. The

case of spherical configurations of the gauge invariant variables is treated in detail, as well

as the inclusion of infinitely heavy point color sources, and the expression for the associated

electric field is found explicitly. These spherical geometries are seen to correspond to the

spatial components of instanton configurations. The related geometries corresponding to

Wu-Yang monopoles and merons are also identified.
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1. Introduction

A new formulation of nonabelian gauge theory has recently been given [1] (hereafter

referred to as I.), which is founded on a geometrical basis and seeks to define a setting in

which gauge symmetry is implemented exactly and manifestly, even under approximations

of the dynamics. Here, we will present further developments of this formulation as well as

an example showing how it may allow one to obtain new insights into the reasons why the

Yang-Mills field theory has a mass gap and produces a long range confining interaction

between massive colored sources. We have introduced this geometric basis in the Hamilto-

nian formulation because in the Lagrangian path integral formalism for a nonabelian gauge

theory, the local gauge invariance does not really manifest itself as a symmetry, but rather

as a redundancy in the path integral measure. Any approximations in that formalism are

likely to introduce gauge artifacts precisely because local gauge invariance is not acting as

a symmetry. In the strong coupling region of the theory, an alternative and perhaps better

procedure might be one that avoids such gauge artifacts. This is possible in the canonical

Hamiltonian formulation, because in “temporal” gauge, Aa
0 = 0, there is a remaining local

gauge invariance restricted to space-dependent transformations at a fixed time, and one

can achieve the goal of treating this gauge invariance like a true quantum mechanical sym-

metry. The local generators of such gauge transformations form an algebra and represent

symmetries of the Hamiltonian which can be maintained exactly, even when the dynamics

is done approximately. In view of this, one can understand better the statement that gauge

invariance is not a symmetry away from a fixed-time formalism, and why approximations

introduce gauge artifacts: the full classical gauge group includes time-dependent gauge

transformations, and these are coupled to the dynamics. An approximate version of the

dynamics is then likely to destroy any attempt to keep the full gauge invariance.

We implement the gauge symmetry by considering a change of variables in the Hilbert

space such that any function of the transformed variables is a singlet under the gauge group,

i.e., is gauge invariant. In fact, this can be done in different ways [1]-[5]. In I., we have

introduced such a transformation of variables, and here we will develop this formalism in

more detail. Our basic procedure is straightforward and simple to state: rather than using

the space components of the vector potential, Aa
i (a is a color index, i = 1, 2, 3 a space

index), as fundamental coordinates in the Hilbert space of the theory, we use local quan-

tities which transform covariantly under gauge transformations. Whereas the generator of

gauge transformations in terms of Aa
i is complicated by the noncovariant transformation
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properties of the vector potential, when expressed in terms of gauge covariant variables it

simply turns into a (color) rotation generator. Gauge covariant quantities can furthermore

be contracted with themselves in color and lead to gauge invariant variables. In terms of

such gauge invariant variables, Gauss’ law, or gauge symmetry, becomes manifest.

Nevertheless, not any choice of gauge covariant variables is appropriate. An appro-

priate set of variables should describe the correct number of gauge invariant degrees of

freedom at each point of space, and should also be free of ambiguities (such as, for in-

stance, Wu-Yang ambiguities, where several gauge unrelated vector potentials may lead to

the same color magnetic field [3],[6]). In I., the set of gauge covariant variables, ua
i , we

have chosen to define is given by the following differential equations:

εijkDju
a
k ≡ εijk(∂ju

a
k + fabcAb

ju
c
k) = 0 . (1.1)

The linear operator εijkDj ≡ (Sj)ikDj , where S is the single gluon “spin” operator, plays

a central role in our formulation. When Aa
i is a pure gauge, the eigenvalues of this operator

are ±p and 0; in this case the zero modes are the “longitudinal” gluons. In general, the zero

mode wavefunctions replace the vector potential as the dynamical coordinate. Further, the

remaining spectrum and eigenfunctions of the operator enter in the process of obtaining

an expression for the electric field conjugate to Aa
i in terms of the variables ua

i . It is clear

that the spectrum is gauge invariant and that the wavefunctions ua
i transform as vectors

under gauge changes. In I. and here we actually only consider in detail the SU(2) theory,

fabc = εabc (although in I. the extension to SU(N) is also partially treated). Because most

of the details of calculation needed for our purposes have been spelled out in I., here we

will rather present a brief summary of previous results.

It turns out that for the SU(2) theory in canonical formalism, there is a natural

symmetry under coordinate reparametrizations, which is respected by all commutators

and basic formulas except for the Hamiltonian itself. We have purposefully maintained

this symmetry in defining our new variables, so that a natural geometric picture arises

as a guiding principle in the formalism at no extra cost. Under this reparametrization

symmetry, the vector potential transforms as a covariant vector, while both the electric

field Eai = −iδ/δAa
i and the magnetic field,

Bai = εijk(∂jA
a
k +

1

2
εabcAb

jA
c
k) , (1.2)
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transform as contravariant vector densities. The canonical commutators between coordi-

nates Aa
i and momenta Ebj also transform covariantly, and the Gauss law generator,

Ga = DiE
ai ≡ ∂iE

ai + εabcAb
iE

ci , (1.3)

transforms as a scalar density. It is only because of this reparametrization covariance that

we introduce the above seemingly peculiar placement of space indices. The only failure in

reparametrization covariance comes in the Hamiltonian:

H =
1

2

∫

d3x

(

BaiBai

g2s
+ g2sE

aiEai

)

. (1.4)

The integrand above is not a geometric scalar with the correct density weight, and the

contraction in space indices is made with a Kronecker δij rather than with a metric tensor,

that is, the Hamiltonian is “committed” to a flat space.

It is straightforward to check that the definition of ua
i in (1.1) is identical to the stan-

dard geometric equation defining the spin connection in terms of the Christoffel connection

(or vice-versa):

∂ju
a
k + εabcAb

ju
c
k − Γs

jku
a
s = 0, (1.5)

where ua
i is a 3-bein, εabcAb

i is a spin connection, and Γi
jk is the Christoffel connection of

the metric gij = ua
i u

a
j . Requiring that ua

i transform as a vector under both gauge and

reparametrization transformations then gives us a gauge and reparametrization covariant

definition, and the above simple geometric picture. The “metric” tensor gij = ua
i u

a
j neatly

organizes the six local gauge invariant degrees of freedom of the problem into a symmetric

3 × 3 matrix, and the next task would be to write the Hamiltonian in terms of these

variables. One can then prove that any gauge invariant functional of Aa
i can be written

as a function of gij only, and that any functional of gij is gauge invariant (cf. I.). This

implements gauge invariance exactly. Further, it is also easy to include other color variables

into the formalism when ua
i is used as the independent variable.

Before we proceed to write down the gauge invariant, geometric expressions for the

quantities of interest, we shall first observe that there are zero mode problems associated

with the calculation of the electric field Eai = −iδ/δAa
i . It is easy to see that, under

the transformation of variables (1.1), the Jacobian matrix δAa
i /δu

b
j involves the operator

εijkDj , which may have more than one remaining zero mode when the potential is not a

pure gauge (where that is of course ua
i itself). It then seems there will be an indefinition in
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expressing the electric field through a chain rule in terms of derivatives δ/δua
i . Providing a

careful treatment of this problem is one of the main goals of this paper. To establish that

such a redundancy can be handled, a detailed treatment will be presented of an example

where there remain in the presence of a large set of vector potentials, an infinite set of

such zero modes. We shall for that purpose propose an infinitesimal deformation of (1.1)

which, as we shall verify explicitly, resolves the difficulties with zero modes. In the sections

that follow, we shall first write down all the relevant geometrical formulas in the presence

of the deformation. Then, as an example of the treatment where this care is required, we

will specialize to those gauge field configurations for which the associated geometries are

3-spheres, where we shall be able to give the explicit expression for the electric field. In the

limit in which the deformation is eliminated, we shall see that rather than an indefinition

in the electric energy, there will be a restriction on the possible wavefunctionals describing

states of the theory for such configurations. Finally, we shall give the expression for the

electric field of a system of infinitely heavy point color sources immersed in these spherical

configurations, using the formalism for introducing sources also presented in I..

In introducing a deformation to (1.1), again we are careful to preserve both

reparametrization and gauge covariance, and we must verify that it indeed removes any

zero mode ambiguities. We choose

εijkDju
a
k = pεijkεabcub

ju
c
k , (1.6)

where p is a small parameter with dimensions of mass. It is possible to find Aa
i explicitly

as a functional of ua
i . With manipulations similar to those found in I., one finds

Aa
i [u] = pua

i +
(εnmk∂mub

k)(u
a
nu

b
i − 1

2u
b
nu

a
i )

det u
. (1.7)

One can already glean from the above why this eliminates zero mode problems: vari-

ations δu, δA must satisfy

εijk(δac∂j + εabc(Ab
j − 2pub

j))δu
c
k = −εijkεabcub

jδA
c
k . (1.8)

To obtain δua
i in terms of δAa

i , the operator acting on δua
i must be inverted. With p = 0

this operator would be εijkDj itself, whose zero modes are the very solutions to (1.1), while

for p 6= 0, on the other hand, possible zero modes of the operator on the l.h.s. of (1.8) are

clearly not solutions to (1.6). In fact, the claim we shall make is that the operator in (1.8)

has no zero modes for small enough nonzero p and can always be inverted, leading to an

unambiguous definition of the electric field in the u-variables. We now proceed to present

the relevant formulas in geometric variables.
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2. Gauge Invariant Geometric Variables

With the definition (1.6), and using the gauge Ricci identity analogously to what was

done in I., one can determine that the magnetic field, when expressed in terms of geometric

variables, is

Bai =
√
g (Gij + p2gij) ua

j . (2.1)

Here Gij is the Einstein tensor of the metric gij , Gij = Rij− 1
2
gijR, and throughout indices

are raised and lowered with the metric gij and its inverse gij. By
√
g we mean det u, which

can in principle take on both positive and negative values. The gauge Bianchi identity can

be worked out to be

DiB
ai =

√
g (∇iG

ij) ua
j = 0 , (2.2)

so that it implies the geometric Bianchi identity and vice-versa. We note that this is a

nontrivial consistency check of our geometric picture.

We now turn to Gauss’ law and the electric field. If we define, following I., the gauge

invariant tensor eij through

iEai =
δ

δAa
i

≡ √
g ua

j e
ij , (2.3)

we can then verify that the Gauss law generator in geometric variables becomes

iGa = Di

(

δ

δAa
i

)

=
√
gua

j (∇̃ie
ij) =

√
gua

j (∇ie
ij) + puiaεijke

jk , (2.4)

where ∇̃i is the geometric covariant derivative with the torsion term introduced by p 6= 0,

and uia is the matrix inverse of ua
i (or, what amounts to the same thing, ua

j with the space

index raised by gij). Alternatively, it follows directly from (1.6) that if one makes a gauge

variation of Aa
i ,

δAa
i = −Diδw

a , (2.5)

then

εijkD
(2p)
j (δua

k − εabcδwbuc
k) = 0 , (2.6)

where the operator D(2p) contains in place of A the “potential” A− 2pu. Since εD(2p) has

no zero modes it follows that, as expected, a gauge variation of A is equivalent to a gauge

variation of u transforming as a vector so Ga is represented in terms of u by

iGa = εabcub
i

δ

δuc
i

. (2.7)
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To calculate the electric field in the u-variables, we begin from the definition (2.3) of

eij :

eij =
1√
g
uaj δ

δAa
i

=
1√
g
uaj δu

b
k

δAa
i

· δ

δub
k

, (2.8)

where the dot stands for a generalized contraction including an integration over space.

Variations in ua
i can be further separated into variations of the six gauge invariant degrees

of freedom gij and of three gauge degrees of freedom in the following simple way: first we

split the summation over the index b by inserting the unit color matrix in the form δbc =

ub
mucm. The resulting quantity ucm δ

δuc
k

can then be written as the sum of its symmetric

and antisymmetric pieces in m and k. Finally, it is easy to see that these correspond,

respectively, to variations in the metric gij and gauge variations. The final expression we

arrive at is:

eij(x) =

∫

d3y
1√
g(x)

(

uaj(x)
δub

k(y)

δAa
i (x)

ub
m(y)

)(

2
δ

δgkm(y)
+

i

2

εkmℓ

√
g(y)

ua
ℓ (y)Ga(y)

)

, (2.9)

where iGa = εabcub
iδ/δu

c
i is again the Gauss law generator, now in terms of the u-variables,

and we make explicit the space integration.

We now need to write the Jacobian matrix δu/δA in geometric form. To do so, we

start by considering the following eigenvalue problem:

εijk(δac∂j + εabc(Ab
j − pub

j))wA
c
k =

√
gλAwA

ia , (2.10)

where again indices are raised with the inverse metric gij = uiauja. We note that, by

definition, one solution to the above with λA = 0 is ua
i itself. In the notation we are using,

A is an index that labels all these eigenfunctions except the particular one given by ua
i .

The operator above is real and symmetric, and we assume {ua
i , wA

a
i } forms a complete

orthonormal spectrum of real eigenfunctions for it. By orthonormality we mean

∫

d3x
√
ggijua

iwA
a
j = 0

∫

d3x
√
ggijwA

a
iwB

a
j = 3V δAB

∫

d3x
√
ggijua

i u
a
j = 3

∫

d3x
√
g = 3V ,

(2.11)

where V is the volume of the space described by gij , and δAB is a Kronecker or Dirac delta

depending on whether the spectrum is discrete or continuous. Because we will eventually

concentrate on spherical geometries, we are only considering here configurations of finite
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volume (that is the “dynamical” volume V , and not the volume of space, which is infinite).

The generalization to infinite V should not entail further conceptual difficulty.

If we now expand a generic variation δua
i in terms of this complete set,

δua
i = ηua

i +
∑

A

ηAwA
a
i , (2.12)

substitute this in (1.8) and dot it on the left with the same complete set (“dot” meaning

an inner product with the measure
√
ggij), we easily get the following relations:

3V pη =

∫

d3x
√
guiaδAa

i

3V
∑

B

IABηB = −
∫

d3x εijkεabcua
iwA

b
jδA

c
k ,

(2.13)

where

IAB = λAδAB − p

3V

∫

d3x εijkεabcua
iwA

b
jwB

c
k . (2.14)

The origin of the zero mode problems alluded to above and their resolution through the

p 6= 0 deformation of (1.1) now become manifest: for p = 0, the first of eqs. (2.13) actually

represents a constraint on the variations δAa
i for which a δua

i can be found. This constraint

is a direct consequence of the fact that (1.7) is homogeneous in ua
i for p = 0. For p 6= 0, this

homogeneity is clearly broken, and there is no longer a constraint. Furthermore, essentially

the same happens with the second set of equations in (2.13): for p = 0 further constraints

on δAa
i follow for each mode for which λA = 0. Again, these are eliminated by taking

p 6= 0.

From here, it is straightforward to write the Jacobian matrix in explicit form:

δua
i (x)

δAb
j(y)

=
1

3V p

√
g(y)ujb(y)ua

i (x)−
1

3V

∑

AB

I−1
ABε

jmnεbcduc
m(y)wB

d
n(y)wA

a
i (x) . (2.15)

This can be expressed in an entirely geometric form by using the important fact that

if wA
a
i is a mode of (2.10), then the geometric modes zA

j
i defined through

wA
a
i = zA

j
i ua

j (2.16)

can be seen to be eigenmodes of the geometric curl operator εijk∇j with the same eigen-

values λA:

εijk∇jzA
m
k =

√
gλAzA

im . (2.17)
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This leads to the fully geometric form we were seeking for the operator appearing in (2.9):

(

uaj(x)
δub

k(y)

δAa
i (x)

ub
m(y)

)

=
√
g(x)

[

1

3V p
gij(x)gkm(y) +Hji

km(x, y)− gij(x)H s
s km(x, y)

]

,

(2.18)

where the Green’s function Hijmn(x, y) is defined to be:

Hijmn(x, y) ≡
1

3V

∑

AB

zAij(x)I
−1
ABzBmn(y) . (2.19)

Assembling all these results leads to the following electric geometric tensor acting on

functionals Ψ:

eij(x)Ψ =

∫

d3y

[

1

3V p
gij(x)gmn(y) +

(

Hji
mn(x, y)− gij(x)H s

s mn(x, y)
)

]

·
(

2
δΨ

δgmn(y)
+

i

2

εmnℓ

√
g(y)

ua
ℓ (y)Ga(y)Ψ

)

.

(2.20)

From this expression, one may already observe that, independent of the geometry, there is

always at least one divergence in the electric energy as p → 0. We eliminate it by requiring

that gauge invariant functionals Ψ[u] be invariant under global rescalings of the metric,

i.e.,
∫

d3y ua
i (y)

δΨ

δua
i (y)

= 0 . (2.21)

The Green’s function Hijmn(x, y) may also have divergences in the limit p → 0, which

again have to be eliminated. Generally speaking, the higher the degree of symmetry of

a certain geometry (which is determined by its Killing vectors), the larger the number of

zero modes of the curl operator and, due to (2.14), the larger the number of divergent

terms in Hijmn as p → 0. In the following section we will work out and analyze the

electric field for those compact geometries with the maximum number of Killing vectors,

namely, spheres. Because they are maximally symmetric spaces, for spheres it is possible

to find the spectrum of ε∇ explicitly without too much difficulty, and therefore an explicit

expression for Hijmn as well.

A final note on renormalization of divergences is in order here. It has been usual in

the past literature on the subject to consider as the electric energy density expectation on

a state Ψ the expression

< Ψ|(Eai(x))2|Ψ >= −
∫

[DA] Ψ
δ2

δAa
i (x)

2
Ψ , (2.22)
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with [DA] an appropriately defined integration measure. However, another way to define

the electric energy expectation is (cf. I.)

< Ψ|(Eai(x))2|Ψ >=

∫

[DA]
δΨ

δAa
i (x)

δΨ

δAa
i (x)

. (2.23)

The former expression is inherently divergent due to the coincident points in the double

functional derivative, and one must go to some lengths to properly define the operator. The

latter expression, on the other hand, is easier to define and can be seen as an alternative

prescription for the electric energy density. In our work we always use this second form.

Of course, for systems with a finite number of degrees of freedom the two expressions are

equivalent. Here, they differ formally by a total functional derivative.

3. Spherical Configurations

In order to get a clear picture of our restriction to spherical configurations, the first

questions we will address are a) to what Aa
i (x) configurations do spherical geometries

correspond, and b) how much of the entire space of Aa
i (x) do these geometries cover.

The direct way of answering the first question is of course to take a configuration ua
i (x)

describing a 3-sphere and substitute it in (1.7) to find Aa
i (x). We will do so below for a

particular metric on S3. There is, however, a more indirect but extremely economical way,

based on the following reasoning: the geometry of a sphere is that of an Einstein space, for

which Gij ∝ gij ; this implies, by (2.1), that the magnetic field for such geometries must be

proportional to the matrix inverse of the 3-bein, Bai ∝ uai. If we now consider the standard

expression (1.2) for Bai as a function of Aa
i , and the fact that pure gauge configurations, say

Āa
i , have vanishing magnetic field, it follows immediately that for configurations which are

global scalings of a pure gauge, say Aa
i (x) = kĀa

i (x), k 6= 1, the magnetic field will turn out

to be proportional to Bai ∝ εijkεabcAb
jA

c
k. But this is proportional to the matrix inverse of

Aa
i and thus, for spherical geometries, Aa

i (x) must be proportional to ua
i (x). Closer scrutiny

of this argument shows that it indeed holds and furnishes all the proportionality constants

missing above. We now list a series of results that derive from the above reasoning. In

what follows, we take Āa
i (x) to be a pure gauge configuration, and α a real number 6= 1.

i) Aa
i (x) =

1
2(1−α) Ā

a
i (x) ⇐⇒ ua

i (x) =
α
pA

a
i (x) =

α
2p(1−α) Ā

a
i (x).

9



ii) Aa
i (x) = 1

2(1−α) Ā
a
i (x) =⇒ ua

i (x) is an Einstein space, with Gij(x) = −R
6 gij(x) =

−p2 (1−α)2

α2 gij(x).

iii) ua
i (x) is an Einstein space, with Gij(x) = −R

6 gij(x) = −p2 (1−α)2

α2 gij(x) =⇒ Aa
i (x) ≡

Aa
i (x)− p

αu
a
i (x) is pure gauge.

iv) Aa
i (x) ≡ Aa

i (x) − p
αu

a
i (x) is pure gauge =⇒ (Ag)ai (x) = p

α(u
g)ai (x) for some gauge

transform (Ag, ug) of (A, u).

Thus, up to gauge transformations, the circle of implications above flows freely in both

directions. Moreover, we can now also answer the second question as well: the space of all

spherical geometries corresponds to the space of all vector potentials that are rescalings of

all possible pure gauges. More concretely, all possible pure gauges in SU(2) are spanned by

three real functions ξa(x), and rescalings are spanned by one real number.† This is indeed

expected and consistent with the geometric picture, since all possible 3-sphere metrics are

spanned by one real number (the inverse radius of the sphere, in units of p) and three

real functions yi(x) (coordinate reparametrizations of a reference metric). This should be

contrasted with six real, local functions, which parametrize the physical, gauge invariant,

Hilbert space of the theory, so that, roughly speaking, 3-spheres span half the dimensions

of this space. It is also possible to study the case of noncompact maximally symmetric

spaces, i.e., 3-hyperboloids, although we will not consider these geometries here. The

vector potential can easily be found by substituting the appropriate bein ua
i (x) in (1.7).

The procedure described above for spheres can be extended to hyperboloids by taking α

complex, which would lead to complex potentials. Insofar as the symmetries are concerned,

complex potentials do not spoil any of the reasoning above; however, in order to have real

vector potentials in the end would require a complex gauge transformation in iv) above.

Altogether we know this is possible since it is not difficult to obtain a real vector potential

for this case.

To give a concrete example, we can consider the projective metric on S3 used below

(cf. (3.16) and below for the coordinate conventions). It is not difficult to find that in the

limit of interest to us, p → 0, the associated gauge field configuration is

Aa
i (x) = −2

εiajx
j

a−2 + |x|2 . (3.1)

† Incidentally, the special case of α = 1 can be treated separately, and is seen to correspond to a

flat geometry where, in an appropriate gauge, ua

i (x) = δai and the vector potential is Aa

i (x) = pδai .
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Here, a−1 is the radius of the sphere. Two features of these configurations are worthwhile

noting: first, if we take a2 negative, we simply get the hyperbolic configurations men-

tioned above; unlike spherical configurations, they have singularities at finite x. Secondly,

these configurations correspond precisely to the spatial components of the instanton of

Belavin et al., with a−1 the “size” of the instanton [7]. Further, a closely related type

of configuration for which such a geometrical picture is also readily available correspond

to Wu-Yang monopoles [6] (which are in turn related to merons [8]). They are gotten by

taking a−1 → 0 in the instanton configuration above, and multiplying it by a global factor
1
2 . The associated gauge invariant metric variable is gij = ρ2/|x|2δij , with ρ a constant

parameter. This metric again describes a space of constant curvature, but closer inspection

of its curvature invariants reveals that it actually corresponds to the space S2 × IR. It has

been argued that (coherent states of) these magnetic monopoles are in fact one of the key

ingredients underlying the color confinement mechanism in QCD [9]. We will not pursue

such a geometry further in this paper, but we wanted nonetheless to illustrate the point

that our geometric setting fits very nicely with specific gauge field configurations that are

deemed to be important for the dynamics of Yang-Mills theory.

It is also curious to note that for spherical configurations, and again in the limit p → 0,

two of our fundamental equations are identical to the two equations defining the classical

phase space of d = 3 gravity in the presence of a cosmological constant. For ua
i seen as a

dreibein and ωab
i ≡ εabcAc

i seen as a spin connection, Eq. (1.1) states that the connection

is torsion free, and (2.1) restricted to spheres states that the curvature built out of the

spin connection is proportional to the inverse dreibein. These are just the equations of

motion of d = 3 Einstein-Hilbert gravity with a cosmological constant (related to p2 in

(2.1)) or, equivalently, of an SO(4) Chern-Simons action with the gauge field being given

by a combination of both ua
i and ωab

i [10]. This analogy, of course, does not go any further

since it makes no mention of the electric field or of the specific form of the Hamiltonian.

We now present our results on the spectrum of the curl operator [5]. The most

straightforward way we found of calculating this spectrum was by writing ansätze for the

modes zAij based on the scalar, vector and 2-tensor eigenmodes of the Laplacian on the

3-sphere and, after exhausting all possibilities for covariant ansätze, verifying that the

resulting modes zAij satisfy a completeness relation. The eigenmodes we find are:

1. Exact zero modes.

zAij = (ZN )ij =
1

a2
√

(ω2
N − 3)(ω2

N − 1)
(∇i∇j + a2gij)yN , N = 0, 2, 3, . . . . (3.2)
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Here and in what follows, ω2
N = N(N + 2) is the spectrum of the Laplacian acting on

scalars on the 3-sphere, yN are the associated eigenmodes (the hyperspherical harmonics)

normalized to 3V , and a is the inverse radius of the sphere (with scalar curvature R/6 =

a2), so that

(∇2 + a2ω2
N )yN = 0 . (3.3)

The index A represents the three quantum numbers (N, ℓ,m) labelling these modes. Be-

cause ℓ and m do not affect the spectrum, but only its degeneracy, they are of secondary

importance here, and will be omitted and understood whenever possible. The normaliza-

tion is such that geometrical modes satisfy the normalization conditions following from

(2.11). For all these modes, λA = 0. We also note that N = 1 is missing: it vanishes

identically due to the structure of the operator (∇∇ + a2g). Moreover, the N = 0 term

will also be eliminated from the calculation of the Green’s function in (2.19) because it

corresponds to the metric zero mode gij , which is to be treated separately (cf. discussion

above (2.11)).

2. Scalar-based modes. These are nonzero modes based on the spectrum of the Laplacian

acting on scalars:

zAij = (SNα)ij =
1

2a2ωN

√

ω2
N − 1

(

∇i∇j + a2ω2
Ngij − αa

√

ω2
N − 1

εijk√
g
∇k

)

yN . (3.4)

Here, α = ±, and the associated eigenvalues are λA = λNα = αa
√

ω2
N − 1, N = 1, 2, 3, . . ..

3. Vector-based modes. These modes are based on the spectrum of the Laplacian acting

on vectors,

(∇2 + a2(ω2
N − 1))(vαN )i = 0 , (3.5)

with ∇i(vαN )i = 0. Such vectors are also eigenvectors of the curl operator,

εijk√
g
∇j(vαN )k = αa

√

ω2
N − 1(vαN )i , (3.6)

with α = ±. The vector-based modes are then given by

zAij = (V αβ
N )ij =

1

2

[

Aαβ
N (∇i(v

α
N )j +∇j(v

α
N )i)−

εijk√
g
(vαN )k

]

, (3.7)

with eigenvalues

λαβ
N =

αa

2

(

√

ω2
N + 1 + β

√

ω2
N − 3

)

=
αa

2

(

N + 1 + β
√

(N + 3)(N − 1)
)

, (3.8)
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where β = ±, Aαβ
N = αβ/(a

√

ω2
N − 3), and N = 2, 3, 4, . . . (the N = 1 modes built in this

way vanish identically, similarly to what happens in the exact zero mode case).

4. Tensor-based modes. These modes are based on the spectrum of the Laplacian acting

on tensors,

(∇2 + a2(ω2
N − 2))(TNα)ij = 0 , (3.9)

with ∇i(TNα)ij = 0, (TNα)
i
i = 0 and (TNα)ij symmetric. They are given by the (TNα)ij

themselves, with α = ±, N = 2, 3, 4 . . . and eigenvalues λNα = αa
√

ω2
N + 1 = αa(N + 1).

Again, the putative N = 1 mode vanishes identically, and the spectrum starts from N = 2.

It is now simple (but lengthy!) to calculate the matrix IAB, through (2.14) (with

the gauge modes w referred to geometric modes z through (2.16)). If we organize the

matrix into five sectors, T (for tensor-based modes), V (for vector-based modes), S+ (for

scalar-based modes with α = +), S− (for scalar-based modes with α = −), and Z (for zero

modes), a simple structure emerges: the matrix is diagonal in the T and V sectors, and

the only non-diagonal couplings appear between the Z, S+ and S− sectors. Furthermore,

its subblocks are diagonal in each and all of its nonvanishing sectors (e.g., TT , V V , ZS+,

ZS−, ZZ, etc.). This allows for an explicit inversion, even though the matrix is infinite.

The nonvanishing entries of IAB in the different sectors are:

I
(TT )
Nα,Mβ = (αa

√

ω2
N + 1 + p)δMNδαβ (3.10)

I
(V V )
Nαβ,Mα′β′ =

αa

2

(

√

ω2
N + 1 + β

√

ω2
N − 3

)

δMNδαα′δββ′ , (3.11)

(where δMN includes orthogonality in ℓ,m as well) and

I =
p

(ω2
N − 1)





2 ωN

√

ω2
N − 3 ωN

√

ω2
N − 3

ωN

√

ω2
N − 3 a

p
(ω2

N − 1)3/2 − ω2
N −1

ωN

√

ω2
N − 3 −1 −a

p (ω
2
N − 1)3/2 − ω2

N



 , (3.12)

in the Z, S+, S− sectors, where the first, second and third row (or column) refers to,

respectively, Z, S+ and S− sectors. Each entry represents an infinite diagonal matrix and

because of this, inversion can be accomplished by simply inverting the 3× 3 matrix. This

inverse is

I−1 =
a2

2(p2 − a2)ξ2N
·







p(ω2
N + 1)− ξ4N

a2p
(p+ ξN )ωN

√

ω2
N − 3 (p− ξN )ωN

√

ω2
N − 3

(p+ ξN )ωN

√

ω2
N − 3 −2ξN − pω2

N p(ω2
N − 2)

(p− ξN )ωN

√

ω2
N − 3 p(ω2

N − 2) 2ξN − pω2
N






,

(3.13)
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with ξN = a
√

ω2
N − 1.

These results can finally be substituted in (2.19) in order to calculate Hijmn(x, y).

The TT and V V contributions can easily be gleaned from (3.10) and (3.11), while the

contribution from the Z, S+, S− sectors is quite lengthy. In fact, a series of simplifications

take place, and the final result is:

Hijmn(x, y) =
1

2a2p
(∇i∇j + a2gij)

x(∇m∇n + a2gmn)
yG3(x, y)+

− p

2a2(p2 − a2)

[

(∇i∇j)
x(∇m∇n)

y +

(

aεijk∇k

√
g

)x(
aεmnℓ∇ℓ

√
g

)y]

G0(x, y)

− a

2a2(p2 − a2)

[

(∇i∇j)
x

(

aεmnℓ∇ℓ

√
g

)y

+

(

aεijk∇k

√
g

)x

(∇m∇n)
y

]

G0(x, y) + . . . .

(3.14)

The dots represent the TT and V V contributions, and G0 and G3 are the Green’s functions

for the operators ∇2 and (∇2 + 3a2), respectively, acting on scalars on the sphere:

G0(x, y) ≡
1

3V

∞
∑

N=1

yN (x)yN (y)

a2ω2
N

G3(x, y) ≡
1

3V

∞
∑

N=2

yN (x)yN (y)

a2(ω2
N − 3)

.

(3.15)

Since (∇2 + 3a2) has zero modes given by y1ℓm(x), it does not strictly speaking have a

Green’s function; what we mean by the above is of course the Green’s function on the

subspace of functions on S3 that is orthogonal to this zero mode. In fact, both Green’s

functions above are also lacking the trivial y0 = const. mode in their spectral sum. This

will be reflected in the differential equations they satisfy.

It is in fact possible, with some effort, to find closed expressions for these propagators.

We present them in what follows and briefly describe how they are gotten since these are

useful in the calculations envisaged in Sec. 4. We use the standard projective metric on

S3:

gij(x1, x2, x3) =
4

(1 + a2|x|2)2 δij , (3.16)

where x1, x2, x3 are projective coordinates, with range −∞ to ∞, |x|2 = x2
1 +x2

2 +x2
3, and

a is the inverse radius of the sphere. From this, the Laplacian acting on scalars on S3 can

be built, leading to the following differential equations for G0 and G3:

∇2G0(x, y) =− δ(x− y)√
g(x)

+
1

3V
y0(x)y0(y) = −δ(x− y)√

g(x)
+

1

V

(∇2 + 3a2)G3(x, y) =− δ(x− y)√
g(x)

+
1

3V

1
∑

N=0

N
∑

ℓ=0

ℓ
∑

m=−ℓ

yNℓm(x)yNℓm(y) ,

(3.17)
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where V = 2π2/a3 is the volume of the sphere. The extra terms on the r.h.s. represent the

lack of completeness of these Green’s functions, as alluded to above. We will not go into

the lengthy details of calculation, but rather just present the final result for G0 and G3:

G0(x, y) =
a

8π

(

√

1− η2

η
− η
√

1− η2

)

(1− 2

π
sin−1 η)− a

8π2
(3.18)

G3(x, y) =
a

16π

(

1

η
√

1− η2
− 8η

√

1− η2

)

(1− 2

π
(sin−1 η − cos−1 η)) +

a

24π3
(6η2 + 1)

(3.19)

where

η ≡ ad

2
=

a|x− y|
√

1 + a2|x− y|2
(3.20)

is one half the chordal distance d between the points x and y in units of a−1.

We are in fact interested in the p → 0 limit of (3.14), and there are a few important

features to note regarding this limit. Firstly, in the TT and V V sectors, the p → 0 limit

is perfectly smooth; in particular, we would have obtained the same result had we taken

p = 0 from the beginning. Secondly, we find in the ZZ sector another 1/p divergence

exactly like the one associated with global scalings (cf. (2.20) and (2.21)). This divergence

appears in the first term in (3.14), and it will likewise entail a constraint on finite energy

physical wavefunctionals. What this constraint is can be seen from the term gijH s
s mn in

(2.20): the trace in the first two indices leads to the operator (∇2+3a2) acting on G3, and

this leads to three types of terms, as can be seen from (3.17). The first term is a δ(x− y),

and vanishing of this term leads to the constraint

(∇m∇n + a2gmn)
y δΨ

δgmn(y)

∣

∣

∣

∣

gij=sphere

= 0 (3.21)

in order not to have a divergence in the limit p → 0. The second term contains y0(x)y0(y) =

const., and the second operator (∇∇+ a2g) acting on it kills it because of the constraint

(2.21). The third type of term contains y1ℓm(x)y1ℓm(y), and these vanish automatically

under the action of the second operator (∇∇+ a2g). Thus, only the first term leads to a

constraint, (3.21), on physical wavefunctions.This constraint must be satisfied by physical

wavefunctionals in order for their energy to be finite in the limit p → 0.This is again a

result we would obtain directly in the p = 0 case from a similar requirement of finiteness

of the electric energy. Finally, we note that the last term in (3.14) above is finite and
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nonvanishing in the p → 0 limit. This result is different from what one would obtain by

treating the p = 0 case directly. The correct result is the one presented here, since it

properly takes into account the mixing of the zero and scalar modes.

In the p → 0 limit and with the above finiteness constraints in place, the Green’s

function Hijmn is

Hijmn(x, y) =
1

3V

∑

N

{

1

a
√

ω2
N − 1

[(TN+)ij(x)(TN+)mn(y)− (TN−)ij(x)(TN−)mn(y)]

+
2

a(
√

ω2
N + 1 +

√

ω2
N − 3)

[(VN++)ij(x)(VN++)mn(y)− (VN−+)ij(x)(VN−+)mn(y)]

+
2

a(
√

ω2
N + 1−

√

ω2
N − 3)

[(VN+−)ij(x)(VN+−)mn(y)− (VN−−)ij(x)(VN−−)mn(y)]

}

+
1

2a2

[

(∇i∇j)
x

(

εmnℓ∇ℓ

√
g

)y

+

(

εijk∇k

√
g

)x

(∇m∇n)
y

]

G0(x, y) ,

(3.22)

while its trace reduces to a single term

H s
s mn(x, y) = − 1

2a2

(

εmnℓ∇ℓ

√
g

)y
δ(x− y)√

g(x)
. (3.23)

From now on we assume this limit unless stated otherwise. We now have an explicit

expression for both electric and magnetic energy densities. Although the electric energy

is still in a rather unwieldy form, it is possible already to make an important observation

regarding the vacuum state of the theory: spherical configurations introduce a scale into

the problem, as any other explicit configuration would. Such a scale must be dynamically

determined and, although we will not perform such a calculation here, we can already

observe that this scale a enters the magnetic energy with a positive power and the electric

energy in negative powers. This will cause the ground state wave functional to fall rapidly

for large amplitude magnetic densities which vary slowly in space. At the same time, it will

also become small for low amplitude magnetic energy densities with slow spatial variation.

The correspondingly reduced fluctuations in the magnetic energy density will presumably

fill the role of what is meant by a magnetic “condensate”. If this is correct then one should

be able to get at least a semi-quantitative estimate of the long range color electric fields

produced by static sources in such surroundings. To do this we suggest looking at the

electric field by dropping terms which should mainly be associated with short scales.
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It would also be possible to perform manipulations in the vector and tensor sectors

similarly to what has been done for the scalar and zero sectors, in order to simplify their

respective contributions to Hijmn. However, as we shall argue, it is these latter sectors

(i.e., the ∇∇∇G0 term in (3.22)) which will give rise to the main contribution to the

potential between color sources, and therefore one may in fact drop the TT and V V terms

in a first approximation. To identify particular terms in Hijmn that lead to large electric

energy densities, we must look both for eigenvalues λA such that 1/λA becomes large, and

for modes which do not oscillate much, since highly oscillating modes cannot contribute to

long distance effects. The third term in (3.22) (the last V V term) does have asymptotically

large inverse eigenvalues as N → ∞; however, these are also associated to highly oscillatory

modes. On the other hand, all theslowly oscillating T and V modes do not have inverse

eigenvalues that become asymptotically large. The only term satisfying both conditions

we are seeking is the last one, associated to the scalar and zero sectors, and therefore it

is reasonable to keep only this term as a leading approximation. Naturally, our formalism

automatically guarantees, as announced in Sec. 1, that this represents a gauge invariant

approximation to the dynamics.

4. Static Point Color Sources

We now consider the energy density of infinitely heavy point color sources immersed

in the Yang-Mills configurations associated to spherical geometries. The formalism for

introducing point color sources has been developed in I..

Introducing color sources at isolated points in space entails a local modification of

Gauss’ law only at these points. Then, rather than introducing an additional set of vari-

ables at every point in space, one can accomodate these isolated inhomogeneities in Gauss’

law by simply considering wavefunctionals that carry the appropriate representation for

each source, but that are still functionals of ua
i only. To be specific, let us consider, for

instance, the insertion of two sources at points x1 and x2. The generalization to more

sources is entirely trivial, but we consider here this specific case for clarity of presentation.

Then, wavefunctionals describing states of this system should take the form

Ψαβ [u
a
i ] , (4.1)
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where α is an index in some SU(2) representation transforming at pointx1 and β likewise,

but transforming at x2. The modification in Gauss’ law is

Ga(x) → Ḡa(x)αα′ββ′ = Ga(x)δαα′δββ′ +Λa
αα′δββ′δ(x− x1) + δαα′Λa

ββ′δ(x− x2) , (4.2)

where Λa are the appropriate SU(2) generators. Again, to be specific, we consider the two

sources to be in the fundamental representation, in which case the Λa are proportional to

the Pauli matrices σa. The statement of gauge invariance becomes

Ḡa(x)αα′ββ′Ψα′β′ [ua
i ] = 0 . (4.3)

At this point it may not be clear whether or how one can build a color singlet wave-

functional, satisfying the local constraint (4.2), exactly at the locations x1 and x2 of the

sources, since at each of these points the total color has contributions coming only from

the combination of “integer spin” variables in the adjoint representation (the ua
i ), and a

“half-integer spin” variable (α or β) coming from the source, which is in the fundamental

representation. This turns out to be possible because there are sufficient variables ua
i in

order to build a half-integer spin representation of SU(2) at x1 and at x2 with these vari-

ables alone, even though they are in the adjoint representation. The way this is done is by

realizing that ua
1 , u

a
2 and ua

3 form three vectors, and thus comprise nine degrees of freedom

at the point x1 or x2. While six of these degrees of freedom, ua
i u

a
j (i.e., the gauge invariant

ones), give three lengths and three angles with which to uniquely define a tetrahedron,

the three remaining degrees of freedom can be used to define the Euler angles uniquely

fixing the orientation of the tetrahedron in color space. We then make use of the fact that

it is possible to build half-integer spin representations of SU(2) with three Euler angles.

With the appropriate transformation of variables from ua
i to Euler angles, the angular

momentum operator becomes precisely Ga, and the appropriate eigenfunctions are the

Wigner D(j)-functions, with j = 1
2
for angular momentum one-half. Equations (4.2),(4.3)

then express the fact that under the usual addition of angular momentum in quantum

mechanics, the wavefunctional at x1 and at x2 is a singlet, of total angular momentum

zero, built out of two spin one-half representations. Because this procedure is to be done

at the isolated points x1 and x2, that is, because of the delta functions δ(x − x1) and

δ(x − x2), the wavefunctional, besides being a functional of ua
i (x) everywhere, must now

also be a regular function of the variables ua
i (x1) and ua

i (x2):

Ψ = Ψαβ [u
a
i ; u

a
i (x1), u

a
i (x2)] , (4.4)
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so that the functional differentiation in Ga at those points becomes a regular derivative,

and automatically incorporates the two delta functions.

With the introduction of sources, the change in magnetic energy is due not to any

modification in (2.1) but rather to the constraints on Ψ engendered by (4.3). For the

electric energy, on the other hand, there are modifications coming from the Gauss law

term in (2.20), which would otherwise be absent for gauge invariant functionals. Neglecting

the TT and V V contributions to Hijmn in (3.22), the contribution of the sources to the

geometric electric tensor is

a2esourceij (x)Ψ =

∫

d3y

{[

(∇i∇j)
x

(

εmnℓ∇ℓ

√
g

)y

−
(

εijk∇k

√
g

)x

(∇m∇n)
y

]

G0(x, y)

−gij(x)

[

∇2
x

(

εmnℓ∇ℓ

√
g

)y]

G0(x, y)

}(

εmnp

√
g(y)

Gp(y)Ψ

)

,

(4.5)

which simplifies to

2a2esourceij (x)Ψ[g] = [(∇i∇j)
x∇x1

k G0(x, x1)]Λ
k(x1)Ψ+gij(x)

1√
g(x)

(∇x1

k δ(x− x1))Λ
k(x1)Ψ

(4.6)

plus an identical contribution at x2. Here, Λk(x) ≡ −iua
k(x)Λ

a, and we have ommited the

SU(2) indices. The action of Ga on Ψ has been such as to satisfy (4.3).

One could now calculate an expression for the “potential” associated with static

sources just as one evaluates the static Coulomb energy in the abelian gauge theory. It is

clear that as well as being more complicated, the static potential is a function of the gauge

field configuration and hence even in an approximation of the Born-Oppenheimer type it

must be averaged with the ground state wavefunctional of the gauge field. Here we have

obtained an explicit expression only for those gauge field configurations which are related

to each other by GL(3) transformations of equal curvature geometries. We shall postpone

a more complete discussion, and an explicit evaluation of the “potential” associated with

the electric field in (4.6) for a later publication.

5. Conclusions

In this paper we have pursued further the formalism developed in I., where a set of local

gauge invariant variables were introduced to describe the physical Hilbert space of Yang-

Mills theory. We have chosen to do this in a Hamiltonian, fixed-time formalism because
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there one can identify the subset of the full gauge group that truly acts as a quantum

mechanical symmetry of the theory, and one can implement it in a manifest and exact

way. We have furthermore showed that the present treatment allows for approximations

to the dynamics that do not spoil this exact gauge symmetry.

As a first step towards concrete calculations, we have worked out in detail the expres-

sion for the electric and magnetic energies for those gauge field configurations corresponding

to spherical geometries. This has furnished indications of the mechanism through which

a dynamically determined scale enters the theory and leads to a nonvanishing magnetic

energy density of the vacuum and a mass gap. We have also indicated explicitly how such a

geometry is related to instanton configurations, and how magnetic monopole configurations

also correspond to a fairly simple, constant curvature space – S2 × IR – in our geometric

formulation of the theory. Moreover, for spherical configurations, we have studied particu-

lar terms in the electric field energy in the presence of heavy point sources that lead to the

main contribution to the potential for these sources. We have also identified the manner

in which exact gauge symmetry is maintained locally in the presence of half-integral spin

sources, whereby one must construct half-integer spin representations from the gauge field

variables in order to construct total angular momentum zero from the addition to the color

sources.

Our calculations are by no means complete, and a number of important issues must

still be considered: for instance, we have not studied the Jacobian determinant appearing

in the measure after the change of variables, det |δA/δu|, and we have not considered the

effects of renormalization. We also expect infrared effects to appear once noncompact

geometrical configurations are considered, and these must be properly treated. Such issues

would form an integral part of a more detailed computation of, for instance, the potential

energy between two static color sources. A more detailed study of the S2 × IR geometry

would also be of interest. All such computations are part of our plans for future work.
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