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1. Introduction

There has been much progress in recent months in unifying various string theories in

different dimensions using the appropriate versions of strong/weak coupling duality. In

compactifications with enough supersymmetry, the low-energy physics is more or less de-

termined by the constraints of supersymmetry. In compactifications with the equivalent of

N ≤ 2 supersymmetry in four dimensions, there emerges the possibility of nontrivial dy-

namics in the infrared. While the most famous example of “string-string” duality between

heterotic and type II strings involves theories with the equivalent of N=4 supersymmetry

in four dimensions [1][2], more recently dual heterotic/type II pairs with d = 4, N = 2

supersymmetry have been discovered [3][4] and studied in some detail [5,6,7,8,9,10]. One

finds that the dual description renders instanton effects computable using classical string

theory.

The theories of interest for describing low-energy particle physics have N ≤ 1 super-

symmetry in four dimensions. In particular, there has been much interest in 4d N = 1

heterotic models for string phenomenology. One mechanism for supersymmetry breaking

that has been much studied in this context is gaugino condensation in a hidden sector

[11,12,13,14,15,16,17].

Starting from the N = 2 dual pairs, one can form N = 1 dual pairs by freely acting

orbifolds [8][18]. Unfortunately, the N=1 pairs constructed to date have had trivial dynam-

ics in the infrared. There are several different classes of infrared dynamics, parametrized

by the spectrum of gauge fields and charged matter present in the ultraviolet, that have

been studied fruitfully in supersymmetric field theory (see [19] for a review). Understand-

ing the quantum behavior of N=1 string vacua in four dimensions will involve learning

how string theory recovers and generalizes these phenomena.

In this paper we will study the role of duality in elucidating the effects of gaugino

condensation for a class of examples. Specifically, it is possible to construct freely acting

orbifolds producing N=1 dual pairs which on the heterotic side have pure factors in the

gauge group. Of particular interest are models with more than one simple factor in the

pure gauge group, as some of these models are expected to lead to stable vacua with broken

supersymmetry [13][14][15]. We describe how to construct such models in §2.
On the type II side, this appears mysterious at first sight. The singularities of the vec-

tor multiplet moduli space of the N = 2 theory do not lead to nonabelian gauge symmetry

enhancement (except in the case of nonasymptotically free theories [20]). Therefore, in the
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type II N = 1 orbifold, there is no obvious origin of quantum supersymmetry breaking

effects. This suggests that the supersymmetry breaking, if present, should be evident clas-

sically. Said differently, despite the lack of nonrenormalization theorems to guarantee the

utility of strong/weak coupling duality in N = 1 string theory, the absence of nonabelian

dynamics on the type II side essentially requires its description of the physics to be per-

turbative, leading to a useful duality. We will propose a tree level mechanism on the type

II side which reproduces the expected potential generated by gaugino condensation in §3.

The mechanism can be summarized as follows. In the global limit it reduces to that

which Seiberg and Witten used for understanding the mass gap of pure N = 1 gauge theory

by perturbing pure N = 2 gauge theory with a mass term for the adjoint scalar φ [21].

In their scenario turning on a mass perturbation leads to a vacuum expectation values for

the light monopole fields present at the special singularities of the N=2 moduli space. In

string theory it is not possible to turn on masses by hand. We find nevertheless that the

orbifold1 spectrum contains a massive field, which has the same global couplings as the φ

field studied in [21], and which becomes light as the heterotic coupling becomes weak. In

§3 we explain how we can infer the presence and couplings of such fields. We then study

the bosonic potential in the resulting low-energy supergravity theory and compare to the

expectations of gaugino condensation on the heterotic side. In §4 we recap and discuss

directions for further exploration of these models.

The purpose of this paper is to demonstrate how the type II side manages to encode

perturbatively the physics of the heterotic side. We wish to note here that the utility of

the proposed duality comes from the opposite approach. The perturbative physics of the

type II side should contain a wealth of information about the quantum behavior of the

heterotic side, and is a promising starting point for a systematic study of the details of

such models. There has been other recent work on supersymmetric/nonsupersymmetric

duality in field theory [22] and string theory [23][24]. Earlier attempts to use strong/weak

coupling duality to shed light on gaugino condensates (by assuming an SL(2, Z) S-duality

acting on the dilaton-axion multiplet) can be found in [25].

1 Actually on the type IIA side we will be discussing an orientifold.
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2. Construction of Dynamical Duals

Our starting point is the adiabatic prescription introduced by Vafa and Witten for

producing dual string pairs from known examples of string-string duality. The N = 2

compactifications have the structure of K3 fibrations (CP1,K3) on the type II side [7]

and T 4 fibrations (CP1,T 4) on the heterotic side [8]. Act with a freely acting symmetry

(in our case (z1, z2) → (z̄2,−z̄1)) on the base and approach the large radius limit of the

CP1. Then the local observer sees the physics of a compactification on K3 or T 4 (on the

type II and heterotic sides, respectively) and maps reliably to the dual theory using the

well-established 6d string-string duality [1][2].

We will now discuss the class of orbifolds of interest to us, first in the heterotic and

then in the type II description.

2.1. The Heterotic side

In order to apply the adiabatic argument of [8], we look for freely acting symmetries

with which to orbifold the N = 2 examples of [3]. On the heterotic K3× T 2, we can use

the Z2 given by the Enriques involution on the K3 ∼ (CP1, T 2) and the reflection −1 on

the T 2 [4][8].

Of course, we must also choose an embedding of the Z2 in the gauge degrees of

freedom. This will determine the surviving gauge group and charged matter content. We

can obtain N = 1 models with pure factors in the gauge group as follows, starting from

models 6-8 in §4.5 of [3]. For definiteness, consider model 7, obtained on the heterotic

side by embedding an SU(2) bundle with c2 = 20 in one of the two E8 factors (which we

will call Eobs
8 ), breaking it to E7, and embedding a rank two bundle with c2=4 into an

enhanced SU(2) arising from the T 2 fixed at τ = ρ. The generic spectrum of 11 vectors

and 377 hypermultiplets is obtained as the Higgs phase of the E7 and the Coulomb phase

of the second E8 (which we will call EH
8 ). This model has a known type II Calabi-Yau

dual described in [3].

If we consider the heterotic side before Higgsing the E7, then we see that any further

orbifolding to get an N = 1 model with modular-invariant embedding of the orbifold group

only into Eobs
8 will produce a model with a hidden sector. Here we should emphasize

that although the N = 2 dual pair of [3] involves the heterotic model in which the Eobs
7

is completely Higgsed, one should be able to follow both sides of the duality through

appropriate “extremal transitions” to the model with the E7 unbroken (examples of such
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transitions have been discussed in detail in [26][9][10][27]). In general there is no guarantee

that the appropriate type II dual will still be a Calabi-Yau compactification, but for our

example there is in fact a good candidate for the “unHiggsed” dual, as we will explain

presently.

The model we are discussing has a generic spectrum – before Higgsing the observable

E7 – of 62 hypermultiplets and 18 vector multiplets. This would correspond to a type IIA

string compactification on a Calabi-Yau with Hodge numbers h11 = 17, h21 = 61. There

is indeed a known K3 fibration with these Hodge numbers, given by the hypersurface of

degree 68 in WP4
3,3,8,20,34 [28]. The type IIA compactification on this manifold is a good

candidate for the dual of our “unHiggsed” heterotic theory.

Now that we have a candidate dual for the heterotic theory with E8×E7×U(1)3 gauge

group (and with 8 56s of E7) we need to decide which sorts of free group actions we want

to orbifold by to obtain interesting N=1 models. Of more interest for phenomenology than

the models with EH
8 unbroken are models with several pure nonabelian factors in the gauge

group [13]. We can obtain such models by first turning on discrete Wilson lines (consistent

with the above Z2 action on the T 2) to break EH
8 to a subgroup and then orbifolding by

the Z2.
2 Equivalently, this can be described as embedding translations generating the T 2,

which are part of the space group of the orbifold, into EH
8 . This procedure is constrained

by level-matching and by the relations of the space group [29].

There are several consistent choices which produce product hidden sector groups. For

example, one choice that leads to a hidden sector gauge group GH = SO(8)2 is obtained

as follows. Take Wilson lines A1 = L1/2 and A2 = L2/2 around the two cycles of the T 2,

where L1 = (0, 0, 0, 0, 1, 1, 1, 1) and L2 = (−2, 0, 0, 0, 0, 0, 0, 0) are vectors in the E8 root

lattice. Since A2
1, A

2
2, and A1 ·A2 are integers, this satisfies level-matching. With Wilson

lines turned on, the momentum lattice becomes

pL = (P I − AI
in

i, Gij(
mj

2
+

AI
j

2
P I −Bijnj −

AI
iA

I
j

4
nj) + ni) (2.1)

pR = Gij(
mj

2
+

AI
j

2
P I −Bijnj −

AI
iA

I
j

4
nj)− ni (2.2)

2 In turning on Wilson lines in model 7 of [3], we simultaneously move away from τ = ρ in

such a way as to preserve, in the presence of the Wilson lines, the enhanced SU(2) in which we

have embedded a c2 = 4 SU(2) bundle
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This shows that the surviving gauge bosons have root vectors satisfying AI
iP

I ∈ Z. The

E8 root lattice consists of vectors of the form ±ei ± ej and 1
2 (±e1 ± e2 . . . ± e8). All of

the first set and none of the second set satisfy A2 · P ∈ Z. There are 48 vectors in the

first set which satisfy A1 · P ∈ Z. These split up into two copies of the root lattice of

SO(8). Combined with the 8 Cartan generators, this gives the dimension 56, rank 8 group

GH = SO(8)×SO(8). Other hidden sector product groups can be obtained similarly: The

discussion of the type II side below applies to all models of this type.

2.2. The Type IIA side

The heterotic orbifold was constructed by a Z2 which acted freely on the base (CP1)

of the elliptic fibration as follows:

(z1, z2) → (z̄2,−z̄1). (2.3)

As we mentioned in §2.1, the N = 2 heterotic model has a proposed dual, type IIA

string theory compactified on the Calabi-Yau hypersurface in WP4
3,3,8,20,34 [27][28]. This

manifold is a K3 fibration, with the K3 fiber being given by a degree 34 hypersurface in

WP3
3,4,10,17.

By the adiabatic argument, we expect a type II dual of the N = 1 heterotic orbifold

model which is obtained by translating the action of the Z2 on the heterotic coordinates to

an action on the harmonic forms of the K3 fiber [2][8]. On the heterotic side the orbifold

left us with a pure gauge factor, projecting out the charged fields which in the N=2 theory

parameterized the Coulomb phase of EH
8 . The singularities corresponding to enhanced

gauge symmetry on the heterotic side map to the conifold singularities of the Calabi-Yau

moduli space on the type II side [3][4]. The corresponding orbifold on the type IIA side will

project out the scalars, aib,D i = 1, . . . , rank(GH
b ). These are the moduli which could move

us away from the conifold locus dual to the enhanced hidden gauge symmetry locus of the

heterotic string side. On the other hand, the abelian vectors in N = 2 vector multiplets

will survive the orbifold projection.

Before embarking on an analysis of the physics of the dual descriptions, we should

make sure that the heterotic orbifold indeed maps to a bona fide orbifold on the type II

side. That is, does the action G on the harmonic forms of K3 implied by the action on

the Narain lattice on the heterotic side [2] determine a symmetry of the K3 itself? More

precisely, we must ensure that there is a symmetry of the worldsheet action on the type II
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side by which we can orbifold. The action on the base (2.3) indicates that the symmetry

is antiholomorphic and orientation reversing which means that we must also exchange left

and right movers on the worldsheet, giving us an orientifold as in the examples of [8]. The

novelty in our construction is that we must also find a symmetry which freezes the K3

fibers at a singular K3, dual to the enhanced gauge symmetry present in the heterotic

orbifold [1][30].

If the heterotic theory is developing an enhanced gauge symmetry group G, then the

dual description involves a K3 in which curves Ci (i = 1, · · · , rank(G)) are shrinking to

zero size (and the associated worldsheet θ angles are also vanishing [30]). In general, given

a smooth rational curve C, it satisfies C ·C = −2 (where · denotes the intersection product

between homology classes), so one can consider an automorphism of H2(K3) given by the

“reflection”

X → X + (X · C)C (2.4)

which takes C → −C. This automorphism is not associated with a symmetry of the K3 –

to explain what it is associated with, we need to recall and extend the notion of a birational

transformation. 3

Our extended notion of birational transformation will be as follows: A birational

transformation between X and Y , both of dimension d, is an algebraic cycle Z ⊂ X × Y ,

also of dimension d, such that for appropriate dense open subsets U ⊂ X and V ⊂ Y the

intersection of Z with U × V is the graph of an isomorphism. Any such cycle induces a

map Hk(X) → Hk(Y ) in a natural way. The important point for us, however, is that Z

is allowed to contain more than one component: All but one of the components will map

to proper subvarieties in both X and Y , and so will be disjoint from U × V .

In intuitive terms, this extension of the notion of birational transformation has the

following effect. As far as complex structures are concerned, any birational spaces X , Y

differ only at complex co-dimension two. That is, one can extend the isomorphism given by

U ×V to hold up to codimension two, in a manner consistent with the complex structures

of X and Y . However, in string theory, we are also interested in keeping track of the Kahler

classes, and these can obstruct the extension of the isomorphism even to codimension one

subspaces of X and Y .

So in fact, (2.4) is the action on the cohomology induced by a birational transformation

in the sense discussed above. More generally, one can define such a “reflection” associated

3 We thank D. Morrison for very helpful discussions about this and the following.
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with any set of rational curves Ci (see the discussion in §3 of [31] and also in [32]). These

reflections are also associated with birational transformations (in this extended sense)

between distinct K3s. The “extra” components of Z will be CP 1 × CP 1s given by the

curves Ci in the two K3s. It turns out that the string compactifications on the two K3s are

isomorphic, however, so these “reflections” generate Z2s acting on the Teichmuller space

for the moduli space of string theories on K3. Heuristically speaking, one should envision

a cone divided into two “mirror image” cones A and B by a dividing wall in the center. A

is the Kahler cone for one K3, and the K3 obtained by doing the reflection (2.4) (and the

associated birational transformation) instead has Kahler cone B. The wall dividing the

two cones A,B is the wall where the Ci shrink to zero area.

It is well known that at the fixed point of a symmetry group g which acts on the

Teichmuller space, one obtains a conformal theory with an enhanced g symmetry. So at

the fixed point of the Z2 generated by such a reflection, one will find a conformal theory

on K3 with an extra Z2 symmetry g. It is precisely this Z2 symmetry g that we must

orbifold by, to freeze the K3 at the enhanced gauge symmetry point.

In the context of the main example we have been discussing, the Ci are the curves

which shrink to zero size as the heterotic string develops its GH × E7 gauge symmetry.

We should orbifold the type IIA side by a combination of orientifolding and simultaneous

action with g, to construct the dual to the heterotic theory.

What does g correspond to on the world sheet? One way to study this limit is by

making use of a linear sigma model description of the model, following [33][34]. In this

formalism, the Kahler modes corresponding to the sizes of the Ci are represented on the

worldsheet by U(1) gauge multiplets, with the coefficients ~ri = (r0i , r
1
i , r

2
i ) of (generalized)

worldsheet Fayet-Iliopoulos D-terms giving the sizes of the Ci. Each gauge multiplet Σi

contains four scalars σi which couple to charged hypermultiplets φi
α, φ̃i

α. The bosonic

potential is [34]

V =
1

2e2

∑

i

{(

[

∑

α

Qα
i (|φi

α|2 − |φ̃i
α|2)

]

− r0i

)2

+

(

Re(
∑

α

φi
αφ̃

i
α)− r1i

)2

+

(

Im(
∑

α

φi
αφ̃

i
α)− r2i

)2}

+
1

2

∑

i

[

∑

α

Qα 2
i (|φi

α|2 + |φ̃i
α|2)

]

|σi|2

(2.5)

7



We see from (2.5) that for r → 0 (with in addition the worldsheet θ angles set to zero),

the model develops a singularity arising from the region of field space where σi → ∞
and φi

α = 0. Indeed, this is the only regime where the model can be reliably studied

semiclassically for ri = θi = 0. In this limit, the action Σ → −Σ on the worldsheet gauge

multiplet becomes a symmetry of the worldsheet model (combined with φ ↔ −φ̃, though

on the σ branch all the fields which couple to Σ are hugely massive). This appears to

provide a worldsheet description of the geometrical action g described above. Moreover,

the vertex operators for the Kahler blow-up modes are given by the fermions in the gauge

multiplet [35], so this action indeed projects out the Kahler deformations corresponding

to the Ci. As we will see below, the type II description of the heterotic dynamics that we

will present relies only on the details of the action on the moduli and the action (2.3) on

the base of the K3 fibration.

3. Black Hole Condensation and Supersymmetry Breaking

Having seen in §2 that the adiabatic argument allows us to construct N=1 dual pairs

with highly nontrivial dynamics expected on the heterotic side, we now turn to a brief

analysis of the dual descriptions of the infrared physics.

3.1. Heterotic expectations

Given the presence of a pure gauge group GH , our expectation is that gaugino con-

densation will occur. In a globally supersymmetric theory, this would lead to a mass gap

and a discrete set of degenerate vacua [36]. The gaugino condensate is

〈χ(b)
α χ(b)α〉 ∼ Λ3

be
iγ (3.1)

where the phase γ corresponds to a given discrete choice of vacuum. This will lead to a

superpotential

W =
∑

b

hb Λ3
b(S) (3.2)

where

GH = Π Gb (3.3)

and where b indexes the various hidden groups. In (3.2) we have noted that in string

theory the scale Λ at which a given factor in GH becomes strong really depends on the
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dilaton S. The constants hb include the phases γb corresponding to the discrete choices of

vacua [12][13].

By analyzing the resulting bosonic potential (taking into account the dependence of

the Kahler potential K and the superpotential W on all the chiral superfields in the low-

energy theory at weak coupling), one can in principle determine whether a stable vacuum

exists at weak coupling with broken supersymmetry and determine the resulting vacuum

energy (see [14][16] for a review of various approaches to this problem). Our problem is

to understand how this structure is reproduced by the type II dual, and to see whether

the dual description provides any useful insights about the physics, at least in particular

limits.

3.2. Type II description

Now we turn to the question of how the type II string can reproduce the effects of

gaugino condensation evident from the heterotic analysis. There are several points we must

take into account, which will be crucial to the physics on the type II side. First of all, the

heterotic orbifold indicates the spectrum of the theory for weak heterotic coupling, which

is mapped to large CP1 radius R on the type II side. The purported nonperturbative

vacuum on the heterotic side is at small nonzero coupling, corresponding to large finite R.

The orbifold acts freely on the CP1 base. We are therefore interested in the perturbative

spectrum on the type II side as a function of large finite R. There are two features of the

conifold locus at R → ∞ which are crucial to understanding the type II physics:

1) The massless states in the N = 2 theory that are projected out by the Z2 become

invariant when given quantized internal momentum leading to masses ∼ 1/R2 as

R → ∞. This implies that the full N = 2 supersymmetry is restored as R → ∞.

2) The low-energy theory for type II at the conifold locus contains massless solitonic

states [37] in addition to the perturbative states obtained from the orbifold. One can

see that these massless solitons survive the transition from the N=2 theory to the

N=1 orientifold by examining the monodromies of the gauge coupling functions [8].

We will now take these points into account systematically. The orbifold on the type

II side will have the same action (z1, z2) → (z̄2,−z̄1) on the base of the K3 fibration as

it had on the base of the elliptic fibration on the heterotic side. This turns the CP1 into

RP2, which has nontrivial fundamental group π1(RP2) = Z2. Therefore, a state that is

projected out by the orbifold will have a massive version, with appropriate momentum

along the nontrivial cycle γ, which is invariant under the Z2. More explicitly, in the

9



adiabatic limit we can send the original string state localized along γ with momentum

p = 1
R
. Then if the original vertex operator V transforms as V → −V under the Z2, the

state

V ′ = ei
x
R f(x⊥)V (3.4)

will be invariant. In (3.4) x is the coordinate along the nontrivial cycle of the RP2, and

f(x⊥) localizes the string along γ. The orbifold takes x → x+ πR so that the momentum

factor gives a compensating factor of −1 under the Z2.

This means that we will have massive versions of all the fields aib,D, with mass propor-

tional to 1/R2. In addition, we will have the monopole hypermultiplets M b
i and M̃ b

i , which

survive the orbifold on the type II side [8]. Because N = 2 supersymmetry is restored as

R → ∞, the massive aib,D fields will couple to the surviving monopole fields as in the

N = 2 theory.4 As discussed in the work of Seiberg and Witten [21] (see also [39][40]), in

the global limit the mass terms involve the gauge invariant global coordinates ub
α (where

α indexes the Casimirs of the Lie algebra) on the moduli space, which are functions of the

N = 2 scalar superpartners of the gauge bosons, aib,D, i = 1, . . . , rank(GH
b ).

This reasoning tells us that our massive fields appear in the superpotential in terms

proportional to the quadratic Casimirs ub
2 of the hidden groups GH

b . In the string theory

context, the coupling constant is the heterotic dilaton field S, which maps by duality to

the chiral superfield y containing the CP1 radius R. So in our case ub
α = ub

α(ab,D, y).

Therefore as R → ∞ there is a superpotential which looks like

WII =
∑

b

(

mbu
b
2(a

i
b,D, y) +

r(b)
∑

i=1

M b
i a

i
b,DM̃ b

i

)

(3.5)

on the type II side. Here r(b) is the rank of the bth factor in the hidden gauge group.

In analyzing the resulting bosonic potential, we will (i) reproduce the general structure

of the potential arising from gaugino condensation on the heterotic side and (ii) discover

that the monopole fields have vacuum expectation values, suggesting a geometric descrip-

tion by analogy with the conifold transitions that occur in the N = 2 context [41][26].

Before analyzing the physics of (3.5), it is helpful to remember the simplest case

discussed in [21]. In order to recover the physics of the N=1 SU(2) theory from their

solution of the N=2 SU(2) theory, Seiberg and Witten perturb the N=2 theory by a

4 This should also follow from the appropriate computation of the coupling of the vertex

operator to the D-brane monopole [38].
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superpotential which gives a mass to the adjoint scalar in the N=2 vector multiplet. Taken

together with the couplings of the monopole fields M, M̃ which become massless at special

points this implies

W = mU(aD) +
√
2aDMM̃ . (3.6)

Then from the equations of motion together with the condition of D-flatness they find that

|〈M〉| = |〈M̃〉| = (
−mU ′(0)√

2
)1/2 6= 0 . (3.7)

The monopoles condense and give a mass to the (dual) U(1) gauge field by the magnetic

Higgs mechanism. The resulting low energy theory has a gap – this is the dual explanation

of confinement by monopole condensation.

Our expectation in the context of heterotic/type II duality is that the superpotential

(3.5) of our type II duals will give an analogous picture, with light black hole condensation

providing the dual description of gaugino condensation and supersymmetry breaking. To

make this more concrete, we must compute the bosonic potential

V = eK
(

DiWGij̄Dj̄W − 3|W |2
)

+
1

2
g2D2 (3.8)

in terms of the Kahler potential K and superpotential W .

Let us expand the superpotential (3.5) in aib,D in anticipation of finding a minimum

at small aib,D.

u2(a
i
b,D, y) = eiγ

(b)

Λ2
b(y) +

∂u2

∂aib,D
aib,D + . . . (3.9)

Recall also that the matching between the high and low-energy theories gives the relation

mbΛ
2
b, high = Λ3

b, low (3.10)

so we obtain a superpotential

WII =
∑

b

(

eiγ
(b)

Λ3
b +

∂ub
2(y)

∂aib,D
aib,D +

r(b)
∑

i=1

M b
i a

i
b,DM̃ b

i

)

(3.11)

Since we are interested in comparing to the heterotic side, let us work now in terms of the

heterotic coupling S and consider Λb’s dependence on S. Then we obtain the following
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bosonic potential

V =eK
[

∑

b,i(b)

∣

∣hbmbu
b
2,i(S) +M b

i M̃
b
i +KiW

∣

∣

2

+
∣

∣

∑

b

[hb
∂Λ3

b(S)

∂S
+ hb

∂ub
2,i(S)

∂S
aib,D] +KSW

∣

∣

2

+
∑

b

r(b)
∑

i,j̄=1

aib,DM b
i G

M̃b
i

¯̃Mb
j ājb,DM̄ b

j +
∑

b

r(b)
∑

i,j̄=1

aib,DM̃ b
i G

Mb
i M̄

b
j ājb,D

¯̃M b
j

+ F− terms of other fields

− 3

∣

∣

∣

∣

∑

b

r(b)
∑

i=1

(

hbΛ
3
b(S) + hbu

b
2,i(S)a

i
b,D +M b

i a
i
b,DM̃ b

i

)

+ other fields

∣

∣

∣

∣

2]

+
1

SII + S̄II

∑

b

r(b)
∑

i(b)=1

(

|M b
i |2 − |M̃ b

i |2
)

(3.12)

where we have used the notation
∂ub

2

∂ai
b,D

≡ ub
2,i.

This expression of course depends on the Kahler potential. In general, one would

expect the Kahler potential to receive significant loop (and nonperturbative) corrections,

but duality allows us to work at arbitrarily weak coupling on the type II side–given the

absence of field theoretic nonperturbative effects on the type II side–unless stringy non-

perturbative effects fix the type II dilaton away from weak coupling. Assuming any such

additional effects leave a minimum at weak type II coupling, the tree level Kahler potential

should be a good approximation.5 The vacuum will also depend on the contributions to

the bosonic potential of fields other than those on which we are focusing. Different sets

of assumptions and methods for analyzing the potential exist in the literature (see for

example [14][16] and references therein).

Assuming there is a minimum near the aib,D = 0 minimum of the rigid case (3.6), the

monopole fields M and M̃ will minimize the first term in (3.12) (consistent with D-flatness)

up to supergravity corrections. Setting DiW = 0 yields

〈M b
i M̃

b
i 〉 = −hbmbu

b
2,i(S)−KiW (3.13)

5 If this assumption is false, the duality we discuss still applies but the analysis of the bosonic

potential changes accordingly to take into account its dependence on the moduli coming from

N = 2 hypermultiplets.
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Here the first term is in accord with (3.7) and the second term arises from supergravity.

Now having integrated out the extra particles M , M̃ , and aD, we obtain the same general

form of bosonic potential as arises from the heterotic side. We must then minimize with

respect to the dilaton and all the other scalars in the model. Then supersymmetry is

broken if there is any field φ for which

Fφ = e
K
2 Gφφ̄

(

∂W

∂φ
+

∂K

∂φ
W

)

6= 0 (3.14)

in the vacuum.

As in the global situation analyzed in [21], the dual description of the effects of gaugino

condensation involves a mass perturbation breaking the N = 2 supersymmetry. We have

seen that the orbifold produces the necessary massive mode as a Kaluza Klein excitation

of the original variable ub
2 that was projected out.

One intriguing feature of the type IIA vacuum is the presence of nonzero vacuum

expectation values of the monopole fields (wrapped two-branes) M and M̃ . In the context

of N = 2 compactifications of the type II string theory, such vacuum expectation values

can be turned on continuously when consistent with D- and F-flatness, giving transitions

to other branches of the moduli space [26]. There is a well-known geometrical description

of the conformal field theories involved in this process [41]. For example in type IIB

string theory one approaches the conifold locus in complex structure moduli space by

deformations causing appropriate S3s to shrink to zero size. One can then resolve this

singularity by replacing the tips of the resulting cones by CP1 ∼ S2s.

At the generic conifold such a “small resolution” does not produce a Kahler manifold

[42]. This was noted by Candelas, de la Ossa, Green, and Parkes, who speculated that

such resolutions may correspond to supersymmetry-breaking directions [43]. The analysis

presented here suggests a realization of these ideas through duality. By analogy with the

quantum conifold transitions in the N = 2 context, we expect that the nonzero monopole

VEVs we have found correspond to a vacuum which has a conformal field theory descrip-

tion involving strings propagating on the non-Kahler resolutions of conifold singularities. If

this analogy holds, then the fact that the corresponding conformal field theory is nonsuper-

symmetric might in fact provide the simplest method for establishing that supersymmetry

is broken in such theories.

Given a conformal field theory description, a very general argument suggests that the

leading approximation (in the type II coupling) to the cosmological constant must vanish

in this class of theories. Although on the heterotic side detailed dynamical assumptions

are usually invoked, on the type II side this statement follows simply from the fact that

the leading contributions to the vacuum energy vanish by SL(2, C) invariance.
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4. Conclusions

We have seen that the construction of dynamical 4d N=1 dual pairs is possible by

application of the adiabatic argument of [8]. In particular, one can realize “racetrack

models” of supersymmetry breaking in a dual type II description.

Our analysis suggests that the tree-level superpotential on the type II side reproduces

the bosonic potential expected from gaugino condensation on the heterotic side, by gen-

eralizing the mechanism of [21] which explained the gap of pure N=1 SU(2) gauge theory.

A careful study of the geometry of the type II compactification (including possibly the

non-Kahler resolutions of the conifold singularity) might therefore translate into detailed

information about the mechanism of supersymmetry breaking in these models. The N = 2

models we have started with here are rather cumbersome, as they contain numerous mod-

uli. It would be nice to find simpler examples of this phenomenon which can be more easily

studied in detail. More generally, one would like to extend the class of useful N = 1/N = 0

dualities to models which are not obviously obtained as orbifolds of N = 2 dual pairs.
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