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EXACT RENORMALIZATION GROUP WITH FERMIONS
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Facultat de F́ısica, Universitat de Barcelona
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The development of the Exact Renormalization Group for fermionic theories is

presented, together with its application to the chiral Gross-Neveu model. We focus

on the reliability of various approximations, specifically the derivative expansion

and further truncations in the number of fields. The main differences with bosonic

theories are discussed.

1 Introduction

The set of ideas enclosed in the Renormalization Group (RG, hereafter) has
led to a variety of developments in many fields, as this Conference has made
apparent. From a particle theorist point of view they englobe a bunch of ideas
form which we may understand what a quantum field theory is. Moreover, it
provides a framework for nonperturbative calculations.

In recent years, there has been an intensive development of the field mainly
for scalar theories.1 It can probably be said that we thoroughly understand all
the subtleties the RG reserves for us in this case.

Nevertheless what would ultimately justify the whole approach, as applied
for Particle Physics, is the construction of Lorentz and gauge invariant non-
perturbative equations, manageable for reliable approximations. The hope of
RG practitioners is that we are really not that far from there.a

Particle physicists may imagine themselves, thus, applying in the nearby
future the powerfulness of the approach to atack long-standing nonperturbative
problems for, say, quantum gluodynamics. And the next step would probably
be the introduction of matter to have the full physical theory.

At this point it will for sure be helpful to have already understood the pe-
culiarities associated to fermions on their own, both conceptual and technical.
This is the reason we believe that we should try, as it has been done for bosons,
to master as deeply as we can fermionic theories, even with no additional fields.

We do not want to suggest that the features of fermionic equations have to
be significantly different from the ones for bosons. On the contrary, we believe
that they have to be ultimately a direct translation of ideas from one subject

aWe have to mention that although the search for nonperturbative gauge invariant equations

is still open, there are a variety of results for perturbative definitions of a gauge invariant

theory based on these grounds.2
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to the other. What we do mean is that these features may not be noticeable
in any obvious way. On the other hand, new technicalities may also appear.
And before embarking ourselves in a more ambitious project these peculiarities
must be previously worked out and clearly understood.

We thus want to present some recent work in that direction.3 Namely, the
study of a two dimensional sample model (the so-called Gross-Neveu model4)
which we will define below. This model is sufficiently simple in order to be
able to carry out the algebra as far as we need but that it still captures the
essentials of the approach for the Grassman case.

Let us briefly review the main ideas involved in bosonic theories as they
are studied by Polchinski.5 We first have to choose a regulator adequated for
our purposes. It is done by simply modifying the propagator P (p)

P (p) =
1

p2
(1)

to

PΛ(p) =
K(p2/Λ2)

p2
(2)

where Λ is a momentum-space cutoff and K(x) a regulating function which
decays sufficiently rapid to zero when x→ ∞.

With this kind of regulator, a quick (and somehow sloppy) argument that
leads to an appropriate RG equation is to identify all the Λ-dependences in a
partly integrated action by signaling all possible occurrences of the propagator
and multiplying by the Λ-derivative of it. In this manner we immediately
obtain

− Λ
d

dΛ
Sint ≡ Ṡint =

1

2

δSint

δφ
· ṖΛ · δSint

δφ
− 1

2
tr

(

ṖΛ · δ
2Sint

δφδφ

)

(3)

with

Sint = S − 1

2
φ · P−1

Λ
· φ (4)

and S the full action. The first term takes into account tree-type propagators
and the second one loop-type propagators. We are using a compact notation
regarding the propagator as a matrix with a dot standing for matrix multipli-
cation.

The equation for a pure fermionic theory can be written in a similar form.
From the propagator

PΛ = i 6p K(p2/Λ2)

p2
(5)
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we obtain the RG equation

Ṡint =
δSint

δψ
· ṖΛ · δSint

δψ̄
− tr

(

δ

δψ
· ṖΛ · δSint

δψ̄

)

(6)

Returning to S and expressing the resultant equation in dimensionless
variables it is obtained

Ṡ = 2K ′(p2)
δS

δψ
· i 6p · δS

δψ̄
− tr

(

2K ′(p2)
δ

δψ
· i 6p δS

δψ̄

)

− 2p2
K ′(p2)

K(p2)

(

ψ̄ · δS
δψ̄

+ ψ
δS

δψ

)

(7)

+ dS

+
1− d+ η(t)

2

(

ψ̄
δS

δψ̄
+ ψ

δS

δψ

)

−
(

ψ̄ · pµ ∂′

∂pµ
δS

δψ̄
+ ψ · pµ ∂′

∂pµ
δS

δψ

)

where we work on a d-dimensional Euclidean space; η is the anomalous dimen-
sion (needed to obtain a physically interesting fixed point); t ≡ − lnΛ; and

the prime in ∂′

∂pµ means that the derivative does not act on the momentum
conservation delta functions and thus only serves to count powers of momenta.

Note the first difference between bosons and fermions. Due to the different
structure of the propagators, the fermionic equation presents an explicit factor
of p in the first two terms of the right hand side of the RG equation 7 while this
is not the case for bosons (Eq. 3). This may just look like a technical remark
without any relevance. However it turns out that the seemingly most pow-
erful approximations to these equations are based on the so-called derivative
expansion6 whose first order term is obtained by restricting the action to be a
kinetic term plus a general potential term with no derivatives. In a fermionic
theory this approximation will not be feasible, because we will be left only with
a fairly simple linear equation. The derivative expansion should nevertheless
be applicable, but it would lead to more complicated structures even at first
non-trivial order.

2 The model

Let us now apply the RG equation 7 to the so-called chiral Gross-Neveu model.4

As any other field theory, it is best defined through its symmetries. We will
consider thus an Euclidean invariantN -flavoured model, with an U(N)×U(N)
internal symmetry group. It is also chosen to obey the discrete symmetries of
parity, charge conjugation and reflection hermiticity.7
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When one imposes these restictions and further use Fierz reorderings, it is
easily sown that there appear only three basic structures,

V j
12

≡ ψ̄a(p1)γ
jψa(p2)

S12S34 − P12P34 ≡ ψ̄a(p1)ψ
a(p2)ψ̄

b(p3)ψ
b(p4)

− ψ̄a(p1)γsψ
a(p2)ψ̄

b(p3)γsψ
b(p4) (8)

S12P34 − P12S34 ≡ ψ̄a(p1)ψ
a(p2)ψ̄

b(p3)γsψ
b(p4)

− ψ̄a(p1)γsψ
a(p2)ψ̄

b(p3)ψ
b(p4)

which have to be combined in an arbitrary way with combinations of momenta.
The next step is to define a reasonable approximation to handle the above

functional-derivative equation. We would like to choose one that closely resem-
bles the bosonic derivative approximation. Nevertheless, due to the number
of different structures it is not that easy to parametrize the general action
up to, say, two derivatives while maintaining arbitrary the number of fields.
Moreover, we should keep in mind that the allowed action is, as long as we are
working with a finite number of different species, composed by a finite number
of operators: the Grassman character of our variables constraints the number
of fields allowed at one point of space.

We have already commented that derivative terms should also be included.
In fact, this is an important point because in d = 2 the anomalous dimension
η usually plays an important role: we would probably be too naive if we try to
obtain numbers without letting it to be nonzero. In fact two derivatives may
seem to do the job. However, once one goes through the calculations, it turns
out to be quite clear that η = 0 is the only consistent value. This implies that
we need at least three derivatives.

The maximum number of fields was chosen to be six. This seems a number
both sufficiently low in order to keep the action relatively simple and sufficiently
high to let non-trivial results appear.

The action thus obtained has the usual kinetic term; one term with three
derivatives and only two fields; two derivative-free four-fields operators

g1(S12S34 − P12P34) , g2V
j
12
V j
34

(9)

with coupling constants g1 and g2; eleven operators with also four fields but
two derivatives; and ninety-two six-fermions operators, five of them with only
one derivative and the rest with three derivatives.

After some algebra we can now obtain the set of beta functions. The fixed
points are the solutions for these functions to vanish. They are a set of 106
non-linear algebraic equations.
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Up to this point, the functionK(p2) can be mainted arbitrary, thus keeping
some freedom of chosing a scheme. The fixed point solutions in our approx-
imation will in general depend on two parameters which serve as a scheme
parametrization. In principle, this should not worry us, because it is well
known that the actual expression of the fixed point action has no intrinsic
physical meaning.

For Particle Physics it is specially interesting the value of the relevant
directions from the fixed points. That is, we linearize the RG transformations,

ġi = Ri(gj) (10)

to

ġi = Rij · δgj , Rij ≡
∂Ri

∂gj

∣

∣

∣

∣

g0

(11)

where g0 is the fixed-point solution and δgj are the deviations from it. The
number of positive eigenvalues of the matrix Rij coincide with the number of
possible parameters we can fine-tune in the corresponding cutoff-free theory8

and the actual value of these eigenvalues gives the speed of departure from the
fixed point.

These eigenvalues are directly related to the so-called critical exponents
in the terminology of second-order phase transitions. They are universal and,
therefore, they should be free from schemes dependences. In our approxima-
tion, however, this is not so, as often happens with truncations. The scheme
ambiguities are solved by a translation of the principle of minimal sensitivity
used in perturbative calculations.9

3 Results

We now sketch the main results.
The equations simplify enormously when N → ∞. Two fixed points can

be clearly identified. One of them with vanishing anomalous dimension (it
is of order N−1) and with the most relevant eigenvalue

√
17 − 3 in this ap-

proximation. Moreover the coupling constant g2 which corresponds to U(1)
Thirring-like excitations becomes free (we have, in fact, a line of fixed points)
and g1 is also of order N−1. All these features but the anomalous dimension
remind the fixed point solution found by Dashen and Frishman.10

The other solution, which corresponds to a different definition of the large
N limit (different assumed N dependences of the coupling constants) has a
non-vanishing anomalous dimension. It is scheme dependent with a range of
variation of 1.11–1.14 for most of the schemes. The most relevant eigenvalue is
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also scheme-dependent with a range of 2.1–2.3 and, unlike the previous case,
there are no free parameters.

Before going on we must comment on a quite unpleasant feature of this
kind of approximations. By now it is generally believe that any approximation
based on truncations leads to a system of fixed-point equations with many
spurious solutions.11 It seems that a pure derivative expansion (that is, one with
a truncation in the number of derivatives but without any further truncation in
the number of fields) cures all this kind of problems. We work with a truncated
action and thus we expect on general grounds that this unwanted peculiarity
appears and, actually, it does. The solution of the puzzle is not always simple.
One usually tries to discriminate among solutions by checking the stability of
the obtained ones either going one step beyond in the approximation or else
tuning some parameters. In our case we are lucky to have nitid results in the
large N limit. Therefore, we take as reliable solutions only those whose limit
when N → ∞ concides with one of the solutions found above.

This procedure will probably not be available in all cases and one should
wonder if there is any systematic procedure to deal with the problem without
relying on technical details of the studied model. Of course, one can always
try to perform a true derivative expansion instead of mutilating each term
as we have done. It should eliminate at once the spurious results. In fact
we have a special case, which we will refer later on that suggests that this
is true. Nevertheless the expansion proposed is not that simple, specially for
N moderately large. Moreover, it seems to be difficult to deal with different
values of N simultaneously and still preserving each term in the expansion
without truncating it at some arbitrary point.

One solution for finite N matches the first one discussed above, with the
most relevant eigenvalue smoothly decreasing to

√
17 − 3 and with N · η in-

creasing with N to 4.87. . . Unlike the strict large N limit, we do not find,
nevertheless, a line of fixed points but an isolated one. We blame this feature
to the crudeness of the approximation.

The solution that matches the second one above has a much more conspic-
uous behaviour. In fact it is valid only for N > 142.8. At this value it matches
another branch of solutions, which exists even when N → ∞ although the cou-
plings do not scale with N as integer powers but as noninteger ones. Both the
anomalous dimension and the most relevant eigenvalue present strong scheme
dependences, quite difficult to disentangle.

Finally, we can consider separately the N = 1 case. It is worth going
through it because it is a simple case where we can treat the equations in a
purely derivative approximation: due to Fermi statistics, we cannot have more
than six fields if we consider terms up to three derivatives. Our action is thus
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exact in this sense. Also, we have to work out further relations imposed by
Fierz reorderings, not present for N 6= 1. Our action is, therefore, even shorter
than that. The results are nevertheless very messy and, probably, not reliable.
When considering terms up to two derivatives, we find a line of fixed points (as
it is expected in the Thirring model) with η = 0 as stated previously. But once
we go to three derivatives, η 6= 0 but, unexpectedly, the line of fixed points
disappears and we obtain only an isolated one. Nevertheless one piece of nice
news comes out: the spurious solutions disappear, as expected.

A final comment is in order. We have found η by imposing that the
normalization of the kinetic term is fixed at some standard value. This is surely
not the most general way to proceed. If an exact computation is performed
we know that this normalization does not matter and we will be able to fix
it safely to whatever value we want: we will find a whole line of physically
equivalent fixed points. It is generally known that this kind of symmetry is
broken for most of the approximations12 (in particular it is broken by the
derivative expansion). Moreover, we generally expect that the true physical
fixed point mixes with non-local ones with similar behaviour for the truncated
action but with different anomalous dimensions. To pick up the local solution
among the non-local ones, one should try to find the reminiscence of the line
of fixed points: a marginal redundant operator. Its presence would signal that
our scheme is truly approximating the local fixed point behaviour and not
something else. This would probably fixed some, or perhaps even all, of the
scheme dependences. This analysis has not been performed.

Summarizing, we have presented a fermionic RG equation and an example
of its application. It seems that, although technically harder to work with,
there emerges the same patterns as in the bosonic case. In particular the
annoying issue of spurious solutions is also present. However, it does seem that
with sufficiently accurate work and restricting oneself to a derivative expansion
without further truncations reliable non-trivial results should come out.
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