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Abstract

In this letter we quantize a previously proposed non-local lagrangean
for the classical dual electrodynamics (Phys.Lett.B 384(1996)197), show-
ing how it can be used to construct probability amplitudes. Our results
are shown to agree with those obtained in the context of Schwinger and
Zwanziger formulations, but without necessity of introducing strings.

Magnetic monopoles have played a remarkable role in particle physics
along the years, as elementary particles in abelian dual electrodynamics[1]

or topological solutions of non-abelian unified theories[2], but a quantal
approach to the interaction between charges and poles has been always
a challenging open problem, due to two different difficulties[3]: the non-
perturbative character of the charge-pole interaction and the absence of a
complete lagrangean formulation, connected to the impossibility of intro-
ducing regular 4-potentials.

In a previous work[4,5], a covariant and gauge-invariant, manifestly dual,
non-local lagrangean formalism has been reported, leading to the complete
set of dual electromagnetic equations, without necessity of any subsidiary
condition or constraint on the particles motion. Now, dismissing the prob-
lem of the non-perturbative value of the magnetic charge, we quantize such
an approach, constructing an invariant perturbative theory for the charge-
monopole interaction.

The referred non-local lagrangean, obeying a saddle-point action princi-
ple, has the interaction sector

Lint = −jµA
µ + gµÃ

µ (1)

where jµ and gµ are, respectively, the electric and magnetic 4-currents, and
the non-local potentials Aµ and Ãµ are defined by

Aµ = Aµ +
1

2
ǫµγαβ

∫ x

P
∂αÃβ dξγ (2)
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Ãµ = Ãµ −
1

2
ǫµγαβ

∫ x

P̃
∂αAβ dξγ (3)

Here, Aµ and Ãµ are the local potentials of Cabibbo and Ferrari[6], de-
fined, in terms of the field strength, by

Fµν = ∂µAν − ∂νAµ − ǫµναβ ∂αÃβ (4)

and obeying, in Lorenz’s gauge, the wave equations[7]

∂ν∂νA
µ = −jµ (5)

∂ν∂νÃ
µ = −gµ (6)

The interaction operator corresponding to (1) is given by[4]

V = −
∂Se

int

∂t
+

∂Sg
int

∂t
=

∫

d3x (jµA
µ + gµÃ

µ) (7)

where Se
int and Sg

int stand for the charge and monopole interaction actions,
respectively. So we have, for the scattering matrix,

S = Texp

{

−i

∫

d4x (jµA
µ + gµÃ

µ)

}

(8)

Expanding it in powers of the electric and magnetic charges, e and g,
the first non-diagonal contribution is the second order one

S(2) = −
1

2

∫ ∫

d4x d4x′ {T [jµ(x)jν(x′)]T [Aµ(x)Aν(x
′)] + (9)

+ T [gµ(x)gν(x′)]T [Ãµ(x)Ãν(x
′)] + 2T [jµ(x)gν(x′)]T [Aµ(x)Ãν(x

′)]}

The first and second terms correspond, respectively, to charge-charge
and pole-pole scatterings. In the first case, we can use gauge invariance to
put Ãµ = 0[9] and to introduce the photon propagation function

Dµν(x− x′) = i < 0|TAµ(x)Aν(x
′)|0 >= i < 0|TAµ(x)Aν(x

′)|0 > (10)

and, in the second case, putting Aµ = 0 we can use the propagation function
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D̃µν(x− x′) = i < 0|T Ãµ(x)Ãν(x
′)|0 >= i < 0|TÃµ(x)Ãν(x

′)|0 > (11)

leading to a pole-pole interaction completely analogous to the charge-charge
one.

The last term in (9) corresponds to the charge-monopole scattering and
suggests the introduction of the mixed propagation function

Cµν(x− x′) = 2i < 0|TAµ(x)Ãν(x
′)|0 > (12)

This allows us to write the scattering amplitude in the form

M = eg(ūgγ
µug)Cµν(ūeγ

νue) (13)

where ug and ue are, respectively, the pole and charge amplitudes1.
It is easy to see that < 0|TAµ(x)Ãν(x

′)|0 >= 0, due to the fact that Aµ

and Ãµ describe photons with opposite parities2. Thus, using (2) and (3)
we obtain, from (12),

Cµν(x− x′) = iǫµγαβ < 0|TÃν(x
′)

∫ x

P
∂αÃβ dξγ |0 > − (14)

−iǫνγαβ < 0|TAµ(x)

∫ x′

P̃
∂αAβ dξγ |0 >

Remembering that, in the classical limit, P (P̃ ) coincides with the charge
(pole) world-line between ξ = −∞ and ξ = x (x′), it is a straightforward
calculation to verify that, in (14), the chronological ordering operator T
commutes with the integral and derivative operators. Then, we have

Cµν(x− x′) = iǫµγαβ

∫ x

P
dξγ ∂α

ξ < 0|TÃν(x
′)Ãβ(ξ)|0 > − (15)

−iǫνγαβ

∫ x′

P̃
dξγ ∂α

ξ < 0|TAµ(x)A
β(ξ)|0 >

= ǫµγαβ

∫ x

P
dξγ ∂α

ξ D̃
β
ν (x

′ − ξ)− ǫνγαβ

∫ x′

P̃
dξγ ∂α

ξ D
β
µ(x− ξ)

= ǫµγαβ

∫ x−x′

P
dξγ ∂α

ξ D̃
β
ν (ξ)− ǫνγαβ

∫ x′−x

P̃
dξγ ∂α

ξ D
β
µ(ξ)

1To fix ideas, we are considering charge and pole as 1/2-spin particles.
2Actually, this reasoning is not necessary: by fixing the gauges Aµ = 0 or Ãµ = 0, this

expectation value vanishes trivially.
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Thus, we can write the mixed propagator in terms of the propagators
(10) and (11), as

Cµν(x) = ǫµγαβ

∫ x

P
dξγ ∂α

ξ D̃
β
ν (ξ)− ǫνγαβ

∫ −x

P̃
dξγ ∂α

ξ D
β
µ(ξ) (16)

Once more, we can use the gauges Aµ = 0 or Ãµ = 0 in order to obtain,
respectively,

Cµν(x) = ǫµγαβ

∫ x

P
dξγ ∂α

ξ D̃
β
ν (ξ) (17)

and

Cµν(x) = −ǫνγαβ

∫ −x

P̃
dξγ ∂α

ξ D
β
µ(ξ) (18)

We see that the mixed propagator (and then the amplitude (13)) is a non-
local quantity, depending on the integration paths P and P̃ . Nevertheless,
like in the classical case, this non-locality will proven to be non-observable
when we calculate observable quantities like |M |2 and the scattering cross
section.

Indeed, these observables can be obtained if we calculate, from (17), the
local quantity3

∂λCµν(x) = ǫµλαβ∂
αD̃β

ν (x) (19)

Then we see that the mixed propagator obeys the equation

∂λ∂λCµν = ǫµνλα[∂
λ, ∂α]DF (x) (20)

where we have used D̃βν(x) = gβνDF (x)
4.

In the momentum representation, (19) has the form

kλCµν(k) = ǫµλαβk
αD̃β

ν (k) (21)

Using for the photon propagator

3See footnote 2 in [4].
4 It is important to remark that the commutator [∂λ, ∂α]DF (x) does not vanish in the

whole space-time, due to the discontinuity of the Feynman propagator DF (x) at t = 0.
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D̃µν(k) =
4π

k2
gµν (22)

we have

kλCµν(k) =
4π

k2
kαǫµνλα (23)

It is easy to show that using (18) leads to the same result, which means
that the exchange of the two kinds of photons present in the theory (the
fields Aµ and Ãµ) gives identical contributions to observable quantities, the
two kinds of photons being indistinguishable from the observational point of
view. This is related to the fact that, in the classical version of the theory,
introducing the additional 4-potential Ãµ does not change the number of
independent physical degrees of freedom, due to the presence of extra gauge
invariance[9].

¿From (23) and (13), we can derive

kλM = eg(ūgγ
µug)kλCµν(ūeγ

νue) =
4πeg

k2
kαǫµνλα(ūgγ

µug)(ūeγ
νue) (24)

Therefore,

|kλM |2 = k2|M |2 =
32e2g2π2

k4
UµνU

†
αβkσkδǫ

µνλσǫ αβδ
λ (25)

or

|M |2 =
32e2g2π2

k6
UµνU

†
αβkσkδǫ

µνλσǫ αβδ
λ (26)

where we have introduced

Uαβ ≡ (ūgγ
αug)(ūeγ

βue) (27)

¿From (26), we see that only the antisymmetric part of Uµν and U †
αβ will

contribute to |M |2. A direct calculation leads us to

1

64π2
|M |2 =

e2g2

k4
U [µν]U †

[µν] (28)

where U [µν] indicates the antisymmetric part of Uµν , and where we have used
the transversality conditions kµjµ = kµgµ = 0, expressing the conservation
of the electric and magnetic currents in the momentum representation.
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At this point it is interesting to compare our results with those obtained
by Dirac-type string formulations. On the basis of Schwinger’s formalism[10],
Rabl[11] derived the gauge-dependent propagator

C ′
µν(k) =

4π

k2
ǫµνλαn

λkα

(n · k)
(29)

where nλ is a fixed but arbitrary 4-vector pointing in the string direction.
This propagator was also obtained by Zwanziger[12] in the context of another
string-based formulation5.

Equation (29) can be rewritten as

nλ(kλC
′
µν) = nλ

(

4π

k2
kαǫµνλα

)

(30)

And, as nλ is an arbitrary 4-vector, we have

kλC
′
µν =

4π

k2
kαǫµνλα (31)

which must be compared to (23).
On the other hand, multiplying (23) by an arbitrary 4-vector nλ, we can

put it in the form

Cµν(k) =
4π

k2
ǫµνλαn

λkα

(n · k)
(32)

¿From (29) and (32) we see that Cµν = C ′
µν , that is, our mixed prop-

agator is equal to the propagator derived in the Schwinger and Zwanziger
formulations.

While equation (16) exhibits the non-local character of the mixed propa-
gator, equation (32) (which depends on the arbitrary 4-vector nλ) shows its
gauge-dependence[3]. Actually, the relation between non-locality and gauge-
dependence is already present in the classical version of the theory: a change
of the paths of integration P and P̃ leads only to a gauge transformation of
the non-local potentials (2) and (3)[13]. By the way, let us emphasize that
it is this property that guarantees the full covariance of the formalism and
the strict locality of observables and equations of motion.

Let us calculate the classical limit of the probability (28), obtaining the
differential cross section for the elastic, non-relativistic, scattering of an

5For a good review on the Schwinger and Zwanziger approaches, see [3].
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electron by a massive monopole at rest. In the classical limit, the electric
and magnetic 4-currents are given by

jµ = eūeγ
µue = eγe(1, ~ve) (33)

gµ = gūgγ
µug = gγg(1, ~vg) (34)

where γe,g = (1− v2e,g)
−1/2 stand for the Lorentz factors for the charge and

pole, respectively.
By using these currents in (28) we obtain, in the monopole rest frame,

1

16π2
|M |2 =

e2g2v2eγ
2
e

k4
(35)

which leads, in the non-relativistic limit, for a small angle of scattering, to
the differential cross section

dσ =
e2g2v2e
|~p|4θ4

dΩ (36)

where ~p is the momentum of, say, the incident electron.
This result was originally obtained by Goldhaber in the context of a non-

relativistic approach[11,14]. It can be interpreted as the cross section for the
Coulomb scattering of a charge e by a charge gve, in accordance with the
fact that, in the classical theory, a static charge-pole pair does not interact.
By the way, let us note that the dependence on the relative velocity explains
the obtainment of (36) in the context of a perturbative expansion, despite
magnetic charge being non-perturbative: in this non-relativistic limit, the
effective charge gve << 1.

Finally, let us briefly comment the question of dyons. The formalism
proposed in [4] is invariant only under the discrete dual transformation cor-
responding to a dual angle of π/2, i.e., the transformation that interchanges
the electric and magnetic charges; it is not invariant under a general dual
transformation with arbitrary dual angle, what means in particular that our
lagrangean is not appropriate to describe elementary dyons. This is inti-
mately connected to the saddle-point character of the action on which the
formalism is based: an elementary particle cannot simultaneously minimize
(as an electric charge) and maximize (as a monopole) the action. Of course
nothing forbids one to describe dyons as composite systems but, if we want
to describe them as elementary ones, some generalization of the theory is
needed.
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