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A doubled discretisation of abelian Chern–Simons theory

David H. Adams
School of Mathematics, Trinity College, Dublin 2, Ireland. E-mail: dadams@maths.tcd.ie

A new discretisation of a doubled, i.e. BF, version of the pure abelian Chern–Simons theory is
presented. It reproduces the continuum expressions for the topological quantities of interest in the
theory, namely the partition function and correlation function of Wilson loops. Similarities with free
spinor field theory are discussed which are of interest in connection with lattice fermion doubling.

11.15.Ha, 2.40.Sf, 11.15.Tk

The abelian Chern–Simons (CS) theory [1–3] is an important topological field theory in three dimensions. It provides
the topological structure of topologically massive (abelian) gauge theory [2] and, in the euclidean metrics, provides
a useful theoretical framework for the description of interesting phenomena in planar condensed matter physics as,
for example, fractional statistics particles [5], the quantum Hall effect, and high Tc superconductivity [6]. It is also
essentially the same as the weak coupling (large k) limit of the non-abelian CS gauge theory, a solvable yet highly
non-trivial topological quantum field theory [3]. In this paper we describe a discretisation of the abelian CS theory
which reproduces the topological quantities of interest after introducing a field doubling in the theory. This doubling
leads to the abelian Chern–Simons action being replaced by the action for the so-called abelian BF gauge theory ((2)
below), in which the correlation function of Wilson loops and partition function become the square and norm-square
respectively of what they originally were. Note that discretising the theory is not the same as putting it on a lattice
in the usual way. Instead, it involves using a lattice to construct a discrete analogue of the theory which reproduces
the key topological quantities and/or features, without having to take a continuum limit. A detailed version of this
work [7] will be published elsewhere.
We take the spacetime to be euclidean R

3 (the case of general 3-manifolds is dealt with in [7]). The abelian CS
action for gauge field A=Aµdx

µ can be written as

S(A) = λ

∫

R3

dx ǫµνρAµ∂νAρ = λ

∫

R3

A ∧ dA = λ〈A , (∗d)A〉 (1)

where λ is the coupling parameter, d is the exterior derivative, ∗ is the Hodge star operator, and 〈· , ·〉 is the inner
product in the space of 1-forms determined by euclidean metric in R

3. All the ingredients the last expression in (1)
have natural lattice analogues (as we will see explicitly below); however the lattice analogue of the operator ∗ is the

duality operator, which maps between cells of the lattice K and cells of the dual lattice K̂. To accommodate this
feature we introduce a new gauge field A′ and consider a doubled version of the action (1):

S̃(A,A′) ≡ λ〈

(
A

A′

)
,

(
0

∗d

∗d

0

)(
A

A′

)
〉 = 2λ

∫

R3

A′ ∧ dA (2)

This is the action of the so-called abelian BF gauge theory [4]. In this theory the correlation function of framed Wilson
loops can be considered: A framed loop is a closed ribbon which we denote by (γ, γ′) where γ and γ′ are the two
boundary loops of the ribbon. The Wilson correlation function of oriented framed loops (γ(1), γ(1)′), . . . , (γ(r), γ(r)′)
is

〈(γ(1), γ(1)′), . . . , (γ(r), γ(r)′)〉 ≡ Z̃(λ)−1

∫

A×A

DADA′ [
r∏

l=1

(
e
i
∮
γ(l) A

)(
e
i
∮
γ(l)′

A′
)
] eiS̃(A,A′) (3)

This can be formally evaluated using standard techniques [4] to obtain

〈(γ(1), γ(1)′), . . . , (γ(r), γ(r)′)〉 = exp
(

−i
2λ

(∑

l 6=m

L(γ(l), γ(m)) +
r∑

l=1

L(γ(l), γ(l)′)
))

(4)

where L(γ, γ′) denotes the Gauss linking number of γ and γ′. The partition function of this theory,

Z̃(λ) ≡

∫

A×A

DADA′ eiS̃(A,A′) , (5)

1

http://arxiv.org/abs/hep-th/9704150v1


is also a quantity of topological interest. After compactifying the spacetime to S3 and imposing the the covariant
gauge-fixing condition

d†A = 0 , d†A′ = 0 , (6)

(where d† is the adjoint of d) the partition function can be formally evaluated as in [1] (see also [8]) to obtain

Z̃(λ) = det(φ†0φ0)
−1 det ′(d†0d0) det

′
(

−iλ
π

(
0
∗d

∗d
0

))−1/2

(7)

where we denote by dq the restriction of d to the space Ωq(S3) of q-forms, and φ0 : R → Ω0(S3) maps r∈R to the

constant function equal to r. In this expression det ′(d†0d0) is the Faddeev–Popov determinant corresponding to (6) and

det(φ†0φ0)
−1 (= V (S3)−1) is a “ghosts for ghosts” determinant which arises because constant gauge transformations

act trivially on the gauge fields. The determinants in (7) are regularised via zeta-regularisation as in [1,8]. Using
Hodge duality and the techniques of [1,8] we can rewrite (7) as

Z̃(λ) =
(

λ
π

)−1

τRS(S
3; d) (8)

(the general phase factor of [8, eq.(6)] is trivial here since the operator in (2) has symmetric spectrum) where

τRS(S
3; d) = det(φ†0φ0)

−1/2 det(φ†3φ3)
1/2

2∏

q=0

det ′(d†qdq)
1
2 (−1)q (9)

is the Ray–Singer torsion of d [9] (see in particular §3 of the second paper in [9]). (In (9) φ3 : R → Ω3(S3) maps r∈R

to the harmonic 3-form ω with
∫
S3 ω=r and we have used det(φ†3φ3)=V (S3)−1=det(φ†0φ0)

−1 [7].) The Ray–Singer
torsion is a topological invariant of S3 , i.e. it is independent of the metric on S3 used to construct ∗ and 〈· , ·〉 in (2),

d† in (6), and φ†0 in (7). The physical significance of this is as follows: When compactifying R
3 to S3 ≈ R

3∪{∞} (e.g.
via stereographic projection) the euclidean metric on R

3 must be deformed towards infinity in order that it extend to
a well-defined metric on S3. The topological invariance of τRS(S

3, d) means that the resulting partition function (8) is
independent of how this deformation is carried out. In fact τRS(S

3, d)=1 (the argument for this will be given below)

so Z̃(λ) = π/λ. If R3 is compactified in a topologically more complicated way, leading to a general closed oriented
3-manifold M , then the preceding derivation of (8) continues to hold (with S3 replaced by M) if H1(M)=0 and can

be generalised if H1(M) 6= 0 [7]. For example, if M is a lens space L(p, q) then τRS(L(p, q), d)=1/p and Z̃(λ)=π/pλ.

We will construct a discrete version of the doubled theory S̃(A,A′) which reproduces the continuum expressions
(4) and (8) for the correlation function of framed Wilson loops and partition function respectively. Let K be a
lattice decomposition of R3 which, for convenience, we take to be cubic. It is well-known [10,11] that the space Ωp

of antisymmetric tensor fields of degree p (i.e. p-forms) has a discrete analogue, the space Cp(K) of p-cochains (i.e.
R-valued functions on the p-cells of K), in particular C1(K) is the analogue of the space A=Ω1 of gauge fields. The
space Cp(K) of p-chains (i.e. formal linear combinations over R of oriented p-cells) has a canonical inner product 〈· , ·〉
defined by requiring that the p-cells be orthonormal; this allows to identify Cp(K) with its dual space Cp(K) so we
will speak only of Cp(K) in the following. The analogue of d is the coboundary operator dK : Cp(K) → Cp+1(K) , i.e.
the adjoint of the boundary operator ∂K . The new feature of our discretisation is that we also use the (co)chain spaces

Cq(K̂) associated with the dual lattice K̂ (i.e. the cubic lattice whose vertices are the centres of the 3-cells of K). The

cells of K and K̂ are related by the duality operator ∗K , defined in Fig. 1. An orientation for a p-cell α determines
an orientation for the dual (3−p)-cell ∗Kα by requiring that the product of the orientations of α and ∗Kα coincides

with the standard orientation of R3. Thus the duality operator ∗K determines a linear map ∗K : Cp(K)
≃
→ C3−p(K̂) ;

this is the discrete analogue of the Hodge star operator ∗ in (1)–(2). Set ∗K̂ ≡ (∗K)†=(∗K)−1. The discrete theory
is now constructed by

(A,A′) ∈ A×A −→ (a, a′) ∈ C1(K)× C1(K̂) (10)

S̃(A,A′) ≡ λ
〈( A

A′

)
,

(
0

∗d

∗d

0

)(
A

A′

)〉
−→ S̃K(a, a′) ≡ λ

〈( a
a′

)
,

(
0

∗KdK
∗K̂dK̂

0

)( a
a′

)〉
(11)

The discrete action SK(a, a′) is invariant under a → a+dKb , a′ → a′+dK̂b′ for all (b, b′) ∈ C0(K) × C0(K̂) since

dKdK =0 and dK̂dK̂ =0 ; this is the discrete analogue of the gauge invariance of the continuum theory.
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Framed Wilson loops fit naturally into this discrete setup: The framed loops are taken to be ribbons (γK , γK̂) where
one boundary loop γK is an edge loop in the lattice K and the other boundary loop γ

K̂
is an edge loop in the dual

lattice K̂. (It is always possible to find such a framing of an edge loop γK [7].) There is a natural discrete version of
line integrals:

∮

γK

A −→ 〈γ
K
, a〉 ,

∮

γ
K̂

A′ −→ 〈γ
K̂
, a′〉 (12)

where γ
K

∈ C1(K) denotes the sum of the 1-cells in K making up γK , and γ
K̂

∈ C1(K̂) denotes the sum of

the 1-cells in K̂ making up γ
K̂
. Then the correlation function of non-intersecting oriented framed edge loops

(γ
(1)
K , γ

(1)

K̂
), . . . , (γ

(r)
K , γ

(r)

K̂
) in the discrete theory is

〈(γ
(1)
K , γ

(1)

K̂
), . . . , (γ

(r)
K , γ

(r)

K̂
)〉 ≡ Z̃K(λ)−1

∫

C1(K)×C1(K̂)

DaDa′ [
r∏

l=1

(
ei〈γ

(l)

K
,a〉
)(

e
i〈γ

(l)

K̂

,a′〉
)
] eiS̃K(a,a′) (13)

A formal evaluation analogous to the evaluation of (3) leading to (4) gives

〈(γ
(1)
K , γ

(1)

K̂
), . . . , (γ

(r)
K , γ

(r)

K̂
)〉 = exp

(
−i
4λ

〈(
γ(1)

K
+...+γ(r)

K

γ
(1)

K̂

+...+γ
(r)

K̂

)
,

(
0

∗KdK

∗K̂dK̂

0

)−1(
γ(1)

K
+...+γ(r)

K

γ
(1)

K̂

+...+γ
(r)

K̂

)〉)

= exp
(

−i
2λ

r∑

l,m=1

〈γ(l)
K
, (∗KdK)−1γ

(m)

K̂
〉
)

(14)

where we have used (∗KdK)†=∗K̂dK̂ . To show that this coincides with the continuum expression (4) we must show

that for any oriented edge loop γK in K and oriented edge loop γ
K̂

in K̂ ,

〈γ
K
, (∗KdK)−1γ

K̂
〉 = L(γK , γK̂) . (15)

Then taking γK = γ
(l)
K and γ

K̂
= γ

(m)

K̂
in (15) and substituting in (14) reproduces the continuum expression (4). To

derive (15) we recall that the linking number of γK and γ
K̂

can be characterised as follows. Let D be a surface in R
3

with γK as its boundary, and such that all intersections of D with γ
K̂

are transverse, then

L(γK , γK̂) =
∑

D ∩ γ
K̂

±1 (16)

where the sign of ±1 for a given intersection of D and γ
K̂

is + if the product of the orientations of D (induced by the

orientation of γK) and γ
K̂

at the intersection coincides with the standard orientation of R3 , and − otherwise. We
now show that the l.h.s. of (15) coincides with (16). First note that

〈γ
K
, (∗KdK)−1γ

K̂
〉 = 〈((∗KdK)−1)†γ

K
, γ

K̂
〉 = 〈∗K(∂K)−1γ

K
, γ

K̂
〉 . (17)

Choose a surface DK in R
3 made up of a union of 2-cells of K and with γK as its boundary (illustrated in Fig. 2; such

a choice is always possible [7]) and equip DK with the orientation induced by γK . The formal sum of the oriented
2-cells making up DK is then an element DK ∈ C2(K) , and ∂KDK=γ

K
, so (17) gives

〈γ
K
, (∗KdK)−1γ

K̂
〉 = 〈∗KDK , γ

K̂
〉 (18)

Now ∗KDK ∈ C1(K̂) is the sum of all the 1-cells in K̂ which are dual to the 2-cells making up DK , as indicated

in Fig. 2. Since γ
K̂

is an edge loop in the dual lattice K̂ all the 1-cells β making up γ
K̂

are duals of 2-cells α in K
as illustrated in Fig. 1(b) above. Hence intersections of γ

K̂
and DK occur precisely when a 1-cell in γ

K̂
is the dual

of a 2-cell in DK (up to a sign) and it follows that the r.h.s. of (18) equals (16) with D=DK . This completes the
derivation of (15), thereby showing that the Wilson correlation function (14) in the discrete theory reproduces the
continuum expression (4) as claimed.
The partition function in this discrete theory is
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Z̃K(λ) ≡

∫

C1(K)×C1(K̂)

DaDa′ eiS̃K(a,a′) . (19)

As before we compactify the spacetime to S3 ; taking K to be a lattice decomposition for S3 the analogue of the
gauge-fixing condition (6) is

∂Ka = 0 , ∂K̂a′ = 0 , (20)

and a formal evaluation of (19) analogous to the one leading to (7) gives

Z̃(λ) = det((φK0 )†φK0 )−1/2 det((φK̂0 )†φK̂0 )−1/2 det ′(∂K1 d
K
0 )1/2 det ′(∂K̂1 d

K̂
0 )1/2 det ′

(
−iλ
π

(
0

∗KdK
1

∗K̂dK̂
1

0

))−1/2

(21)

Here φK0 : R → C0(K) and φK̂0 : R → C0(K̂) are natural discrete analogues of φ0 ; det((φK0 )†φK0 ) = NK
0 and

det((φK̂0 )†φK̂0 )=N K̂
0 where NK

p ≡ dimCp(K) , N K̂
q =dimCq(K̂) [7]. There is a natural discrete analogue φK3 of φ3

with det((φK3 )†φK3 )=1/NK
3 =1/N K̂

0 =det((φK̂0 )†φK̂0 )−1 ; using this and the properties of ∗K (∂Kq =(−1)q ∗K̂ dK̂3−q∗
K)

we can rewrite (21) as [7]

Z̃K(λ) =
(

λ
π

)−1+NK
0 −NK

1

τ(S3;K, dK) (22)

where

τ(S3;K, dK) = det((φK0 )†φK0 )−1/2 det((φK3 )†φK3 )1/2
2∏

q=0

det ′(∂Kq+1d
K
q )

1
2 (−1)q (23)

is the R–torsion of dK [9]. The R–torsion is a combinatorial invariant of S3 , i.e. it is the same for all choices of
lattice K for S3 (including non-cubic, e.g. tetrahedral, lattices). Thus when compactifying the spacetime R

3 to S3

the resulting expression (22) for the partition function in the discrete theory is independent of how the lattice K for
R

3 is modified to obtain a lattice decomposition of S3 , except for the exponent of λ/π in (22). A straightforward
calculation using the tetrahedral lattice for S3 obtained by identifying S3 with the boundary of the standard 4-simplex

in R
4 gives τ(S3;K, dK)= 1. Thus Z̃K(λ)= (π/λ)1−NK

0 +NK
1 in the present case. As in the continuum case, if S3 is

replaced by a general closed oriented 3-manifold M in the preceding then the derivation of (22) (with S3 replaced by
M) continues to hold if H1(M) = 0 and can be generalised if H1(M) 6= 0 [7]. A deep mathematical result, proved
independently by J. Cheeger and W. Müller [12], states that R–torsion and Ray–Singer torsion are equal; in particular

τ(M ;K, dK) = τRS(M,d) (so τRS(S
3, d) = 1 as mentioned earlier). It follows that the partition function Z̃K(λ) of

the discrete theory reproduces the continuum partition function Z̃(λ) when λ = π , and also when λ 6= π after a
lattice-dependent renormalisation of λ in the discrete theory.
The field doubling required in the preceding is reminiscent of the doubling required in Thermo Field Dynamics in

order that the vacuum expectation value of an operator reproduces the statistical average [13].
The results of this paper are of interest in connection with lattice fermion doubling. From (1) and (2) we see that

the lagrangians LCS and LBF of the abelian CS and BF theories can be written in an analogous way to the lagrangian
ψ∗γµ∂µψ for a free spinor field:

LCS = A†eµ∂µA , LBF = Ã†ẽµ∂µÃ (24)

where A= (Aµ) and Ã= (A,A′) are considered as a 3-vector and 6-vector, A† and Ã† are their transposes, eµ is a
3× 3 matrix ((eµ)νρ=ǫνµρ) and ẽ

µ is a 6× 6 matrix. If we formulate the abelian CS and BF theories on a spacetime
lattice in the same way as for a spinor field theory and calculate the momentum space propagator in the standard
way we find a “doubling” of exactly the same kind as for spinor fields on the lattice (described, e.g., in ch. 5 of [14]).
Thus, one the one hand, when the abelian CS or BF theory is put on the lattice in the same way as a spinor theory an
analogue of “fermion doubling” appears, while on the other hand the discretisation of the abelian BF theory described
in this paper successfully reproduces continuum quantities.
The doubled, i.e. BF, version of the abelian CS theory has the following analogue of chiral invariance. The 6 × 6

matrix C̃ defined by C̃(A,A′)=(A,−A′) satisfies the chirality conditions C̃2=I and C̃ẽµ=−ẽµC̃. Thus C̃ is analogous

to γ5 in spinor theory, and the abelian BF lagrangian in (24) has chiral invariance under Ã → eαC̃Ã (α∈R). The
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original field A and new field A′ then have positive- and negative chirality respectively, in analogy with spinors of
positive- and negative chirality. (This is reminiscent of the connection between doubling and chirality discussed in
Ref. [15].) These observations, together with the results of this paper, suggest that when formulating lattice spinor
theories (in particular in the Kähler–Dirac framework [10]) the spinors of positive- and negative chirality should be
associated with the lattice and its dual lattice respectively.
I am grateful to Siddhartha Sen for many helpful discussions and encouragement. I also thank Jim Sexton and
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β

FIG. 1. Definition of the duality operator ∗
K : α is a p-cell in K and β=∗

Kα is the dual (3−p)-cell in K̂. (In (a) β is the

point (vertex in K̂) at the centre of the 3-cell α , while in (d) β is the 3-cell in K̂ which has the point α at its centre.)

γ
K

DK

FIG. 2. γK is the boundary of the surface DK made up of 2-cells of K. The vertical line segments are the duals of the 2-cells
making up DK .
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