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Abstract

It is well known that anomaly cancellations for Dj¢ Lie algebra are at the root of the first string
revolution. For FEg Lie algebra, cancellation of anomalies is the principal fact leading to the existence of
heterotic string. They are in fact nothing but the 6th order cohomologies of corresponding Lie algebras.
Beyond 6th order, the calculations seem to require special care and it could be that their study will be
worthwhile in the light of developments of the second string revolution.

As we have shown in a recent article, for Ay Lie algebras, there is a method which are based on
the calculations of Casimir eigenvalues. This is extended to Eg Lie algebra in the present article. In the
generality of any irreducible representation of Eg Lie algebra, we consider 8th and 12th order cohomologies
while emphasizing the diversities between the two. It is seen that one can respectively define 2 and 8 basic
invariant polinomials in terms of which 8th and 12th order Casimir eigenvalues are always expressed as linear
superpositions. All these can be easily investigated because each one of these invariant polinomials gives
us a linear equation to calculate Fg weight multiplicities. Our results beyond order 12 are not included
here because they get more complicated though share the same characteristic properties with 12th order
calculations.
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I. INTRODUCTION

It is a clear fact that anomaly cancellations play a unique role in the construction of the way of thinking
and constructing models in high energy physics since the last two decades. The ones for D1g Lie algebra [1]
are principal for the first string revolution to begin. As it is also noted [2], the contruction of heterotic string
[3] is shortly thereafter. It is known [4] that the existence of a 10-dimensional string with a Eg x Eg
gauge symmetry relies heavily on Eg anomaly cancellations.

On the other hand, these anomaly cancellations are in fact due to cohomology relations of corresponding
Lie algebras. The cohomology for Lie algebras states non-linear relationships between elements of the center
of their universal enveloping algebras [5]. The non-linearity comes from the fact that these relationships are
between the elements of different orders and the non-linearly independent ones are determined by the Betti
numbers [6]. A problem here is to determine the number of linearly independent elements of the same order.
In two subsequent works [7], we studied this problem for Ay Lie algebras and give a method which is based
on explicit construction of Casimir eigenvalues. This will be extended here to Fg Lie algebra.

Ey is the biggest one of finite dimensional Lie algebras and besides its own mathematical interest it plays
a striking role in high energy physics. It provides a natural laboratory to study the structure of E1g hyperbolic
Lie algebra [8] which is seen to play a key role in understanding the structure of infinite dimensional Lie
algebras beyond affine Kac-Moody Lie algebras. There are so much works to show its significance in string
theories and in the duality properties of supersymmetric gauge theories. This hence could give us some
insight to calculate higher order cohomologies of Eg Lie algebra. It will be seen in the following that this
task is to be simplified to great extent when one uses a method based on explicit calculations of Casimir
eigenvalues.

It is known that, beside degree 2, FE5 Betti numbers give us non-linearly independent Casimir elements
for the degrees 8,12,14,18,20,24,30. We must therefore calculate the Casimir eigenvalues for all these degrees.
In the present state of work, to give only the results for 8th and 12th orders would be more instructive. This
will be possible in terms of one of the maximal subalgebras of Es, namely Ag. Although our method [7] for
Ap Lie algebras is previously presented, the calculations still need some special care for 8th and 12th orders.
These are investigated in sections II and III. To this end, we especially emphasize our second permutational
lemma to express the weights of an Eg Weyl orbit and Ag duality rules without which the calculations
will be useless. In section IV, we show that the calculations find an end in the form of decompositions in
terms of some properly chosen Ag basis functions . The remarkable fact here is that the coefficients in these
decompositions are constants and this shows us that the dependence on irreducible representations of Eg Lie
algebra are contained in these Ag basis functions solely. For 12th order, the results of our calculations are
given in three appendices because they are comparatively voluminous than 8th order calculations.

II. WEIGHT CLASSIFICATION OF Eg WEYL ORBITS

We refer the excellent book of Humphreys [9] for technical aspects of this section though a brief account
of our framework will also be given here. It is known that the weights of an irreducible representation R(A™)
can be decomposed in the form of

R(AT) =TI(A") +> m(\T <AT) () (I1.1)

where AT is the principal dominant weight of the representation, A*’s are their sub-dominant weights and
m(AT < A1)’s are multiplicities of weights AT within the representation R(A™). Once a convenient definition
of eigenvalues is assigned to IT(AT), it is clear that this also means for the whole R(A™) via (II.1).

In the conventional formulation, it is natural to define Casimir eigenvalues for irreducible representations
which are known to have matrix representations. In ref(7), we have shown that the eigenvalue concept can
be conveniently extended to Weyl orbits of Ay Lie algebras. The convenience comes from a permutational
lemma governing Ay Weyl orbits. This however could not be so clear for Lie algebras other than Ay. We
therefore give in the following a second permutational lemma. To this end, it is useful to decompose Eg
Weyl orbits in the form of

o= Y IHeh) (I1.2).

oten(A+)



where
Y (A1) is the set of Ag dominant weights participating within the same Fs Weyl orbit II(AT) .

If one is able to determine the set X(AT) completely, the weights of each particular As Weyl orbit II(c™)
and hence the whole TI(AT) are known. We thus extend the eigenvalue concept to Eg Weyl orbits just as in
the case of Ay Lie algebras.

It is known, on the other hand, that elements of ¥ (AT) have the same square length with the Fjg
dominant weight AT. It is unfortunate that this remains unsufficient to obtain the whole structure of the
set X(AT). This exposes more severe problems especially for Lie algebras having Dynkin diagrams with
higher degree automorphisms, for instance affine Kac-Moody algebras. To solve this non-trivial part of this
problem, we introduce 9 fundamental weights p; of Ag, via scalar products

1
Ii(ILL],ILLJ)E(S]J—g ) I,J:1,2,..9 (113)

The existence of (., .) is known to be guaranteed by As Cartan matrix. The fundamental dominant weights
of Ag are now expressed by

aizzuj . i=1,2,.8. (I1.4)
j=1

To prevent misconception, we list the main quantities which take place in the following discussions:

At . AT — dominant weights of Fjg
A; — fundamental dominant weights of EFg , i=1,2,.. 8
o — dominant weights of Ag
0; — fundamental dominant weights of Ag , i=1,2,.. 8
uy — fundamental weights of Ag , I=1,2, ... 9

The correspondence Eg <+ Ag is now provided by

A =01 + 03

Ao =09 + 2 03
)\3:0'3+30'8
M=o04+40
PO (I1.5)
A5 =05+ 5 oy
A6 = 06 + 3 03
)\7:0'7—|—0'8
)\8:308
with

8

AP=N ", ezt (I1.6)
1=1

Z7T here is the set of positive integers including zero. It is clear that this last relation turns out to be

8
At = qu . G eZT. (I1.7)

=1

in view of (II.5) and hence Eg <+ As. By comparison between (I1.6) and (I1.7), note here that elements of
(A1) are dominant weights for Ag but not for Eg.
It is clear that we only need here to know the weights of the sets (\;) for i=1,2, .. 8 explicitly. For
instance,
E(Al) = (0’1 + o3 , 03, 0’6)



for which we have the decomposition
(A1) = II(0y + 08) ® (03) ® II(06) (I1.8)

of 240 roots of Eg Lie algebra. Due to permutational lemma given in ref(7), As Weyl orbits here are known
to have the weight structures

H(Ul + 08) = (:ufl +pr, s+ pry s+ prg + pr, + :u]s)
H(U3) = (/1’11 + pr, + Mla) (119)
W(oe) = (ur, + pr, + prs + pry + pirs =+ furg)

where all indices are permutated over the set (1,2, .. 9) providing no two of them are equal. Note here by
(I1.4) that

o1+ 08 = p1 + p2 + p3 + pg + ps + e + p7 + us
o3 = p1 + p2 + p3 (11.10) .
06 = {1+ p2 + H3 + pa + s + U

The formal similarity between (I11.9) and (I1.10) is a resume of the first permutational lemma. Now, we are
ready to state our second permutational lemma:

For a dominant weight A", the set X(\") of A3 dominant weights is specified by

DAt = iri (). (IT.11)

together with the equality of square lengths.

In addition to ¥ (A1) given above, the other 7 sets ¥();) have respectively 7,15,27,35,17,5 and 11 elements
for i=2,3, .. 8 and they are given in appendix(1). It is therefore clear that the weight decomposition of any
Es Weyl orbit is now completely known in terms of Ag Weyl orbits in the presence of both of our lemmas.

III. DUALITY RULES FOR Ag

In this section, we present some rules which we call Ag Dualities in calculating Es cohomology. They
are however similarly generalized for Lie algebras other than Ag. It will be seen in the following that they
are of crucial importance in calculating Eg cohomology relations higher than degree 9.

We start by expressing an Ag dominant weight o in the form

8
i=1

To prevent repetitions, we reproduce here the main definitions and formulas of ref(7) for Ag. The eigenvalues
of a Casimir operator of degree M then are known to be defined by the aid of the formal definition

chiu(ot)= > (WM (I11.2)
pweEll(ot)

for a Weyl orbit II(c"). Our way of calculation the right hand side of (IIL.2) is given in appendix(2). To
this end, we need to define the following generators:

9
n(M) = 3™ (I11.3)
I=1
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It is also convenient to define the following ones which we would like to call K-generators:
K(M) =Y (k)™ . (I11.4)

We remark here by definition that p(1) = 0 and hence
(M =0, M=1,2,.910,... (I11.5)

It can be readily seen that (IIL.5) is fulfilled for M=23, .. 9 without any other restriction. It gives rise

however to the fact that , for M > 10, all the generators u(M) are non-linearly depend on the ones for

M=2,3, .. 9. These non-linearities are clearly the reminiscents of Ag cohomology. We therefore call them Ag

Dualities. It will be seen that the cohomology of Eg Lie algebra will be provided by these Ag dualities.
The first example is

u(10) = é (25200 14(2) 11(8) + 19200 11(3) p(7) + 16800 11(4) u(6)
— 8400 u(2)? u(6) — 13440 u(2) u(3) 1(5) + 8064 14(5)% + 2100 u(2)3 p(4) - (I11.6)
— 5600 1£(3)? p1(4) — 6300 (2) 12(4)* + 2800 u(2)? w(3)* — 105 w(2)*)

A/—\

It is seen that p(10) consists of p(10)=11 monomials coming from the partitions of 10 into the set of numbers
(2,3,4,5,6,7,8,9). We also have p(8)="7, p(9)=8, p(11)=13, p(12)=19 and these are the maximum numbers
of monomials for corresponding degrees. We thus obtain the following expressions:

p(1l) = 69530 (—3465 p(2)* u(3) + 12320 p(2) w(3)® + 41580 w(2)? w(3) p(4)
— 41580 11(3) pu(4)? + 16632 1(2)? u(5) — 44352 1(3)? u(5)
— 99792 1(2) p(4) u(5) — 110880 u(2) w(3) wu(6) + 133056 1(5) p(6)
— 71280 (2)? p(7) 4 142560 1(4) p(7) + 166320 p(3) u(8) + 221760 u(2) p(9) )
and
w(12) = ﬁ (1322560 1(3) w(9) + 136080 11(2)? 1u(8) + 272160 p(4) p(8) + 248832 1u(5) p(7)

— 60480 11(2)* 11(6) — 80640 (3)? 1(6) + 120960 1(6)* — 72576 11(2)* 1(3) pu(5)
— 145152 p(3) pu(4) pu(5) + 17010 p(2)* p(4) — 34020 1(2)? u(4)?
— 22680 u(4)* + 20160 1(2)* 1u(3)? + 4480 u(3)* — 945 1(2)°)

IV.DECOMPOSITIONS OF INVARIANT POLINOMIALS IN THE Ag BASIS
Let us start with the decomposition

7
chg(AY) = Z (IV.1)

where 7 generators T'(«) signify monomials

w(8) , w(2)u(6) , u(3)u(d) , w(4)?, p(H)u(2)?, w3)’u2) , u2)*

which are known to exist because p(8)=7. One must stress in (IV.1) that coefficients Q,(A™) are assumed
to be defined by comparison of (IV.1) with (II1.2). These 7 monomials play a prominent role in expressing
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eigenvalues of an 8th order Casimir operator of Eg Lie algebra because they allow us to define the following
invariant polinomials:

Qua(AT) dimR(A\1)
Qa(A1) dimR(AT)

where dimR(A™) is the dimension of representation R(A1). An important notice is the fact that we do not
need the Weyl dimension formula here. This will be provided by orbital decomposition (II.1) providing the
sets 2(AT) are known for each particular subdominant A* of A™. Let us recall from ref(7) that dimensions
of Ag Weyl orbits are calculated by counting permutations. In definition (IV.2) of invariant polinomials, the
fundamental representation R(A1) of Fs is taken to be reference representation, i.e. all our expressions for
Casimir eigenvalues are to be given by normalizing with respect to fundamental representation.

Explicit calculations for these 7 invariant polinomials P,(A™) show that we can find only 2 different
polinomials the following one of which comes from the monomial 1(2)*:

Pa(A) Pa(M) (1V.2)

Pi(8,AT) =729 O(8,A) — 71757069294212 . (IV.3)
Only the following one is obtained for all other monomials:

Po(8,AT) = 68580 O(8, AT
— 42672 O(6,AT
— 42672 6(5, AT

)
( ) 0(2,A7)
(5,AT)
— 13335 O(4,A™)?
(4,A7)
(3,AT)

O(3,A7)

V4
+13335 6(4,A") O(2,AT)? (Iv.4)

+ 17780 O(3,A1)? O(2,A™)
—939 6(2,AT)?
+ 385526887200

The functions ©(M, A1) can be considered here as Ag basis functions which are defined by
9
OMAT)=> "W (AT)YM | M=1.2,.. (IV.5)
=1

where
01 = K(AT + pu, pr) (IV.6)

pw here is the Weyl vector of Eg Lie algebra. We notice that As dualities are valid exactly in the same
way for basis functions © (M, A™) because ©(1, A1) = 0. This highly facilitates the work by allowing us to
decompose all invariant polinomials P, (A™) in terms of @(M, AT)’s but only for M=2,3,..9.

As in the similar way with Ag basis functions defined above, the two polinomials P; and P; can be
considered as FEg basis functions in the sense that for any 8th order Casimir operator of Eg the eigenvalues
can always be expressed as linear superpositions of these Fg basis functions. What is really significant here
is the allowance of obtaining the decompositions (IV.3) and (IV.4) with coefficients which are constant for all
irreducible representations of Fg Lie algebra. In other words, beside constant coefficients, Fg characteristic
is reflected by Ag basis functions.

Es cohomology manifests itself here by the fact that we have 2 polinomials P; and P, as Eg Basis
functions in spite of the fact that we have 7 polinomials from the beginning. As will be summarized in
appendix(3), the same considerations lead us for degree 12 to 19 different polinomials which are known to
exist from the beginning. It is however seen that the cohomology of Eg dictates only 8 invariant polinomials
for degree 12.

Careful reader could now raise the question that is there a way for a direct comparison of our results in
presenting the Fg basis functions

P.(8, A1) for a=1,2
P,(12,A") for a =1,2..8
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A simple and might be possible way for such an investigation is due to weight multiplicity formulas which
can be obtained from these polinomials. The method has been presented in another work [10] for Ay Lie
algebras and it can be applied here just as in the same manner. This shows the correctness in our conclusion
that any Casimir operator for Fg can be expressed as linear superpositions of Fg basis functions which are
given in this work. An explicit comparison has been given in our previous works but only for 4th and 5th
order Casimir operators of Ay Lie algebras and beyond these this does not seem to be tractable in practice.

As the final remark, one can see that the method presented in this paper are to be extended in the same
manner to cases F7 and G5 in terms of their sub-groups A7 and As.
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APPENDIX.1

The Weyl orbits of Eg fundamental dominant weights \; (i=1,2, .. 8) are the unions of those of the
following Ag dominant weights:

YXMN)=2o14+07, 01+03+08, 01 +06+ 03,

o2+ 04, 02+ 208, 03+ 06, 05+ 07)

¥(X3) = (03 + 308 , 09 + 03+ 205 , 02 + 06 + 208 ,
301+ 06, 04+ 207, 01 +03+0¢+0s, 201 +03+ 07,
o1+ 05 +0o7r+o0s, 201 +06+07, 01 +02+04+0s,
o1+ 204 , 200+ 05, 205+ 08, 02+ 04+ 06, 03+ 05 + 07)

Y(M\y) = (04 + 40 , 203+ 308 ,03 + 06 + 3058 ,
01+ 04+ 207+ 08, 02+ 03+ 0¢+ 208, 09 +05+ 07+ 203,
o3+ 307 , 209+ 04 + 208 , 401 + 05
201+ 03+ 0¢+07, 201 + 204+ 08, 01 + 209+ 05 + 03,
01+ 205 + 208 , 302 +0¢ , 301+ 03 + 0¢ ,
03+ 04+ 207 , 201 4+ 05 + 207 , 01 + 02 +04 +0g + 03g ,
301+ 206, 200 +02+04+07, 01 +03+ 05+ 07+ 03,
oo+ os+o5+o07, 304, 03+ 205+ 0s, 01+ 204+ 06, 200+ 05+ 06, 305)

Y(X5) = (05 + bos , 04+ 06+ 405, 02 + 04 + 207 + 205 ,
203 + 0¢ + 308 , 09 + 407 , 03+ 05 + 07 + 30%
o1+ 03+ 307 +0s, boy+ 04, 203+ 307,
201 + 04+ 307, 309 + 05 + 208 , 02 + 205 + 30y,
01+ 309 +0¢+0s, 01 +03+ 04+ 207+ 0g, 209+ 04+ 0¢ + 203 ,
409 4+ 07 , 03 + 03+ 05 + 07 + 205 , 302 + 206 ,
301+ 03+ 206 , 301 + 204+ 07, 201 + 202 + 05 + 07,
o1+09+04+05+07+0s, 401 +03+05, 201 +02+ 04+ 06+ 07,
01+ 03+ 205 4+ 208, 301 +02+ 04+ 06, 02+ 204 + 207,
201 + 03+ 05 + 207 , 201 + 204 + 06 + 08 , 01 + 209 + 05 + 0 + 0g ,
304+ 06, 01+ 204+ 05+ 07, 209+ 205 + 07, 02+ 04+ 205+ 05, 03+ 305)

¥(Xe) = (06 +30s , 04+ 07+ 205, 307,
o9 + 207 +0g, 01 +03+ 207, 209+ 0¢ + 03,
o1+ 209 +07, 00 +04+07+0s, 302, 301 +03, 03+ 05 + 203,
201 +09+05, 01+04+05+0s, 200 +04+ 06, 204+ 07,

01+0'2+0'5+0'7,02+2U5)
Y(M\)=(o7r+0s,00+07, 01+02, 04+0s, 01+05)
E()\g) = (3Ug, o3 +o07+0s, 301, 205+ 0y,

o5 + 208 , 01 + 207, 01+ 092+ 05,

o1+o04+07, 201 +04, 02+05+0s, 04+05)
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As an example of (I1.11), let us construct the set X(A; 4+ A7) from (A1) and X()\7) in view of our second
lemma. The lemma states that elements o € 3(A; + A7) are to be chosen from 15 elements of (A1) @ X (A7)
providing the conditions

K(O’, 0') = Ii(/\l + A7, A+ )\7)

In result, one has only the following 13 elements:

YA+ A7) = (01 + 07+ 208,
01+ 02 +o07+ 038,
201 + 092 + 03,
o1+ 04 + 20%
06 +07 + 03,
201 4+ 05 + 03
02+ 03+ o7,
01+ 02+ 03,
03+ 04+ 03,
02 + 06 + 07,
04+ 06 + 038,
01+ 03+ 05,
o1+ 05 +0g) -

APPENDIX.2

Let us first borrow the following quantities from ref(7):

Qs(o™) = 40320 K(8) u(8) +
20160 (
35 K (4,4) p(4,4) + 14 K(5,3) u(5,3) + 7 K(6,2) u(6,2) +2 K(7,1) pu(7,1) ) +
40320 (
20 K(3,3,2) u(3,3,2) + 15 K(4,2,2) u(4,2,2) +
5 K(4,3,1) n(4,3,1)+3 K(5,2,1) pu(5,2,1) +2 K(6,1,1) u(6,1,1) ) +
13440 (
540 K(2,2,2,2) 1(2,2,2,2) + 30 K(3,2,2,1) 11(3,2,2,1) +
40 K(3,3,1,1) p(3,3,1,1) + 15 K(4,2,1,1) p(4,2,1,1)+ 18 K(5,1,1,1) pu(5,1,1,1) ) +
483840 (
3K(2,2,2,1,1) n(2,2,2,1,1) + K(3,2,1,1,1) p(3,2,1,1,1) + 2 K(4,1,1,1,1) u(4,1,1,1,1) ) +
967680 (
3K(2,2,1,1,1,1) (2,2,1,1,1,1) + 5 K(3,1,1,1,1,1) u(3,1,1,1,1,1) ) +
29030400 K (2,1,1,1,1,1,1) p(2,1,1,1,1,1,1) +

3 ) 3 ) 3 )

1625702400 K(1,1,1,1,1,1,1,1) p(1,1,1,1,1,1,1,1)

3 ) 3 ) 3 ) 3
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Q12(AT) = 40320 K (12) p(12) +
5040 (
1848 K (6,6) u(6,6) + 792 K(7,5) u(7,5) + 495 K (8,4) u(8,4) +
220 K(9,3) p(9,3) + 66 K(10,2) p(10,2) +12 K(11,1) p(11,1) ) +
95040 (
1575 K (4,4,4) ju(4,4,4) + 210 K (5,4,3) u(5,4,3) + 252 K(5,5,2) u(5,5,2) +
280 K (6,3,3) 1(6,3,3) + 105 K (6,4,2) 11(6,4,2) + 42 K(6,5,1) u(6,5,1) +
60 K(7,3,2) u(7,3,2) + 30 K(7,4,1) u(7,4,1) + 45 K(8,2,2) u(8,2,2) +
15 K(8,3,1) u(8,3,1) +5 K(9,2,1) p(9,2,1) + 2 K(10,1,1) p(10,1,1) ) +

95040 (

11200 K(3,3,3,3) 1(3,3,3,3) +

700 K(4,3,3,2) u(4,3,3,2) + 1050 K (4,4,2,2) 1u(4,4,2,2) +
350 K(4,4,3,1) pu(4,4,3,1) + 420 K(5,3,2,2) u(5,3,2,2) +
280 K(5,3,3,1) u(5,3,3,1) + 105 K (5,4,2,1) u(5,4,2,1) +
168 K (5,5,1,1) u(5,5,1,1) + 630 K(6,2,2,2) u(6,2,2,2) +

70 K(6,3,2,1) u(6,3,2,1) + 70 K(6,4,1,1) u(6,4,1,1) +

(6,
60 K(7,2,2,1) u(7,2,2,1) +40 K(7,3,1,1) u(7,3,1,1) +
15 K(8,2,1,1) u(8,2,1,1) +10 K(9,1,1,1) pu(9,1,1,1) ) +
380160 (
1260 K(3,3,2,2,2) u(3,3,2,2,2) +
420 K(3,3,3,2,1) 11(3,3,3,2,1) + 1890 K (4,2,2,2,2) 1u(4,2,2,2,2) +
105 K(4,3,2,2,1) 1(4,3,2,2,1) + 140 K(4,3,3,1,1) u(4,3,3,1,1) +
105 K(4,4,2,1,1) u(4,4,2,1,1) + 189 K(5,2,2,2,1) u(5,2,2,2,1) +
42 K(5,3,2,1,1) pu(5,3,2,1,1) + 63 K(5,4,1,1,1) u(5,4,1,1,1) +
42 K(6,2,2,1,1) pu(6,2,2,1,1) + 42 K(6,3,1,1,1) u(6,3,1,1,1) +
18 K(7,2,1,1,1) u(7,2,1,1,1) + 18 K(8,1,1,1,1) p(8,1,1,1,1) )
570240 (
56700 K(2,2,2,2,2,2) p(2,2,2,2,2,2) +
1260 K(3,2,2,2,2,1) u(3,2,2,2,2,1) + 280 K(3,3,2,2,1,1) u(3,3,2,2,1,1) +
840 K(3,3,3,1,1,1) pu(3,3,3,1,1,1) + 315 K(4,2,2,2,1,1) p(4,2,2,2,1,1) +
105 K(4,3,2,1,1,1) 1(4,3,2,1,1,1) 4+ 420 K(4,4,1,1,1,1) u(4,4,1,1,1,1) +
126 K(5,2,2,1,1,1) u(5,2,2,1,1,1)+ 168 K(5,3,1,1,1,1) u(5,3,1,1,1,1) +
84 K(6,2,1,1,1,1) u(6,2,1,1,1,1)+ 120 K(7,1,1,1,1,1) u(7,1,1,1,1,1) ) +
79833600 (
90 K(2,2,2,2,2,1,1) u(2,2,2,2,2,1,1) +
9 K(3,2,2,2,1,1,1) u(3,2,2,2,1,1,1)+ 8 K(3,3,2,1,1,1,1) u(3,3,2,1,1,1,1) +
6 K(4,2,2,1,1,1,1) 1(4,2,2,1,1,1,1) + 10 K(4,3,1,1,1,1,1) pu(4,3,1,1,1,1,1) +
6 K(5,2,1,1,1,1,1) u(5,2,1,1,1,1,1)+ 12 K(6,1,1,1,1,1,1) p(6,1,1,1,1,1,1) ) +
479001600 (
36 K(2,2,2,2,1,1,1,1) u(2,2,2,2,1,1,1,1) +
10 K(3,2,2,1,1,1,1,1) p(3,2,2,1,1,1,1,1) + 40 K(3,3,1,1,1,1,1,1) p(3,3,1,1,1,1,1,1) +
15 K(4,2,1,1,1,1,1,1) u(4,2,1,1,1,1,1,1) + 42 K(5,1,1,1,1,1,1,1) u(5,1,1,1,1,1,1,1) )

+
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In all these expressions, the so-called K-generators are to be reduced to the ones defined by (II1.3) for
which the parameters k; are determined via (II1.1) for a dominant weight o which we prefer to suppress
from K-generators. The reduction rules can be deduced from definitions given also in ref(7). The left-hand
side of (III.2) can thus be calculated from

Ch]\4(0’+) = é dzml'[(o+) QM(U+)

with which we obtain Es Weyl orbit characters. The dimension of a Weyl orbit II(¢™) is the number of its
elements and we show this number by dimII(c™). Once again, we stress that both explicit forms and also
the number of these weights are known due to permutational lemma given in ref(7).

APPENDIX.3

We now give the results of our 12th degree calculations. Explicit dependences on AT will be suppressed
here. It will be useful to introduce the following auxiliary functions in terms of which the formal definitions
of Eg basis functions will be highly simplified:

Wi(8) = 68580 O(8) — 42672 O(2) O(6) —
42672 O(3) O(5) — 13335 O(4)?
13335 O(2)% 6(4) + 17780 6(2) O(3)> — 939 6(2)*
Wa(8) = 76765890960 O(8) — 47741514624 6(2) 6(6) —
47569228416 O(3) O(5) — 14950629660 O (4)?
14921466630 O(2)? O(4) + 19832476160 O(2) O(3)* — 1050561847 O(2)*
Wi (12) = 302400 O(3) O(9) — 56700 O(4) O(8) —
51840 O(5) O(7) — 158400 6(2) 6(3) 6(7) + 30240 6(6)* —
168000 6(3)% O(6) + 33264 6(2) O(5)* — 80640 O(3) 6(4) O(5) +
16275 ©(4)3 492400 O(2) O(3)? O(4) + 19600 O(3)*

Wo(12) = 42338419200 O(3) O(9) — 7938453600 6(4) 6(8) —
250343238600 O(2)% O(8) — 7258014720 O(5) O(7) —
22177267200 6(2) O(3) O(7) + 4233841920 O(6)* —
23521344000 6(3)? 6(6) + 156357159840 O(2)* O(6) +
4657226112 6(2) 6(5)? — 11290245120 O(3) O(4) O(5) +
160591001760 ©(2)? O(3) O(5) + 2278630200 O(4)* +
48089818350 O(2)? O(4)% + 12936739200 6(2) 6(3)? 6(4) —
48806484300 O(2)* O(4) + 2744156800 O(3)* —

66618900600 6(2)* O(3)? + 3440480295 O(2)°

Ws(12) = 1976486400 6(3) O(9) — 370591200 6(4) 6(8) +
63622800 6(2)? 6(8) — 338826240 O(5) O(7) —
1035302400 ©(2) O(3) O(7) + 197648640 O(6)*
1098048000 O(3)? O(6) — 12136320 O(2)* 6(6) +
217413504 6(2) 6(5)% — 527063040 6(3) 6(4) 6(5) +
185512320 6(2)% O(3) O(5) + 106373400 6(4)% —
39822300 O(2)% O(4)* 4 603926400 O(2) 6(3)* O(4) +
6366150 O(2)* O(4) + 128105600 6(3)*
63571200 O(2)® O(3)% — 274935 0(2)°
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Wy(12) = —1501985020838400 O(3) O(9) + 192772901311200 6(4) O(8) +
2407922770302000 6(2)? O(8) — 13295642434560 O(5) O(7) +
760428342950400 O(2) O(3) O(7) — 156516673824000 O(6)* +
33565287369600 O(2) O(4) O(6) + 883577458444800 O(3)* O(6) —
1515778400455200 O(2)% 6(6) — 53070803904384 O(2) O(5)? +
579544204861440 O(3) O(4) 6(5) — 1696086939738240 6(2)? O(3) O(5) —
47654628701400 6(4)® — 461057612469300 O(2)* 6(4)* —
463327486742400 O(2) O(3)* O(4) +472701971331450 O(2)* O(4) —
111245008649600 6(3)* + 684206487048000 6(2)* O(3)* — 33351005297925 O(2)°

It is first seen that the expression (IV.4) can be cast in the form
Py(8) = Wi (8) + 385526887200 .

Let us further define

A = ( 0(2) —620) ( —105 O(2)° + 341250 O(2)* — 443786280 O(2)* +
288672359200 O(2)2 — 93922348435072 O(2) + 12228055880335360 )

with the remark that the square length of Eg Weyl vector is 620. At last, 8 basis functions of Eg will be
expressed as in the following:

P(12) = Wi (12) +
105

1392517035128
2327783 Wa(8) O(2)% +

1641651348800 W1(8) ©(2)% +

1853819288565353101504512 ©(2)% —
5646385058438400 W1 (8) ©(2) —
2457714965901036308812800000 O (2) +
1878213525838940376 YV1(8) +
a74462162108792 P12(0) +

814849980464400425555898009600 )

Py(12) = Wi (12) +
105

6580376
11 Wa(8) 6(2)% -

13946970 Wi (8) ©(2)* —
717386789108493504 ©(2)% +
2185025300 W1(8) 6(2) +
951080970408987600000 ©(2) —
726826815792 W1(8) —

315043889595739569446400 )
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P (12) _ 10742925608415 Aqo + 6983349 P (12) + 3884320 P (12)
3 = - 12 - 11 - 12
467309767 10867669 10867669

2898884687985 39572311 198360272
Py(12) = 2005884087980 |y ST p (1) 4 1800272 p(19)
487195289 237932583 237932583

511567886115 2327783 170861240
P5(12) = —SLLOTSSOUIS A 2927783 p (19) 4 110861240 p (q9)
1063875427 173189023 173189023

P (12) __ 2557839430575 Aqo + 11638915 P (12) 308792 P (12)
6 = 12 - 11 - 172
69599327 11330123 11330123

Py(12) = — LTOMSTO014025 11638915 p (1) | 20039184

1362158257 31678099 31678099

P (12)

26924625585 2327783 28425408
Py(12) = — 20924029585 |, 4 2327783 p (1) 4 25420408 p (19)
9942761 30753191 30753191

It is seen that the generator Ais plays the role of a kind of cohomology operators in the sense that
6 generators P,(12) (for a = 3,4, ... 8) will depend linearly on the first 2 generators P;(12) and P»(12)
modulo Ajs. Tt is therefore easy to conclude that all our 8 generators P,(12) (for « = 1,2, .. 8) are linearly
independent due to the fact that there are no a linear relationship among the generators P;(12) and P»(12)
modulo Alg.



