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1. Introduction

The computation of low energy effective actions in supersymmetric string compactifi-

cation is an interesting problem from several points of view. First, the low energy action

summarizes many important aspects of the physics of the compactified model. Second, the

quantum corrections in effective actions involve interesting automorphic functions. Third,

these quantum corrections often serve as generating functions for enumerative problems

in geometry. Thus, the computation of a given physical quantity in two dual string de-

scriptions often leads to striking predictions in enumerative geometry. A famous example

of this is the counting of rational curves in a Calabi-Yau threefold provided by mirror

symmetry. In this paper we compute a quantum correction involving higher genus curves

in a Calabi-Yau threefold using heterotic/type II string duality and use the result to make

some mathematical predictions.

Specifically, we consider the well-known low energy coupling Fg of low energy effective

d = 4,N = 2 supergravity, introduced and studied in [1][2][3]. Physically, this coupling

enters the effective action in the schematic form

∫
Fg(t, t̄)T

2g−2R2 + · · · (1.1)

where g ≥ 1, T is the graviphoton field strength, R is the Riemann curvature, and t, t̄ are

vectormultiplet scalars. If one treats t, t̄ as independent then the Wilsonian coupling is

obtained by sending t → ∞ holding t̄ fixed [2], leaving the (anti-) holomorphic coupling

F hol
g (t̄).

The mathematical formulation of Fg depends on the underlying string theory that

gives rise to the low energy supergravity. In type II compactification on a Calabi-Yau 3-

fold X the expression is exactly given by the string tree level result. In type IIA compact-

ification the vectormultiplet scalars are complexified Kahler moduli and the holomorphic

coupling F
hol

g (t) is given, roughly, by a sum over holomorphic genus g curves in X [1][2][3].

We say “roughly” because issues such as curve degeneration, multiple cover formulae, and

the careful treatment of families of curves has not yet been adequately discussed. Indeed,

one of the motivations of the present paper is to provide some useful information for sorting

out these issues.

In heterotic compactification on K3×T 2, the effective coupling Fg(t, t̄) has an integral

representation coming from a one-loop diagram which is valid to all orders of perturbation

theory [3]. Suppose such a heterotic compactification is dual to a type II compactification

1



on a Calabi-Yau X . Under string duality Sheterotic is identified with a Kähler class of

X . Thus, given a heterotic/type II dual we can evalute a generating function for genus g

curves on X , at one boundary of complexified Kähler moduli space. This has been done

to some extent in [3]. In the present paper we extend the discussion of [3] by giving a

complete evaluation of Fg. Specifically, we will consider the rank four example discussed

in [4][5], and in many subsequent references. We compactify the heterotic E8 ×E8 theory

on K3 × T 2 and embed an SU(2) bundle on each E8 with instanton number 12. Then

we Higgs completely the remaining E7 × E7 symmetry and we obtain a model with 244

hypermultiplets and the four vector multiplets corresponding to the U(1)4 gauge symmetry

on the torus. In the semiclassical limit S → i∞, this is the 2-parameter y = (T, U) case,

with special loci corresponding to enhanced gauge symmetries. This model is dual to

a type IIA model compactified on the K3-fibered Calabi-Yau manifold X = X1,1,2,8,12
24 ,

which has h1,1 = 3, h2,1 = 243, therefore χ(X) = −480.

The result for Fg is naturally written as a sum of two terms

Fg = F deg
g + F nondeg

g (1.2)

given by the rather formidable expressions equations (4.21) and (4.40) below. From these

expressions we can extract some interesting results. First, the effective coupling is, in

contrast to other quantum corrections, continuously differentiable throughout all of moduli

space, having singularities only at the locus of enhanced gauge symmetry T = U . This is

hardly obvious from the chamber-dependent evaluation of the integral representation of Fg

we will give. Second, while the expressions for Fg are formidable, the (anti-) holomorphic

piece turns out to be relatively simple. It is given by an elementary polylogarithm Li3−2g.

The exact expression is given in equation (5.2) below. This is our main result. Using

the result (5.2) we may draw some conclusions about the “number” of genus g curves in

X = X1,1,2,8,12
24 . The variety X has a holomorphic map π : X → IP1 whose generic fibers

are K3 surfaces. Because we must take the limit S → i∞ we can only discuss curves in the

K3 fibers. Nevertheless, our result provides some nontrivial information. The comparison

of our result for F hol
g with known properties of Fg from [2] is carried out in section 6, and we

find good agreement. Moreover, we make some predictions for numbers of genus 2 curves

in the generic K3 fiber of X . Furthermore, a corollary of our discussion yields a prediction

for an intersection number on the moduli space Mg of genus g Riemann surfaces. Let cg−1
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be the Chern class of the Hodge bundle on Mg (see section 6 below for a definition). Then

we show that string duality predicts:
∫

Mg

c3g−1 = (−1)g−12(2g − 1)
ζ(2g)ζ(3− 2g)

(2π)2g
. (1.3)

This intersection number could in principle be calculated using 2D topological gravity,

but the computation appears to be tedious. We expect our result (5.2) to prove useful in

further investigations of the role of higher genus curves in quantum cohomology.

Finally, we discuss briefly the method of our computation. The integral representa-

tion of Fg from the heterotic one-loop computation was derived in [3][6]. Such one-loop

integrals have been evaluated in many papers in string theory. See, for some representative

examples, [7][8][9][10][11]. The method involves lattice reduction and the “unfolding tech-

nique” (also known as the “Rankin-Selberg method” in number theory, or as “the method

of orbits.”) The most systematic discussion of such integrals was given by Borcherds in

[12], generalizing the computation of [9]. Because we need the more general results, we

review the notation and results of [12] in section three.

2. The integral for Fg

The Fg couplings at one-loop have been computed in [6][3], in the semiclassical limit

S → i∞. It is useful to introduce a generating function for these couplings F (λ, T, U) =
∑∞

g=1 λ
2gFg(T, U). Specializing to the heterotic dual of IIA compactification on X1,1,2,8,12

24

the integral representation of this generating function is

F (λ, T, U) =
1

2π2

∫

F

d2τ

y

(
E4E6

η24

)∑

Γ2,2

q
1
2
|pL|2q

1
2
|pR|2

[(
2πiλη3

ϑ1(λ̃|τ)

)2

e−
πλ̃2

y

]
. (2.1)

In this equation, F denotes the fundamental domain for SL(2,ZZ), q = exp(2πiτ), y = Imτ ,

and the modular form E4E6/η
24 has the expansion

E4E6

η24
=

∑

n=−1

c(n)qn =
1

q
− 240− . . . . (2.2)

Notice that c(0) = χ(X)/2. The right and left moving momenta are regarded as complex

numbers, given by

pL =
1√

2T2U2

(n1 + n2T +m2U +m1TU),

pR =
1√

2T2U2

(n1 + n2T +m2U +m1TU),

(2.3)
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where T = T1 + iT2, U = U1 + iU2 is the decomposition into real and imaginary parts.

Finally, λ̃ = pRyλ/
√
2T2U2, and ϑ1(z|τ) is the Jacobi theta function with characteristics

(1/2, 1/2). We have slightly changed some of the conventions in [6] in order to match the

conventions of [9], since the present paper is an extension of the calculations of [9]. Notice

that in writing (2.1) we have momentarily introduced a term of zeroth order in λ, as in

[3]. Our goal is to give an explicit expression for the Fg terms by performing the integral

over the fundamental domain. The first step will be to extract the Fg term from (2.1) by

making an appropriate expansion of the modular forms. The resulting integral will involve

a generalized Siegel-Narain theta function with lattice vector insertions.

The modular form involving ϑ1(z|τ) can be written in terms of Eisenstein series:

2πη3z

ϑ1(z|τ)
= − exp

[
∞∑

k=1

ζ(2k)

k
E2k(τ)z

2k

]
. (2.4)

It is convenient to write (2.4) as follows. We introduce the covariant Eisenstein series

Ê2(τ) = E2 −
3

πy
, (2.5)

and the Schur polynomials:

exp
[ ∞∑

k=1

xkz
k
]
=

∞∑

k=0

Sk(x1, . . . , xk)z
k, (2.6)

which have the structure

Sk(x1, . . . , xk) = xk + . . .+
xk1
k!
. (2.7)

One can check that

(
2πiλ̃η3

ϑ1(λ̃|τ)

)2

e−
πλ̃2

y =

∞∑

k=0

λ̃2kP2k(Ĝ2, . . . , G2k), (2.8)

where we have introduced the more convenient normalized Eisenstein series

G2k = 2ζ(2k)E2k, (2.9)

and P2k is an almost holomorphic modular form of weight (2k, 0) given by

P2k(Ĝ2, . . . , G2k) = −Sk

(
Ĝ2,

1

2
G4,

1

3
G6, . . . ,

1

k
G2k

)
. (2.10)

4



We have, for instance,

P2(Ĝ2) = −Ĝ2, P4(Ĝ2, G4) = −1

2
(Ĝ2

2 +G4). (2.11)

The integral (2.1) can now be written as

F (λ, T, U) =

∞∑

k=0

λ2(k+1)

2π2(2T2U2)k

∫

F

d2τ

y
y2k

E6E4

η24
P2(k+1)

∑

Γ2,2

p2kR q
1
2
|pL|2q

1
2
|pR|2 . (2.12)

In this expansion, k = g − 1. We see that the integrals to be computed are of the form

Ik =

∫

F

d2τy2k−1Fk(τ)Θ, (2.13)

where

Fk(τ) =
E4E6

η24
P2(k+1)(Ĝ2, · · · , G2(k+1)) (2.14)

is a modular form of weight (2k, 0) and

Θ =
∑

Γ2,2

p̄2kR q
1
2
|pR|2q

1
2
|pL|2 , (2.15)

is a Siegel-Narain theta function of modular weight (1 + 2k, 1). Notice that (2.13) is

complex except for k = 0.

3. Review of the lattice reduction and unfolding technique

In this section we review the computation of a class of integrals called theta transforms

which were systematically evaluated in [12]. The technique to compute these integrals

is to perform a lattice reduction, i.e. to reduce the computation to a theta transform

on a smaller lattice. Proceeding iteratively, one can in principle compute the integral

over the fundamental domain in terms of quantities associated to the reduced lattices.

The integrals (2.13) that we want to compute have precisely the structure of the theta

transforms considered by Borcherds, so we will briefly review the notation and the results

used in [12] in order to apply them to this particular problem.

For simplicity we will restrict ourselves to self-dual lattices, although the results in

[12] apply to more general situations. Let Γ be an even, self-dual lattice of signature

(b+, b−), together with an isometry P : Γ ⊗ IR → IRb+,b− . The corresponding projections

on IRb+,0, IR0,b− will be denoted by P±. The inverse images of IRb+,0, IR0,b− decompose
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Γ ⊗ IR into the orthogonal sum of positive definite and negative definite subspaces. Let

p be a polynomial on IRb+,b− of degree m+ in the first b+ variables and of degree m− in

the second b− variables, and let ∆ be the (Euclidean) Laplacian in IRb++b− . With these

elements we construct a Siegel-Narain theta function as

ΘΓ(τ ;P, p) =
∑

λ∈Γ

exp

[
− ∆

8πy

](
p(P (λ))

)
exp

[
πiτ(P+(λ))

2 + πiτ(P−(λ))
2

]
. (3.1)

One can include shifts in the lattice Γ to obtain a more general theta function, but we will

not consider this case. Notice that (P−(λ))
2 ≤ 0.

As we have explained, the first step in computing the integral over the fundamental

domain, involving a theta function with the structure (3.1), is to perform a lattice reduc-

tion. This is done as follows. Let z be a primitive vector of Γ of zero norm, choose a

vector z′ in Γ with (z, z′) = 1, and let K = (Γ ∩ z⊥)/ZZz. This lattice, which has sig-

nature (b+ + 1, b− − 1), is the reduced lattice. The vectors in the reduced lattice will be

denoted by λK , in order to distinguish them from the vectors λ in the original lattice.

We now define “reduced” projections P̃ as follows: consider z± ≡ P±(z), and decompose

IRb± ≃ 〈z±〉 ⊕ 〈z±〉⊥. The projection on the orthogonal complement 〈z±〉⊥ is the reduced

projection P̃±. It can be explicitly written in terms of P± as

P̃±(λ) = P±(λ)−
(P±(λ), z±)

z2±
z±. (3.2)

Once this reduced projection has been constructed, we have to decompose the polynomial

involved in (3.1) with respect to this projection, according to the expansion

p(P (λ)) =
∑

h+,h−

(λ, z+)
h+

(λ, z−)
h−

ph+,h−(P̃ (λ)), (3.3)

where ph+,h− are homogeneous polynomials of degrees (m+ − h+, m− − h−) on P̃ (Γ⊗ IR).

Now we have to be more precise about the structure of the theta transform that we

want to compute. Consider the modular form

FΓ(τ) = yb
+/2+m+

F (τ) (3.4)

with weight (−b−/2 −m−,−b+/2−m+), constructed from the modular form F (τ) with

weights (b+/2+m+ − b−/2−m−, 0). We will assume that F (τ) is an almost holomorphic

form, i.e. it has the expansion

F (τ) =
∑

m∈Q

∑

t≥0

c(m, t)qmy−t (3.5)

6



where c(m, t) are complex numbers which are zero for all but a finite number of values of t

and for sufficiently small values of m. In particular, F (τ) can have a pole of finite order at

cusps. The theta transform considered in [12] has three ingredients: a lattice Γ together

with a projection P , a polynomial p(P (λ)), and the modular form F (τ), and it is given by

the following integral over the fundamental domain.

ΦΓ(P, p, F
Γ) =

∫

F

d2τ

y2
Θ(τ ;P, p)FΓ(τ). (3.6)

According to the results of [12], this integral can be evaluated by reducing the lattice.

The resulting expression involves two pieces. The first one is essentially another theta

transform but for the reduced lattice, and is given by

1√
2z2+

∑

h≥0

(
z2+
4π

)h

ΦK(P̃ , ph,h, F
K). (3.7)

The other contribution involves a sum over the reduced lattice K. There are two different

cases one has to consider when evaluating this contribution. When P̃+(λ
K) is different

form zero, one has
√

2

z2+

∑

h≥0

∑

h+,h−

h!

(2i)h++h−

(
−z

2
+

π

)h(
h+

h

)(
h−

h

)∑

j

∑

λK∈K

1

j!

(
− ∆

8π

)j

ph+,h−(P̃ (λK))

·
∑

l

ql(λ
K ,µ)

∑

t

2c(λ2/2, t)

(
l

2|z+||P̃+(λK)|

)h−h+−h−−j−t+b+/2+m+−3/2

·Kh−h+−h−−j−t+b+/2+m+−3/2

(
2πl|P̃+(λ

K)|
|z+|

)
,

(3.8)

where µ is the vector in K ⊗ IR given by

µ = −z′ + z+
z2+

+
z−
2z2−

. (3.9)

Kν(z) is the modified Bessel function, and it comes from an integral over the strip y > 0.

When P̃+(λ
K) = 0, the integral over the strip has to be regularized with a parameter ǫ.

Notice that P̃+(λ
K) = 0 in two sub-cases: when λK = 0, and when Γ is a lattice with

b+ = 1, as in this case the reduced projection will always be zero for any λK . For these

situations the last sum in (3.8) has to be substituted by

∑

t

c(λ2/2, t)

(
πl2

2z2+

)h−h+−h−−ǫ−j−t+b+/2+m+−3/2

· Γ(−h+ h+ + h− + j + t− b+/2−m+ + 3/2 + ǫ).

(3.10)
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This expression can be analytically continued to a meromorphic function of ǫ, with a

Laurent expansion at ǫ = 0. The contribution to the theta transform of (3.10) is given

by the constant term of this expansion. In general, the sum over l will give a Riemann ζ

function after analytic continuation. In order to extract the constant term at ǫ = 0 one

has to be careful with possible poles in ǫ and proceed as in dimensional regularization. We

will see examples of this in the computation of Fg.

An important remark concerning this result is that the theta transform will be given

by the above expressions only for sufficiently small z2+. For a fixed primitive vector z, the

value of z2+ depends on the projection we choose in our lattice, which in our case will be

given by the moduli (T, U) of the string compactification. This means that the answers

we will obtain for the integrals will be chamber-dependent, i.e. they will only be valid

in a region of moduli space. In general, to obtain the answer in some other chamber, we

have to use wall-crossing formulae, or we must choose some other null vector z̃ to perform

the reduction in such a way that the value of z̃2+ remains small in the chamber under

consideration.

We will refer to (3.7) as the contribution of the degenerate orbit, and to (3.8) as the

contribution of the nondegenerate orbit. One should notice, however, that the contribution

to (3.8) of the zero vector of the reduced lattice appears in the computations of [7][9][10]

from the contribution of the “degenerate orbit.” Also, the zero orbit will appear in (3.7)

after further reduction to the trivial lattice.

4. Computation of Fg

We will now apply this formalism to the problem of computing the integrals (2.13).

In our case, the lattice has signature (b+, b−) = (2, 2) and is given by

Γ2,2 = H(−1)⊕H(1) = 〈e1, f1〉ZZ ⊕ 〈e2, f2〉ZZ, (4.1)

where (e1, f1) = −(e2, f2) = −1. The projections give isometries P± : Γ2,2⊗ IR → IR2. We

want to construct the projections in such a way that

P+(λ) = pR, P−(λ) = pL, (4.2)

where we are identifying IR2 ≃C, and pR,L are given as complex numbers by (2.3). Notice

that (P−(λ))
2 = −|pL|2. The requirement (4.2) fixes the structure of the projections. We

8



can obtain explicit expressions for the projections of the basis as follows. Consider for

instance e1. As an element in the positive definite subspace of Γ2,2 ⊗ IR, P+(e1) will have

the general form

P+(e1) = x1e1 + y1f1 + x2e2 + y2f2. (4.3)

Using the fact that P± are orthogonal projectors, namely P 2
± = 0, P+P− = P−P+ = 0, we

obtain the equations

x1 + x2T + y2U + y1TU = 0, x1 + x2T + y2U + y1TU = 1. (4.4)

Solving for x1, x2, y1, y2 we obtain

P+(e1) =
1

2T2U2

{
−Re(TU)e1 − f1 + U1e2 + T1f2

}
, (4.5)

and similarly

P+(f1) =
1

2T2U2

{
−|TU |2e1 −Re(TU)f1 + |U |2T1e2 + |T |2U1f2

}
. (4.6)

Consider now the theta function in (2.14). The Laplacian in terms of the variables pR, pL

is given by

∆ = 4
( d

dpR

d

dpR
+

d

dpL

d

dpL

)
, (4.7)

therefore ∆(p2kR ) = 0 and we see that the theta function involved in the one-loop integral is

just the Siegel-Narain theta function for the projection given by (4.2)(4.5) and polynomial

p = (pR)
2k, which is homogeneous of degree 2k in the IRb+ variables. Therefore, m+ = 2k,

m− = 0. For each k we have an integral (2.13) with the structure (3.6) and

FΓ
k (τ) = y2k+1Fk(τ), (4.8)

where Fk(τ) is given in (2.14). We will denote the coefficients in the expansion (3.5) by

ck(m, t). Notice that, in this expansion, the terms of the form y−t come from the Ĝ2 in

the Schur polynomials. Therefore, according to (2.7), the range of t is 0 ≤ t ≤ k + 1.

To perform the lattice reduction, we have to choose a primitive null vector in Γ2,2. A

natural choice is z = e1, z
′ = −f1. It is easy to check that

(z+, λ) =
√
z2+Re(pR), (4.9)
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where

z2+ =
1

2T2U2
. (4.10)

According to our remarks in section 3, the answer obtained with the lattice reduction will

be valid for 1 ≪ T2U2. This choice of z is convenient for the decomposition in (3.3), as

one has

(pR)
2k = (Re(pR)− iIm(pR))

2k =
2k∑

h+=0

(z+, λ)
h+

ph+,0(λ), (4.11)

where the reduced polynomials are given by

ph+,0(λ) =

(
2k

h+

)
(−i)2k−h+

|z+|h+
(Im(pR))

2k−h+

. (4.12)

The reduced lattice is K = 〈e2, f2〉, and the reduced projection can be easily obtained

from (3.2) and (4.9):

P̃+(λ) = Im(pR), P̃−(λ) = Im(pL). (4.13)

We will now compute the integrals using the expressions (3.7)(3.8).

4.1. The degenerate orbit

First we compute the contribution of the degenerate orbit, which is now a theta

transform for the lattice K, with vectors of the form

pKR =
1√

2T2U2

(n2T +m2U), pKL =
1√

2T2U2

(n2T +m2U). (4.14)

Notice that the lattice K is Lorentzian, with (b+, b−) = (1, 1). According to (3.7), the new

theta transform involves the latticeK (together with the projection P̃ ) and the polynomial

p0,0(P̃ (λ
K)) = (−1)k(Im(pKR ))2k (remember from (4.12) that h− = 0), which is again

homogeneous of degrees (m+, m−) = (2k, 0). The modular forms involved in this theta

transform are then, according to (3.4),

FK
k (τ) = y2k+1/2Fk(τ). (4.15)

To evaluate the theta transform for K, we have to perform a further reduction to the

trivial lattice, using for instance the vector ẑ = e2, with

ẑ2+ =
T2
2U2

. (4.16)
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The norm of this vector is computed using the reduced projection P̃ . The polynomial

appearing in the new theta function can be decomposed again (with respect to the new

projection associated to ẑ) using (3.3):

(−1)k(Im(pKR ))2k =
(−1)k

|ẑ+|2k
(λK , ẑ+)

2k, (4.17)

therefore the reduced polynomial is a constant p̂2k,0 = (−1)k/|ẑ+|2k. For the new theta

transform we apply the result of section 3 again, and we have two contributions, corre-

sponding to degenerate and nondegenerate orbits for the reduction of K to the trivial

lattice. The degenerate orbit is simply a theta transform (3.7) for the trivial lattice. Be-

cause of the structure of the reduced polynomial, only the k = 0 integral will give a nonzero

contribution. From the definition (3.6) we then have that this theta transform is given by

Φ0(·, 1, F0) =

∫

F

d2τ

y2
E4E6

η24
P2(Ĝ2) = 16π3, (4.18)

where we have used that P2(Ĝ2) = −Ĝ2 and the general result [13]

∫

F

d2τ

τ22

(
Ĝ2(τ)

)n
F (τ) =

1

π(n+ 1)

[(
G2(τ))

n+1F (τ)

]

q0

. (4.19)

The theta transform for the zero lattice corresponds in fact to the contribution of the

A = 0 orbit in the usual unfolding technique.

To evaluate the contribution of the nondegenerate orbit, we have to use the expression

(3.10), as the reduced lattice is now trivial. The sum
∑

l>0 l
2(1+t−k)−ǫ can be analytically

continued to the Riemann zeta function ζ(2(1 + ǫ + t − k)), and it is easy to check that

there are no poles at ǫ = 0 (recall that the only pole of ζ(z) is at z = 1). Taking all this

into account one obtains,

Ideg
k = 16πU2δk,0 +

1

2k−1

k+1∑

t=0

ck(0, t)
t!

πt+1
T2

(
T2
U2

)t−k

ζ(2(1 + t− k)). (4.20)

Including the rest of the factors, and recalling that k = g − 1, we obtain the contribution

of the degenerate orbit to Fg:

F deg
g = 8π3U2δg,1 +

1

T 2g−3
2

g∑

t=0

cg−1(0, t)
t!

22(g−1) · πt+3

(
T2
U2

)t

ζ(2(2 + t− g)). (4.21)

Due to our choice of ẑ and to (4.16), the expression (4.20) is only valid in the chamber

T2 < U2. The result in the other chamber is obtained by interchanging T2 ↔ U2 in the

above formula.
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4.2. The nondegenerate orbit

Let’s now compute the contribution of the non-degenerate orbit. We will denote the

vectors in the reduced lattice K by r ≡ λK = ne2 +mf2. We first define the following

products:

r · y = nT +mU, r̂·y = Re(nT +mU) + i|Im(nT +mU)|. (4.22)

The action of the Laplacian on the reduced polynomial p̄h+,0(r) in (4.12) gives the sum

[k−h+/2]∑

j=0

∑

r∈K

(−1)ji2k−h+

(8π)j|z+|h+

(2k)!(Im(pKR ))2k−h+−2j

j!(2k − h+ − 2j)!h+!
. (4.23)

We have to consider the two different cases r = 0, r 6= 0. In the first case, we have to use

the expression (3.10). Notice that (4.23) vanishes when r = 0, unless 2k − h+ = 2j. This

forces h+ to be even, say h+ = 2s, where 0 ≤ s ≤ k, and j = k − s. We then find, for the

contribution of the zero vector,

Inondeg
k,r=0 =2

k∑

s=0

k+1∑

t=0

(−1)s22(s−2k)+t (2k)!

(2s)!(k− s)!

ck(0, t)

πt+1/2
|z+|2(t−k)

·
(

π

2z2+

)−ǫ

Γ(
1

2
+ ǫ+ s+ t− k)ζ(1 + 2ǫ+ 2(t− k)),

(4.24)

where the sum over l has been analytically continued again to a Riemann ζ-function.

According to Borcherds’s formula, we have to evaluate the constant term of the Laurent

expansion of this expression around ǫ = 0. The only possible pole is in the Riemann

ζ-function, and occurs when t = k. Otherwise the above expression is analytic at ǫ = 0.

To evaluate the constant term at ǫ = 0 when t = k, we expand in ǫ as in dimensional

regularization, using:

ζ(1 + 2ǫ) =
1

2ǫ
+ γE +O(ǫ),

Γ(
1

2
+ s+ ǫ) =Γ(

1

2
+ s)

[
ψ(

1

2
+ s) + ǫ

]
+O(ǫ2),

(
π

2z2+

)−ǫ

=1− ǫ log

(
π

2z2+

)
+O(ǫ2),

(4.25)

where γE is the Euler-Mascheroni constant and ψ(z) is the logarithmic derivative of the Γ

function. The constant term in the Laurent expansion can be easily evaluated using the

above expressions. To write the final answer, one notices that some of the sums on s that

12



appear in the result can be explicitly computed, using Γ(1/2+n) = π1/22−n(2n− 1)!! and

Γ(1/2− n) = (−1)nπ1/22n/(2n− 1)!!, with n ≥ 0. We have for instance,

k∑

s=0

(−1)s22s
(2k)!

(2s)!(k − s)!
Γ(1/2 + s) = π1/2δk,0, (4.26)

and the results turn out to be very different for k = 0 and k 6= 0. For k = 0 we have,

Inondeg
k=0,r=0 = c0(0, 0)

[
− log

(
π

2z2+

)
+ γE − 2 log 2

]
+ c0(0, 1)

2ζ(3)

π
|z+|2, (4.27)

and for k 6= 0,

Inondeg
k 6=0,r=0 =2

k−1∑

t=0

ck(0, t)

πt+1/2
ζ(1 + 2(t− k))|z+|2(t−k)

·
k∑

s=0

(−1)s22(s−2k)+t (2k)!

(2s)!(k− s)!
Γ(

1

2
+ s+ t− k)

+
ck(0, k)

23k · πk

k∑

s=0

(−1)s
(2k)!

s!(k − s)!
ψ(

1

2
+ s).

(4.28)

For nonzero vectors in K, we use (3.8). Taking into account that (λ, µ) = Re(r̂·y), we
obtain:

Inondeg
k,r 6=0 =

√
2

z2+

2k∑

h+=0

[k−h+/2]∑

j=0

∑

r 6=0

(−1)j+k+h+

(8π)j(2|z+|)h+

(2k)!(Im(pR))
2k−h+−2j

j!(2k − h+ − 2j)!h+!

·
∞∑

l=1

k+1∑

t=0

2ck(r
2/2, t)

(
T2U2l

Im(r̂·y)

)ν

lh
+

e2πilRe(r̂·y)Kν

(
2πlIm(r̂·y)

)
,

(4.29)

In this equation, ν = 2k − h+ − j − t − 1/2. Notice that this is always a half-integer,

therefore we can use the explicit expression for the modified Bessel function when s ≥ 0

Ks+1/2(x) =

√
π

2x
e−x

s∑

k=0

(s+ k)!

k!(s− k)!

1

(2x)n
. (4.30)

We will give now our final expression for the contribution of the nondegenerate orbit. We

define s as s+1/2 = |ν|, and we take into account thatKs(x) = K−s(x). We also introduce

the polylogarithm function,

Lim(x) =
∞∑

ℓ=1

xℓ

ℓm
. (4.31)
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Notice that for m ≤ 0 these functions are elementary: Li0(x) = x/(1− x), and

Lim(x) =
(
x
d

dx

)|m| 1

1− x
= m!

x|m|

(1− x)|m|+1
+ · · · , m < 0 (4.32)

We then see that (4.29) can be written as:

Inondeg
k,r 6=0 = 21−k

∑

r 6=0

k+1∑

t=0

2k∑

h=0

[k−h/2]∑

j=0

s∑

a=0

ck(r
2/2, t)

(−1)j+h+k

(4π)j+a

(2k)!

j!h!(2k − h− 2j)!

(s+ a)!

a!(s− a)!

· (sgn(Im(r · y))h(T2U2)
k−t(Im[r̂·y])t−j−aLi1+a+j+t−2k(e

2πir̂·y).

(4.33)

We will now begin to simplify the complicated expression (4.33). The nature of the

sum depends strongly on the sign of Im(r · y). If Im(r · y) > 0 then (4.33) vanishes for

g ≥ 3. The reason is that there is an unconstrained sum on h. For g = 1 we get:

Inondeg
0,r 6=0 = 2

∑

r 6=0

[
c0(r

2/2, 0)Li1(e
2πir̂·y) +

c0(r
2/2, 1)

T2U2
G(r̂·y)

]
, (4.34)

where the function G(x) is defined as:

G(x) = Im(x)Li2(e
2πix) +

1

2π
Li3(e

2πix). (4.35)

For g = 2 and Im(r · y) > 0 we get:

Inondeg
1,r 6=0 = −c1(r

2/2, 2)

π2T2U2
Li3(e

2πir̂·y). (4.36)

When Im(r · y) < 0 we get more complicated sums. For g = 2 we have a sum involving

polylogarithms Lik with index −1 ≤ k ≤ 3, but for g ≥ 3 the sum starts with a rational

function. The structure of (4.33) is, for Im(r · y) < 0 and g > 2:

g∑

t=0

cg−1(r
2/2, t)(T2U2)

g−1−tft(Im(r̂·y),Lin(e2πir̂·y)), (4.37)

where the polynomials ft are of the following form

ft =

Λ∑

p=0

a(t)p (Im(r̂·y))t−pLit+p+3−2g(e
2πir̂·y). (4.38)

In this equation, a
(t)
p are some numerical constants and Λ = min{t, 2g−t−3}. This implies

that the index of the polylogarithms is always less than or equal to zero.
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Putting all the contributions together, we find that the contribution to Fg from the

nondegenerate orbit is then, for F1

F nondeg
1 =

1

π2

∑

r 6=0

[
c0(r

2/2, 0)Li1(e
2πir̂·y) +

c0(r
2/2, 1)

T2U2
G(r̂·y)

]

+
c0(0, 0)

2π2

[
− log(T2U2) + γE − 2 log 2π

]
+
c0(0, 1)ζ(3)

2π2(T2U2)
.

(4.39)

It is interesting to notice that F1 is essentially given by the integral Ĩ2,2 of [9]. If we

explicitly compute the contribution of the degenerate orbit (4.21) for g = 1 (which gives

a piecewise polynomial in T2, U2), we find that F1 agrees with the result presented in [9],

after taking into account the different normalizations. Finally, for g > 1 we find

F nondeg
g>1 =

(−1)g−1

22(g−1) · π2

∑

r 6=0

g∑

t=0

2g−2∑

h=0

[g−1−h/2]∑

j=0

s∑

a=0

cg−1(r
2/2, t)

(2g − 2)!

j!h!(2g − h− 2j − 2)!

· (−1)j+h

(4π)j+a

(s+ a)!

a!(s− a)!
(sgn(Im(r · y))h 1

(T2U2)t
(Im[r̂·y])t−j−aLi3+a+j+t−2g(e

2πir̂·y)

+
cg−1(0, g − 1)

24g−5 · πg+1

1

(T2U2)g−1

g−1∑

s=0

(−1)s
(2g − 2)!

s!(g − 1− s)!
ψ(

1

2
+ s)

+

g−2∑

t=0

cg−1(0, t)

πt+5/2

ζ(3 + 2(t− g))

(T2U2)t

g−1∑

s=0

(−1)s22(s−2g+2) (2g − 2)!

(2s)!(g − 1− s)!
Γ(

3

2
+ s+ t− g).

(4.40)

According to (2.14) and (3.5), the coefficients cg−1(m, t) are given by the expansion

E4E6

η24
P2g(Ĝ2, · · · , G2g) =

∑

m∈Q

∑

t≥0

cg−1(m, t)q
my−t, (4.41)

where the polynomials P2g(Ĝ2, · · · , G2g) are defined in (2.10). The coefficients cg−1(−1, 0)

and cg−1(0, 0) will be important in the next sections, so we will determine them. As t = 0

for these coefficients, they are found by looking at the holomorphic part of (2.8). Using

the representation of ϑ1(z|τ) as an infinite product, it is easy to check that

−
(

2πη3z

ϑ1(z|τ)

)2

= −
(

πz

sinπz

)2

+ 8π2z2q +O(q2). (4.42)

This implies that

[
P2(G2)

]
q
= 8π2,

[
P2g(G2, . . . , G2g)

]
q
= 0, g > 1. (4.43)
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On the other hand, as E4E6/η
24 = q−1−240+. . ., the coefficient cg−1(−1, 0) is determined

by the q0 term of P2g(G2, · · · , G2g), and therefore can be computed using the expansion

(
πz

sinπz

)2

= −
∞∑

g=0

(2g − 1)!

(2g)!
(−1)g(2πz)2gB2g, (4.44)

where B2g are the Bernoulli numbers. We then obtain, using the relation between ζ(2g)

and B2g,

cg−1(−1, 0) = −2(2g − 1)ζ(2g). (4.45)

In the same way, using (4.43), we find

cg−1(0, 0) = cg−1(−1, 0)
χ(X)

2
, g > 1, (4.46)

where X = X1,1,2,8,12
24 is the Calabi-Yau manifold on the type IIA side.

As the pole at the cusp in (4.41) is of first order, cg−1(m, t) will be zero for m < −1.

This implies that, in the expression (4.40), the most negative possible value of r2/2 is −1.

Therefore, the integers n, m in (4.22) giving a nonzero contribution are n ≥ 0, m ≥ 0,

n ≤ 0, m ≤ 0 and the two lattice points (n,m) = (1,−1), (n,m) = (−1, 1). As T2, U2 > 0,

the hatted dot product that appears in (4.40) will give a chamber structure only for the

two points in the lattice with nm = −1, and the walls will be defined by T2 = U2.

In general, when discussing theta transforms, one has to make an analytic continua-

tions of the polylogarithms through the wall T2 = U2, and there is a nonzero wall-crossing

term. An important and remarkable property of Fg that is not obvious from (4.21) and

(4.40) is that the wall-crossing of the degenerate orbit will exactly cancel the wall-crossing

of the nondegenerate orbit. In other words, the whole coupling Fg is continuously differ-

entiable on the moduli space with coordinates (T, U), for g > 1, except at the locus of

enhanced gauge symmetry T = U where there is a singularity. This cancellation of wall-

crossing seems to require a precise knowledge of many terms in the sums (4.21) and (4.40),

as well as the precise values of the coefficients cg−1(0, t) and cg−1(−1, t), and we have

checked it numerically up to genus 5. Note that this is physically reasonable since there

are no massless singularities at the generic point on this wall. This should be contrasted

with the situation in five dimensions. Upon decompactification to five dimensions the wall

T2 = U2 corresponds to the location of massless particle singularities. Considered as a

K3 × S1 compactification these are well-known enhanced symmetry particles at the self-

dual radius of S1. Considered as an M-theory compactification on a Calabi-Yau manifold

the masless particles are due to wrapped M2-branes [14][15].
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5. Extracting the holomorphic piece

Although the expressions just obtained are somewhat intimidating, it turns out that

the antiholomorphic part of Fg has a very simple and compact expression. Notice that,

with our choices for pL,R in (2.3), the piece of Fg which does not mix the holomorphic and

antiholomorphic parts is in fact antiholomorphic. Hence, for simplicity of presentation,

we will state our results for F g, and the holomorphic piece of this function of the moduli

will be denoted by F
hol

g . This piece should have a geometrical interpretation in terms of

counting of holomorphic curves on the target space, according to [1][2]. To extract F
hol

g ,

with g ≥ 2, we take the holomorphic limit T , U → ∞ in F g.

The first thing to notice is that the degenerate orbit does not give any contribution

in this limit, for g ≥ 2. We therefore consider the behavior of the nondegenerate orbit,

for g ≥ 2. In the first two lines of (4.40), one can easily see that the only surviving term

in the holomorphic limit has j = t = a = 0, and the resulting function is then Li3−2g(x).

In order to write a closed expression for this term, we have to be more precise about the

contributions of the reduced lattice K. As Im(r ·y) > 0 for the lattice points n ≥ 0, m ≥ 0,

there is no holomorphic contribution from these for g ≥ 2. The lattice point (1,−1) only

contributes when T2 < U2, giving Li3−2g(q), where q = exp(2πi(T1 − U1) + 2π(T2 − U2)).

The point (−1, 1) only contributes for T2 > U2, giving Li3−2g(q
−1). Using (4.32) form < 0,

one can easily check that

Lim(x) = (−1)|m|+1Lim(x−1). (5.1)

Therefore, the contributions of (1,−1) and of (−1, 1) add up to Li3−2g(q) for any value

of T2 and U2. Finally, the terms in the last two lines of (4.40), which correspond to the

contribution of r = 0, vanish as T , U → ∞, except for the term with t = 0 in the last line.

The sum over s in the last factor can be easily evaluated to be (−1)g−1π1/2/2. We then

obtain, taking into account (4.45) and (4.46),

F
hol

g =
(−1)g−1

π2

[
−(2g − 1)ζ(2g)ζ(3− 2g)

χ(X)

2
+
∑

r>0

cg−1(r
2/2, 0)Li3−2g(e

2πir·y)

]
, (5.2)

for g ≥ 2. In this equation, r > 0 means the following possibilities: (n,m) = (1,−1),

n > 0, m > 0, n = 0, m > 0, or n > 0, m = 0. Notice that the coefficients cg−1(r
2/2, 0)

involved in F hol
g are determined by the holomorphic modular form P2g(G2, . . . , G2g).

Let us once again consider the nature of the answer at the wall T2 = U2. We note

from (5.1) that there is no wall-crossing behavior at T2 = U2 for F
hol

g , g ≥ 2. This is of
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course expected, as we are taking a particular limit of the whole Fg which does not have

any wall-crossing (as we have checked for g ≤ 5). For F
hol

g , g ≥ 2, one can indeed prove it

analytically using (5.1). Viewed from the type IIA perspective the absence of wall-crossing

is consistent with the fact that the Hodge numbers, and therefore the Euler character, of

X are preserved under flop transitions.

In contrast to the absence of wall-crossing there is a singularity in codimension two

at T = U . One can easily deduce the structure of the leading singularity in F
hol

g using

our explicit answer. The singularities on the heterotic side correspond to the appearance

of extra massless states on the T = U locus, and on the type II side they correspond to

the conifold singularity. The enhanced gauge symmetry occurs when p2L = 2, p2R = 0,

i.e. when (n,m) = (1,−1), so that r2/2 = −1. The leading singularity at genus g in the

expression (5.2) is given by the leading pole in the polylogarithm, which has the form

(−1)g−1

π2
cg−1(−1, 0)(2g − 3)!

1

(1− e2πir·y)2g−2
. (5.3)

Notice that, for r·y → 0, we find the expected singular behavior (2πir·y)−(2g−2). The

coefficient of this leading term can be computed explicitly: taking into account the factor

(2g − 3)! in (5.3), and the expression for cg−1(−1, 0) in (4.45), we see that it is given by

−22gπ2g−2χ(Mg), (5.4)

where χ(Mg) = B2g/2g(2g − 2) is the Euler characteristic of the moduli space of genus g

Riemann surfaces [16][17].

Up to a normalization factor, we recover the expansion of the free energy for the c = 1

string at the self-dual radius, as suggested by the conjecture of [18] and verified by [3] for a

similar model. Notice that, according to our result, this pole together with the subleading

poles of Fg near the conifold locus add up to the function Li3−2g. It is also worth noting

in this context that one can combine the result (5.2) together with (2.8)(4.32) to produce

a compact expression for the sum
∑

g λ
2gF̄ hol

g , essentially given by

∑

r>0

[
q−r2/2E4E6

η24

(
2πiλ̃η3

ϑ1(λ̃|τ)

)2
]

q0

Li3(x)

∣∣∣∣∣
x=e2πir·y

(5.5)

where we now take λ̃ = λx d
dx
. This expression is highly reminiscent of the formula in c = 1

theory giving the radius dependence of the free energy [19][20].
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6. Counting higher genus curves

Using string duality and the results in [1][2], the F
hol

g terms that we have computed

should count numbers of curves of genus g on the K3-fibered Calabi-Yau X , on the type

IIA side. This has been checked to some extent in [21] for F
hol

1 . We will analyze here the

F
hol

2 term in some detail, and make some observations on the higher F
hol

g .

Unfortunately, not much is known about the structure of the F IIA
g in type IIA theory

for g > 1. We do know the contribution to F IIA
g coming from constant maps, which was

obtained in [2] for any g > 1. This is the term in F IIA
g that survives in the limit in which

the Kähler moduli t, t̄ go to infinity, and it involves an integral over the moduli space of

Riemann surfaces Mg. Let H be the Hodge bundle on Mg, whose fibre over the point

m ∈ Mg is given by H0(Σg(m), K), where K is the canonical bundle of the Riemann

surface Σg(m). Let ck = ck(H) be their Chern classes. The constant term of F IIA
g is then

given by

F IIA
g

∣∣
t,t̄→∞

=
1

2
χ(X)

∫

Mg

c3g−1, (6.1)

where χ(X) is the Euler characteristic of the Calabi-Yau threefold X . The value of the

above integral over the moduli space of Riemann surfaces is known to be 1/2880 for g = 2

[22], 1/725760 for g = 3 [23], and 1/43545600 for g = 4 [24]. As we will see, string duality

gives a very precise prediction for this coefficient for any genus g > 1.

In the case of F IIA
2 , although we don’t have a general expression, explicit results have

been obtained in [2] for some Calabi-Yau manifolds. These examples suggest that F IIA
2

has the following structure:

F IIA
2 (e2πil·t) =

χ(X)

5760
− χ(M2)

∑

l

dl
e2πil·t

(1− e2πil·t)2
+

∑

l

Dle
2πil·t, (6.2)

In this equation, dl counts the number of rational curves, and Dl counts the number of

holomorphic curves of genus 2. The t = (t1, . . . , th1,1
) denotes complexified Kähler moduli,

l = (l1, . . . , lh1,1
) are integers, and

l·t =
h1,1∑

i=1

liti. (6.3)

The first term in (6.2) is the contribution to F IIA
2 from constant maps (6.1), and −χ(M2) =

1/240 is dictated by the structure of the leading singularity at the conifold. In order to

compare the result on the heterotic side with the type IIA expression, we have to take

into account that we are working in the semiclassical limit S → i∞. This corresponds on
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the type IIA side to the region of the Kähler cone where the volume of the base of the

K3-fibration goes to infinity, i.e to the limit in which the Kähler modulus dual to S goes

to infinity. Therefore, our result (5.2) will take into account only holomorphic curves in

the fiber of the Calabi-Yau.

The first thing to notice is that the function involved in the first member of (6.2) is

precisely Li−1(e
2πil·y). We will now match our main result (5.2) to (6.2), and extract some

predictions for the numbers Dl. This can be done in a very precise way taking into account

that, according to the results of [9], the number of rational curves on the K3 fiber on the

type IIA side is counted by −2c(r2/2), where the coefficients c(n) are defined by (2.2). In

order to extract the genus 2 counting function, we write P4(G2, G4) as

−1

2
(G2

2 +G4) = −π
4

15
+
π4

15

(
6− 5E2

2 − E4

6

)
, (6.4)

where we used that ζ(2) = π2/6, ζ(4) = π4/90. It is convenient to define the coefficients

c̃(n) as follows,

1

720

E4E6

η24
(6− 5E2

2 − E4) =
∞∑

n=1

c̃(n)qn = 6q − 1408q2 − 856254q3 − . . . . (6.5)

It follows from the definition of cg−1(n, 0) that

cg−1(n, 0) = −π
4

15

(
c(n)− 120c̃(n)

)
, (6.6)

for g = 2. The holomorphic coupling F
hol

2 can then be written, according to (5.2), as 1

F
hol

2 = −8π2

[
− 480

5760
+

1

240

∑

r>0

(−2c(r2/2))
e2πir·y

(1− e2πir·y)2
+
∑

r>0

∞∑

k=1

c̃(r2/2)ke2πikr·y
]
. (6.7)

The first term of this expression comes from the constant term in (5.2), and remarkably

agrees with the type IIA side result in (6.2). The second term corresponds to the contri-

bution of rational curves in F2, and has the structure found in [2]. The remaining piece

corresponds to genus two curves on the K3-fibered Calabi-Yau. We can now extract some

1 An explicit expression for the holomorphic piece of F2 was obtained in [25] using the anomaly

equation together with target space duality. Although we have not performed a detailed compar-

ison of the two expressions, the result presented in [25] seems to involve also the polylogarithm

function Li
−1(e

2πir·y).
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predictions for the genus 2 instanton numbers. The Calabi-Yau X has three Kähler mod-

uli, denoted by t1, t2 and t3 (with the notation of [26][21]), and the heterotic weak coupling

corresponds to t2 → ∞. This means that we will only be able to compute the instanton

numbers Dl1,0,l3 . The relation between the remaining Kähler moduli and the heterotic

moduli is t1 = U , t3 = T − U [5][21], therefore l1 = n + m, l3 = n. Using this explicit

map, and assuming that (6.2) is in fact the right structure on the type IIA side, we find

for instance (for the very first values of l1, l3)

Dl,0,l = D0,0,l = D1,0,l = 0,

D2,0,1 = 6, D3,0,1 = D3,0,2 = −1408,

D4,01 = D4,0,3 = −856254, D4,0,2 = −55723284,

D5,0,1 = D5,0,4 = −55723296,

D5,0,2 = D5,0,3 = −34256077056,

(6.8)

and so on. For primitive ℓ1, ℓ3 and ℓ1 − ℓ3 ≫ 1, ℓ3 ≫ 1 we have the asymptotic result

Dℓ1,0,ℓ3 ∼ − 1

120
√
2
((ℓ1 − ℓ3)ℓ3)

1/4 exp
[
4π

√
(ℓ1 − ℓ3)ℓ3

]
. (6.9)

Notice that all the instanton numbers will be integer numbers, due to the form of the

expansion (6.5), but most of them are negative. The same phenomenon was observed in

many two-parameter models [27][28], as well as in this particular Calabi-Yau [21], for the

genus one instanton numbers. The reason for this is that the curves with genus g > 1 come

in families, and what we are really computing is the Euler character of a certain vector

bundle over the moduli space of curves in the family. In the context of topological sigma

models, this vector bundle is associated to the antighost zero modes [29].

We can try to follow the same strategy at arbitrary genus. In particular, we should

be able to recover the limiting behavior (6.1) of F IIA
g by fixing the normalizations. This

can be done if we consider a natural generalization of (6.7) and write F hol
g as:

F
hol

g = −2(2π)2g−2

[
(−1)g−1 2(2g − 1)ζ(2g)ζ(3− 2g)

(2π)2g
χ(X)

2

− χ(Mg)
∑

r>0

(−2c(r2/2, 0))
(e2πir·y)2g−3

(1− e2πir·y)2g−2
+ · · ·

]
,

(6.10)

where we have decomposed cg−1(r
2/2, 0) = cg−1(−1, 0)c(r2/2) + · · ·, and written only the

leading term of the polylogarithm in (4.32). We then see that the relative normalization
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of Fg is given by the factor −2(2π)2g−2. Matching the constant term appearing here to

(6.1), we obtain ∫

Mg

c3g−1 = (−1)g−12(2g − 1)
ζ(2g)ζ(3− 2g)

(2π)2g
, (6.11)

and one is startled to find the correct values 1/725760 for g = 3 and 1/43545600 for g = 4.

Notice that for g = 0 we recover precisely the well-known constant term of the prepotential

−ζ(3)χ(X)/2.

7. Conclusions

We have found an elegant expression for the holomorphic part of Fg in terms of a

polylogarithm function, as well as an explicit expression for the generating function of the

number of curves of genus g in terms of a modular form of weight 2g − 2. Unfortunately,

the structure of Fg on the type IIA side, for g > 2, has not been explored in detail, and this

makes more difficult a geometrical interpretation of our expressions, as well as a precise

prediction of the genus g instanton numbers. Notice that the information about the genus

g curves is contained in the modular form Fg−1(τ) defined in (2.14), but in order to extract

it one needs a previous knowledge of the different contributions to Fg, as we have seen in

genus 2 . It is interesting to notice that our counting function has some similarity with

the modular form that counts genus g curves with g nodes on a K3 surface [30][31]. On

the other hand, the fact that we have an exact and simple expression for F hol
g should be

very helpful in trying to understand the geometrical interpretation of higher genus curve

counting.

We have also made two concrete predictions: first, assuming the structure of F2

given by (6.2) (as suggested by the examples considered in [2]) we have obtained the

modular form that gives the instanton numbers at genus 2 on the Calabi-Yau manifold

X1,1,2,8,12
24 . Some of them have been written in (6.8). But we also have a prediction with

a different flavor in (6.11), where a certain intersection number on the moduli space of

genus g curves has been obtained from string duality. Both should be testable with other

methods already available. The instanton numbers could be obtained on the type IIA

side by mirror symmetry, following the original strategy of [2]. The general form of the

result obtained here will certainly help in fixing the holomorphic ambiguity. As for the

relation (6.11), one can perhaps make further checks using the approach to two-dimensional

topological gravity presented in [32][33] or by standard methods in algebraic geometry as

in [22][23][24].
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Although we have only performed the computation for a single model, similar cal-

culations could be done in other situations, such as those considered in [34]. Since the

integral representation for Fg will be quite similar to that considered here, we expect that

the simple form for F hol
g in terms of a polylogarithm function also holds in more general

situations.
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