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Abstract

In this note we explain how world-volume geometries of D-branes can be recon-
structed within the microscopic framework where D-branes are described through
boundary conformal field theory. We extract the (non-commutative) world-volume
algebras from the operator product expansions of open string vertex operators. For
branes in a flat background with constant non-vanishing B-field, the operator prod-
ucts are computed perturbatively to all orders in the field strength. The resulting
series coincides with Kontsevich’s presentation of the Moyal product. After extend-
ing these considerations to fermionic fields we conclude with some remarks on the
generalization of our approach to curved backgrounds.
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1 Introduction

It was observed many years ago that low energy effective actions of (super-)string theories
possess solitonic solutions. They are known as solitonic p-branes because of their localiza-
tion along certain p+ 1-dimensional surfaces in the string-background. Later, Polchinski
discovered a remarkable correspondence between such solitonic p-branes and Dp-branes,
i.e. boundary conditions for open strings (for a review see [1]). This makes it possible to
study branes through the ‘microscopic’ techniques of boundary conformal field theory.

In the microscopic approach, D-branes are characterized by the way in which they
couple to closed string states, i.e. by the 1-point functions of closed string vertex operators.
An immediate question is how these couplings relate to the hyper-surfaces one meets in the
macroscopic description of D-branes. Here, we shall address a systematic reconstruction of
D-brane world-volumes from their world-sheet description. We argue that the information
on the geometry of the world-volumes is encoded in the operator products of open string
vertex operators. The idea to retrieve geometrical data from operator products is not
new, but so far it was mainly applied to closed string vertex operators (see e.g. [2, 3]).

When D-branes are placed in a background which carries a non-vanishing B-field, our
procedure will lead us to a deformation of the algebra of functions on the classical world-
volume. This phenomenon was first observed by Douglas and Hull [4] in the example of a
2-dimensional brane wrapping a 2-torus (see also [5, 3, 6] for more recent developments in
this direction) and it is obviously related to the structure of compactifications of M(atrix)
theory on non-commutative tori [7]. Let us remark that non-commutativity enters quite
naturally in a theory of open strings. In fact, open string vertex operators are inserted
along a one dimensional line (the boundary of the world-sheet) so that their insertion
points are canonically ordered. The product of two open string vertex operators usually
depends on the order in which they are inserted and hence it provides an obvious ‘source’
for non-commutative geometries.

In this short note we restrict our presentation to the case of constant B-fields on a
flat background. We shall use standard techniques from conformal perturbation theory
(see e.g. [8]) to derive an explicit formula for the non-commutative multiplication in the
world-volume algebra. It will turn out as the Moyal deformation of the classical algebra
of functions on the world-volume. The deformation depends on the string tension and
on the B-field which enters through the anti-symmetric tensor B(1 +B2)−1 (see eq. (3.4)
below), in agreement with the recent analysis of Chu and Ho [6]. At the end of the text,
we extend these considerations to the fermionic sector (see eq. (4.1)).

While some of the formulas below are not new (see e.g. [4, 5]), our techniques are
designed for generalizations to non-trivial backgrounds and, in particular, to perturba-
tive studies in the framework of non-linear σ-models where the B-field is then allowed
to depend on coordinates. The approach also displays clearly the remarkable relation
between open string theories and quantization. In the context of topological open strings
this relation is beautifully illustrated by the recent work of Cattaneo and Felder [9] on
Kontsevich’s quantization formula [10]. Here, we shall see the background metric entering
the deformation and the results of topological theories appear only in a very special limit.
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2 Open Strings and D-branes in a Flat Background

To set our stage, we briefly consider the standard bosonic open string moving on a flat
d-dimensional Euclidean background, i.e. on the space Rd. Its world-sheet description
involves d free bosonic fields X i(z, z̄), i = 1, . . . , d, living on the upper half Imz ≥ 0 of the
complex plane with Neumann boundary conditions imposed along the boundary Imz = 0.
The explicit construction of this field theory is encoded in the formula

X i(z, z̄) = x̂i − i
α′

2
p̂i ln zz̄ + i

√

α′

2

∑

n 6=0

ai
n

n

(

z−n + z̄−n
)

, (2.1)

where ai
n, n < 0 (n > 0), create (annihilate) oscillations of the open string and x̂i, p̂i

describe the string’s center-of-mass coordinate and momentum. They obey the usual
commutation relations involving some constant metric Gij on the background. The pa-
rameter α′ is the inverse of the string tension, up to some normalization.

From the free bosonic fields X i(z, z̄) on the upper half plane we can build many new
fields, in particular the chiral currents J i(z), J̄ i(z̄) and open string vertex operators Vk(x),

J i(z) = 2i ∂X i(z, z̄) , J̄ i(z̄) = 2i ∂X i(z, z̄) ,

Vk(x) = : ei kiXi(x) : where X i(x) = x̂i − iα′ p̂i ln x+ i
√

2α′
∑

n 6=0

ai
n

n
x−n

is the boundary value X i(x), x ∈ R, of the bosonic field X i(z, z̄). The open string vertex
operators satisfy the following elementary operator product expansions (see e.g. [8]) :

Vk(x1)Vk′(x2) ∼ 1

(x1 − x2)α′kk′
Vk+k′(x2) + . . . for x1 > x2 , (2.2)

J i(z)Vk(x) ∼ 2α′ki

z − x
Vk(x) + . . . , J̄ i(z̄)Vk(x) ∼ 2α′ki

z̄ − x
Vk(x) + . . . .

Throughout the text we shall raise and lower indices with the help of the metric G and the
product kk′ is defined through kk′ = kik′i. In all three relations we displayed only the most
singular term and represented the rest of the expansion by dots. As we remarked above,
operator products of open string vertex operators depend on the ordering of the insertion
points, in general. This is why we specified the order x1 > x2 in the first equation, even
though we are presently dealing with a very special situation in which the relation for the
other order x1 < x2 happens to be of the same form.

There exists a more elegant formulation of eqs. (2.2) that makes use of the formal
object

f(X(x)) = V [f ](x) :=
1

(2π)d/2

∫

Rd

ddk f̂(k)Vk(x) .

Here, f̂(k) denotes the usual Fourier transform of the function f : Rd → C. The operator
product expansions (2.2) become

V [f ](1)V [g](0) ∼ V [f g ](0) + . . . ,

2



J i(z)V [f ](x) ∼ 1

i

2α′Gij

z − x
V [∂jf ](x) + . . . , (2.3)

J̄ i(z̄)V [f ](x) ∼ 1

i

2α′Gij

z̄ − x
V [∂jf ](x) + . . . .

Note that in the first equation we have specialized to x1 = 1, x2 = 0. The more general
formula in rel. (2.2) can be recovered with the help of conformal transformations so that
we did not lose information in passing from eqs. (2.2) to eqs. (2.3).

The first formula in rel. (2.3) is actually quite remarkable since it describes the operator
product expansion of open string vertex operators in terms of a very simple algebraic
operation, namely in terms of the pointwise multiplication of functions on Rd.

Let us now change the background of our bosonic open string theory by switching on
a B-field, i.e. by adding the following term to the action

SB =
1

4πα′

∫

H

dzdz̄ Bij J
i(z) J̄ j(z̄) , (2.4)

where Bij is some (constant) antisymmetric d × d matrix and the integral is performed
over the upper half plane H. Our main aim is to determine the influence SB on the
operator product of open string vertex operators. At the moment, we shall only look for
a suitable formulation of this problem. An explicit solution is then derived in the next
section.

It is well known that the only effect of the term (2.4) is to modify the boundary
condition along the real line so that the bosonic fields satisfy

∂yX
i(z, z̄) = Bi

j ∂xX
j(z, z̄) where z = x+ iy

all along the boundary z = z̄. The usual Neumann boundary condition ∂yX
i = 0 is

recovered in the limit Bij → 0. We could go ahead now and construct the new theory
explicitly much as we did this for Neumann boundary conditions above (see also [11],[6]).
Of course, the formulas for the fields X i(z, z̄) and their boundary values X i(x) change
and so does the operator product expansion of the open string vertex operators, i.e. the
latter is no longer described by pointwise multiplication of functions on the background.
However, we may still think about the new operator product expansions in terms of
functions on Rd, if we are prepared to ‘deform’ the pointwise multiplication. In other
words, we define a new product (f, g) 7→ f ⋆ g for functions f, g : Rd → R by

(V [f ](1)V [g](0))B ∼ V [f ⋆ g ](0) + . . . . (2.5)

The superscript B was placed on the left hand side to indicate that the operator product
is to be taken in a theory in which the B-field is turned on. The multiplication ⋆ on the
right hand side depends on Bij and on the parameter α′.

Even before having constructed ⋆, we can predict some of its properties. The new
multiplication will not be commutative, in general. On the other hand, from the sewing
constraints of open string theory (see [12], [13],[14]) and the triviality of the fusing matrix
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in a theory of free bosonic fields it is possible to deduce that ⋆ is necessarily associative.
Consequently, when functions f : Rd 7→ R are equipped with the product ⋆ they generate a
(non-commutative) associative deformation of the algebra of functions on the background.
This algebra depends on the anti-symmetric matrix Bij and on the parameter α′.

Open strings with Neumann boundary conditions can be interpreted in terms of a
D-brane that fills the whole background. We can certainly generalize our considerations
to D-branes of smaller dimension. In this case one has to impose Dirichlet boundary
conditions in some directions and only those open string vertex operators survive that
carry momentum tangential to the brane’s world-volume. All constructions in the sub-
sequent sections apply directly to D-branes of smaller dimension. For simplicity of the
presentation, we shall stick to the case of a background filling brane.

3 Perturbation Series for the Deformed Product

To obtain an explicit formula for the product ⋆ defined by rel. (2.5), we regard the term
SB (eq. (2.4)) as a perturbation of the original bosonic theory with Neumann boundary
conditions and study the usual field theoretic perturbation expansion. The correlators of
the perturbed theory are constructed by the standard prescription:

〈Φ1 . . .ΦN 〉Bǫ =
1

Z
〈Φ1 . . .ΦN e−SB〉ǫ

:=
1

Z

∞
∑

n=0

( −1

4πα′

)n
1

n!

∫

Hǫ
n

ddzddz̄ 〈Φ1 . . .ΦN

n
∏

a=1

Biaja
J ia(za)J̄

ja(z̄a) 〉 .

Here Z := 〈exp(−SB)〉ǫ and the expressions depend on an UV-cutoff ǫ through the domain
of integration,

Hǫ
n := { (z1, . . . , zn) | Im(za) > ǫ , |za − zb| > ǫ for a 6= b } .

As long as ǫ is positive, the integrals are protected against divergencies caused by the
short distance singularities of the integrands 1. When defining Hǫ

n we assumed that all
fields Φν are inserted along the boundary. Eventually, we will choose Φ1 = V [f ](1) and
Φ2 = V [g](0).

The correlators in the integrand can be evaluated with the help of Ward identities
for chiral currents. There exist two types of terms in these Ward identities. One type
involves contractions between two currents while the second appears when we contract
currents with one of the fields Φν . Let us first look at contractions between two currents.
Their contribution to the deformed correlation functions is evaluated with the help of the
operator products expansions

J i(z) J j(w) ∼ 2α′Gij

(z − w)2
+ . . . , J i(z) J̄ j(w̄) ∼ 2α′Gij

(z − w̄)2
+ . . . . (3.1)

1IR-divergencies can be cured by introducing a cutoff Λ and restricting the integrations to |z| < Λ.
We refrain from making this more explicit in our formulas.

4



Similar expansions exist for the J̄ i instead of J i. We consider a perturbing operator
inserted at the point (z, z̄) and assume that its anti-holomorphic current J̄ j acts on one
of the boundary fields while the holomorphic field J i is contracted with another current
which may be either holomorphic or anti-holomorphic. In both cases, the 2-dimensional
integral over the position (z, z̄) of the insertion can be converted into a contour-integral.
If we pair J i(z) with another holomorphic current, this contour-integral is easily seen to
vanish. A non-trivial contribution arises only when we contract J i(z) with some anti-
holomorphic current J̄k(w̄). After the integration, the two perturbing fields at (z, z̄) and
(w, w̄) turn out to be combined into only one insertion at (w, w̄) which has the form:

1

4πα′

∫

H

dwdw̄
1

i
B

j
i Bjl J

i(w) J̄ l(w̄) .

In other words, the fields at (z, z̄) have disappeared leaving an insertion at (w, w̄) behind
which is of the same form as the original expression for SB but with 1

i
B2 appearing instead

of B. Iteration of this argument allows us to sum over open chains of current contractions
with arbitrary length 2. With the correct combinatorial factors filled in, the terms form
a geometric series. As a result, the perturbing fields are replaced by

SB → 1

4πα′

∫

H

dzdz̄

(

1

1 + iB

) l

i

Blj J
i(z) J̄ j(z̄) (3.2)

and we are no longer allowed to contract currents among each other. With this simple
conclusion in mind we can turn towards the discussion of the second type of contractions
in which currents act on one of the boundary fields.

From now on, let us restrict our analysis to the computation of the operator product
expansion (2.5). Note that the leading contribution in the operator product expansion of
open string vertex operators is completely determined by their 3-point functions. Hence,
all our previous remarks on the perturbation of correlation functions apply directly to the
perturbation of the operator product. In the following it is quite useful to decompose the
matrix in the integral (3.2) into its symmetric and anti-symmetric parts:

B

1 + iB
= Θs + Θa = − iB2

1 +B2
+

B

1 +B2
. (3.3)

The symmetric part Θs gives rise to logarithmic divergencies in the perturbation series
for the operator product. They require renormalization of the boundary fields. We shall
omit the detailed analysis at this point and only state the result: When the boundary
fields V [f ](1) and V [g](0) are properly renormalized, there remains no finite contribution
coming from Θs, i.e. the symmetric matrix Θs is completely absorbed. Hence, after
renormalizing the boundary fields, we can work with the effective perturbing operator

Seff
B =

1

4πα′

∫

H

dzdz̄ Θij J
i(z) J̄ j(z̄) :=

1

4πα′

∫

H

dzdz̄

(

1

1 +B2

) l

i

Blj J
i(z) J̄ j(z̄) ,

2Note that closed loops of current-contractions are canceled by the denominator Z of the deformed
correlation functions.
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if we no longer allow for contractions between currents. Here and in the following we
neglect to write the upper index a on the anti-symmetric matrix Θ = Θa.

After all these preparations it is now straightforward to compute the deformed product
f ⋆ g to all orders in perturbation theory:

(V [f ](1)V [g ](0))B = V [f ](1)V [g ](0) +
α′

π

∫

H

dzdz̄
1

z − 1

1

z̄
Θij V [∂if ](1)V [∂jg ](0)

+
α′

π

∫

H

dzdz̄
1

z̄ − 1

1

z
Θij V [∂jf ](1)V [∂ig ](0) +O((α′)2)

= V [f ](1)V [g ](0) +
α′

π

∫

H

dzdz̄

(

1

z − 1

1

z̄
− 1

z̄ − 1

1

z

)

Θij V [∂if ](1)V [∂jg ](0) +O((α′)2)

=
∑

n

(

α′

π

)n
1

n!

∫

dz1dz̄1 . . . dzndz̄n

n
∏

a=1

(

1

za − 1

1

z̄a
− 1

z̄a − 1

1

za

)

Θi1j1 . . .ΘinjnV [∂i1 . . . ∂inf ](1) V [∂j1 . . . ∂jn
g ](0)

∼
∑

n

(

α′

π

)n
1

n!

∫

dz1dz̄1 . . . dzndz̄n

n
∏

a=1

(

1

za − 1

1

z̄a

− 1

z̄a − 1

1

za

)

Θi1j1 . . .ΘinjnV [∂i1 . . . ∂inf ∂j1 . . . ∂jn
g ](0) + . . . .

In the last step we have kept only the leading contribution from the operator product
expansion for vertex operators at B = 0. All other manipulations were exact. To un-
derstand the expression for the nth summand, it suffices to look at the first order terms.
Note that the second term on the right hand side of the first line is connected with the
action of J i on the open string vertex operator at the point x = 1 and of J̄ j on the vertex
operator at x = 0. For the second line one needs to interchange the role of J i and J̄ j .
There are certainly terms where both currents act on the same vertex operator. These
terms vanish since they involve a contraction of ∂i∂j with the antisymmetric matrix Θij.

We could certainly compute the remaining integrals in the previous expression for
operator product expansion. But we shall leave them in their present form and produce
a more compact answer by introducing the following shorthand notations:

wn :=
1

(2π)2n

1

n!

∫

dnzdnz̄

n
∏

a=1

(

1

za − 1

1

z̄a

− 1

z̄a − 1

1

za

)

,

Bn(f, g) :=
∑

Θi1j1 . . .Θinjn ∂i1 . . . ∂inf ∂j1 . . . ∂jn
g .

Our perturbative construction of the operator product for open string vertex operators
provides us with an explicit formula for the product f ⋆ g defined through eq. (2.5). It is
given by

f ⋆ g =
∑

n

(4πα′)nwn Bn(f, g) . (3.4)
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The remarks above guarantee that ⋆ is associative but one may also check this directly
now. On the other hand, it is not commutative as we infer e.g. from the first order term
in the commutator:

f ⋆ g − g ⋆ f = κα′ Θij ∂if ∂jg + O((α′)2) = κα′ { f , g }Θ + O((α′)2) ,

where κ is some constant factor and we have introduced the Poisson bracket { . , . }Θ

through the second equality. The expression (3.4) for ⋆ coincides with Kontsevich’s for-
mula for the Moyal product of functions on the background R

d [10]. From this we conclude
that operator products of boundary fields give rise to the usual Moyal deformation in the
direction of the ‘Poisson bi-vector’

Θ = B (1 +B2)−1 . (3.5)

Note that Θ ∼ B for small magnetic fields while Θ ∼ B−1 when B2 becomes very
large. We shall refer to the region of very strong fields as ‘topological regime’. In this
limit, the metric G can be neglected in comparison to the B-field. Our results for strong
fields are consistent with the recent analysis [9] of topological σ-models which predicts the
deformation for large B2 to be in the direction of B−1. The latter is the ‘Poisson bi-vector’
associated with the ‘symplectic form’ B. Let us also remark that the expression (3.5) is
known from the theory of toroidal compactifications where is appears as the B-field on
the dual torus.

Before we conclude this section, we would like to discuss briefly how the boundary
currents J i(x) = J̄ i(x) of the original field theory make their appearance in the world-
volume geometry. With our previous experience on the perturbative computation of
operator products, it is rather easy to see that

(

J i(1) V [f ](0)
)B ∼ 2α′

i
Gij

(

1

1 +B2

)k

j

V [∂kf ](0) + . . . .

Hence, the chiral boundary currents describe infinitesimal symmetries of the D-brane, i.e.
its world-volume algebra inherits derivations δi of the form

δi = Gij
(

(1 +B2)−1
)k

j
∂k . (3.6)

In the limit of vanishing B-field, δi coincides with the usual derivative Gij∂j . As one
would expect, the number of infinitesimal translation symmetries of a D-brane does not
depend on the field strength as long as the background field is constant.

4 Extension to Fermionic Fields

In this final section we would like to extend our analysis to fermionic fields. We consider
a d-plet of Majorana fermions described in terms of the usual (anti-)holomorphic compo-
nents ψi(z), ψ̄i(z̄). There exists a choice of considering the fermionic fields in the Ramond
or the Neveu-Schwarz sector. Here we are only interested in the latter. The Ramond
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sector turns out to provide a module of the non-commutative algebra that we shall obtain
from the Neveu-Schwarz sector.

Recall that the operator product expansions for the fermionic fields are of the form:

ψi(z) ψj(w) ∼ Gij

z − w
+ . . . , ψi(z) ψ̄j(w̄) ∼ Gij

z − w̄
+ . . .

and similar expressions hold when holomorphic fields are replaced by anti-holomorphic
ones (and vice versa). This motivates to assign the fermionic fields ψi(x) = V [ηi](x) to
generators ηi of a Clifford algebra with the multiplication

[ ηi , ηj ]+ = Gij .

In this way we may re-express the operator product expansions of fermionic boundary
fields in the form V [ηi](1)V [ηj](0) = V [[ηi, ηj]+](0) = V [Gij ](0) = Gij .

Placing this theory of d Majorana fermions in a non-vanishing B-field means to perturb
the original theory by the term

S ′
B =

1

8π

∫

H

dzdz̄ Bij

(

ψi(z) ∂ψj(z) − ψ̄i(z̄) ∂ψ̄j(z̄)
)

.

When combined with the bosonic sector, the contribution S ′
B ensures supersummetry of

the total theory with boundary conditions ψi
− = iBi

jψ
j
+ in the fermionic sector. Here we

have introduced ψk
± = ψk ± ψ̄k.

Our evaluation of the perturbation expansion proceeds very much as in the case of
bosonic fields. Once more, contributions from chains of contractions between fields in
the perturbing operator can be summed up. This is achieved my means of the standard
formula

∫

idzdz̄ f(z) ∂̄z
1

z − w
= 2π f(w)

and a similar expression with the role of holomorphic and anti-holomorphic variables
interchanged. The procedure allows us to replace the B-field in S ′

B by B (1 + iB)−1, if at
the same time we refrain from further contractions between the effective insertions.

The aim now is to compute the leading term in the operator product expansion of
ψi(1) and ψj(0). To evaluate the contractions between the ‘effective’ perturbing field
and the boundary operators we insert the decomposition (3.3) of B(1 + iB)−1 into its
symmetric and anti-symmetric parts. Because of the anti-commutativity of the fermionic
fields, only the anti-symmetric matrix Θa enters into the final formula for the deformed
operator product:

(

ψi(1) ψj(0)
)B ∼ Gij +Gik

( −B2

1 +B2

)j

k

+ . . . = Gik

(

1

1 +B2

)j

k

+ . . . .

We can translate this result into a deformation of the Clifford algebra. Under the influence
of the B-field, the original generators ηi obey the deformed relations

[ ηi ⋆, ηj ]+ = Gik

(

1

1 +B2

)j

k

. (4.1)
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The combination on the right hand side appeared already in eq. (3.6) for the derivations
of the world-volume algebra.

The model we have studied possesses an N = 1 supersymmetry on the world-sheet
but our considerations certainly generalize to theories with more supersymmetries. As
in the case of closed strings [2], the non-commutative world-volume geometries inherit
Dirac operators from the supersymmetry generators of the field theory. In the context of
non-commutative geometry [15], they give rise to differential geometries on the branes’
world-volumes.

5 Conclusions

In this text we have constructed the world-volume geometry (eqs. (3.4),(4.1)) of D-
branes in flat backgrounds. Note, however, that both the underlying concepts and the
proposed techniques can be applied beyond these simple examples. In particular, it is
possible to study the perturbative expansion for the operator product of open string
vertex operators in non-linear σ-models. To treat the dependence of B-fields on co-
ordinates of the background one makes use of standard background field methods [16].
It is quite remarkable that the resulting expansions are still organized very much as in
the corresponding version of Kontsevich’s quantization formula. We shall report on these
issues in a forthcoming paper.

More concretely, one may try to reconstruct the world-volume of D-branes for some
specific (CFT-) backgrounds, such as e.g. the WZW-model. The classical world-volume
of branes on group manifolds is given by certain ‘integer’ conjugacy classes of the group
[17] and the branes come equipped with a B-field. In case of the SU(2)-WZW theory,
their world-volumes are described by fuzzy spheres, at least in an appropriate limit [18].

It might also be interesting to study effective field theories on general D-brane world-
volumes within the presented framework. The construction of the effective actions is a
problem in boundary perturbation theory. Since the perturbing boundary operators and
the ‘generators’ of the world-volume algebra appear on equal footing, it should be possi-
ble to develop a rather general approach towards effective theories on non-commutative
spaces.

The techniques of [19] provide another step in this direction. It was shown there that
non-commutativity of the boundary operator product expansion is the only obstruction in
boundary deformation theory. In this sense, a detailed knowledge about operator products
of boundary fields (and about their non-commutativity) is essential for our understanding
of general boundary flows and of D-brane moduli spaces, in particular.

Acknowledgements: I would like to thank A.Yu. Alekseev, R. Dijkgraaf, A. Konechny,
N.P. Landsman, E. Langman, A. Recknagel, A. Schwarz and S. Theisen for stimulating
discussions and remarks.
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[2] J. Fröhlich, K. Gawedzki, Conformal field theory and geometry of strings, hep-
th/9310187; Vancouver 1993, Proceedings, Mathematical quantum theory, vol. 1
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