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Abstract

We study mass deformations of N = 2 superconformal field theories with ADE global
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1 Introduction

Probing the 7-brane background of Type IIB compactification on P1 by a D3-brane pro-

vides a powerful machinery to analyze the non-perturbative behavior of four-dimensional

N = 2 supersymmetric gauge theories [1, 2]. In this setup, the space-time gauge symme-

try is transmuted into the global symmetry in the world volume N = 2 supersymmetric

gauge theory on a D3-brane. Then it is found in [3] that there exist non-trivial N = 2

superconformal fixed points with exceptional global symmetries. In [4, 5], on the other

hand, N = 2 fixed points with En global symmetries are considered as a natural extension

of foregoing works [6, 7, 8, 9].

Although the N = 2 theory with exceptional symmetry does not admit the Lagrangian

description, recent advances in string duality have made it possible to study the strong-

coupling regime of N = 2 theory by the stringy technique. For instance, it requires a

considerable amount of effort in general to analyze the properties of the BPS spectrum of

N = 2 theory. The junction picture of BPS states, however, gives the simple constraint on

the BPS spectrum [10, 11]. With the use of this constraint, some characteristic features

of the BPS states in N = 2 theory with En symmetries are revealed [11].

In this paper we study mass deformations of N = 2 theories with ADE global sym-

metries in detail. The present work is partly motivated in our attempt to get a clearer

understanding of the results obtained by Minahan and Nemeschansky [4, 5] in formulating

the elliptic curves and the Seiberg-Witten (SW) differentials for En theories. It was found

in [5] that, for a given elliptic curve, the SW differential λ is not uniquely determined, but

depends on the representations (fundamental or adjoint) of the global symmetry group.

It is then argued that λ in different representations lead to different physics.

In our approach we proceed along the line of the D3-brane probe picture and discuss

systematically the curves and the differentials for the ADE theories. In particular we

clarify a great deal the properties of the pole terms of the SW differential. Even for the

case of N = 2 SU(2) QCD with Nf ≤ 3, which is thought to be well understood, we gain

a new insight. Consequently we are able to show that the representations of the ADE

groups from which the SW differential is built are irrelevant to the physics results. In this

regard, our conclusion is opposed to what is argued in [5].
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The paper is organized as follows. In section 2, we see that the elliptic curves for N = 2

ADE theories on a D3-brane are naturally identified by examining the local geometry of

singularities in the compactification of Type IIB theory on P1 with the 24 background

7-branes. In section 3 the BPS mass formula for N = 2 ADE theories is discussed in

the light of the string junction lattice. In section 4 the residues of the poles of the SW

differentials for our ADE theories are shown to transform in an irreducible representation

of the global symmetry groups. This affords a firm foundation of somewhat empirical

construction of the SW differentials in [6, 4, 5]. In section 5 the SW differentials in the

fundamental as well as the adjoint representations are obtained in the A1, A2, D4, E6, E7

and E8 theories. In section 6 we analyze in detail how the SW differential behaves under

the renormalization group flow from the E6 theory to the D4 theory. In section 7 it is

proved that the SW periods are independent of the representations of the global symmetry

which are chosen to construct the SW differential. The result in section 7 is confirmed in

section 8 by further studying N = 2 SU(2) QCD with Nf ≤ 3. Finally we conclude in

section 9.

2 D3-brane probe and elliptic curves

When Type IIB theory is compactified on P1 with the 24 background 7-branes, the string

coupling constant τ = χ+ie−φ, where χ is a R-R scalar field and φ a dilaton, is determined

as the modular parameter of an elliptic curve [12]

y2 = x3 + f(z)x+ g(z). (2.1)

Here z is a complex coordinate on P1, f and g are polynomials in z of degree 8 and 12,

respectively. The 24 zeroes of the discriminant ∆ = 4f 3+27g2 are the transverse positions

of the 24 7-branes. The modular parameter τ is obtained from j(τ) = 4(24f)3/∆. The

cubic (2.1) describes a K3 surface as an elliptic fibration over the base P1. When the

positions of some 7-branes coincide the elliptic fibration develops singularities which are

well-known to follow the Kodaira classification [13]. The singularity types then have a

correspondence with the ADE singularities, according to which the ADE types of gauge

symmetry in Type IIB theory are identified [1, 14].
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gauge Kodaira background coupling
symmetry type 7-branes constant τ

E8 II∗ A7BC2 e2πi/3

E7 III∗ A6BC2 i
E6 IV∗ A5BC2 e2πi/3

E5 I∗1 A4BC2 ∞
D4 I∗0 A4BC arbitrary
A2 IV A3C e2πi/3

A1 III A2C i
{0} II AC e2πi/3

Table 1: Symmetry and background 7-branes

The connection between the ADE gauge symmetry and the background 7-brane con-

figurations has been established by analyzing the monodromy properties [15, 16]. In Type

IIB theory there exist 7-branes which are mutually nonlocal. To distinguish them we shall

refer to a 7-brane on which Type IIB (p, q) strings can end as a [p, q] 7-brane. For the

purpose of describing the ADE symmetry it is sufficient to take into account [1, 0], [1,−1]

and [1, 1] 7-branes which will be henceforth denoted as A-, B- and C-branes, respectively.

Let AnBmCℓ represent a set of n A-, m B- and ℓ C-branes. The E8 gauge symmetry, for

instance, is realized at τ = e2πi/3 when a set of 7-branes A7BC2 coalesces. Gauge symme-

tries and the corresponding 7-brane configurations relevant to our following discussions

are summarized in Table 1. We note that E5 = D5 and the brane configuration A4BC2

is shown to be equivalent to A5BC [17].

We now introduce a D3-brane which is parallel to the background 7-branes. This D3-

brane can probe the local geometry near the singularities which are responsible for the

gauge symmetry enhancement. On the D3-brane the low-energy effective theory becomes

four-dimensional N = 2 supersymmetric gauge theory. Suppose that the D3-brane probe

is located near coalescing 7-branes, then N = 2 theory on the D3-brane is a fixed point

theory since there are no relevant mass parameters turned on. The gauge symmetry in the

bulk turns out to be the enhanced global symmetry of a fixed-point N = 2 supersymmetric

theory on the brane [2].

From this point of view, let us look at Table 1. First of all, the D4 theory on the
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brane in the vicinity of the 7-branes A4BC arises in N = 2 SU(2) theory with Nf = 4

fundamental quarks [6]. Here B- and C-branes stand for monopole and dyon singularities,

andA-branes stand for the squark singularities in the Coulomb branch. The N = 2 SU(2)

theory with Nf = 4 is finite and the marginal gauge coupling constant can take any values.

Similarly, the A2, A1 and {0} theories also arise in the Coulomb branch of N = 2 SU(2)

theory with Nf = 3, 2 and 1, respectively. These are non-trivial superconformal theories

obtained by adjusting quark masses at particular values [8]. On the other hand, the D5

theory describes the IR free behavior of N = 2 SU(2) theory with Nf = 5. The most

interesting are the theories with En (n = 6, 7, 8) global symmetries. They are non-trivial

N = 2 superconformal field theories, but do not admit the Lagrangian description. In

view of the D3-brane probe approach, it is natural to place these non-trivial fixed points

with exceptional symmetry in the sequence of renormalization group flows

E8 −−−−→
A

E7 −−−−→
A

E6 −−−−→
A,C

D4 −−−−→
A,B

A2 −−−−→
A

A1 −−−−→
A

{0}, (2.2)

where 7-branes indicated under the arrows are sent to infinity to generate the flows. In

(2.2) only the D4 theory is described as a local Lagrangian field theory, while the others

are considered to be non-local. Note that the flows E6 → D4 and D4 → A2 are realized

by moving away mutually non-local 7-branes simultaneously.

Starting with the D4 theory one can also consider more familiar flows

D4 −−−−→
A

D3 −−−−→
A

D2 −−−−→
A

D1 −−−−→
A

D0 , (2.3)

where the 7-brane background for the Dn symmetry is given by AnBC. Note that, for

n ≤ 3, the configuration AnBC does not fall into the Kodaira classification since it is

non-collapsible [17]. On a D3-brane probing AnBC with n ≤ 3, ordinary N = 2 SU(2)

QCD with Nf = n fundamental quarks is realized.

As mentioned previously, enhanced global symmetries at the fixed points in (2.2) are

recognized in geometric terms as the ADE singularities. Thus relevant perturbations

taking the system away from criticality are described in terms of versal deformations of

the ADE singularities. The coupling constant τ of deformed N = 2 theories is then

determined by elliptic curves in the form of (2.1) where the explicit forms of polynomials

4



E8 E7 E6 D4 A2 A1

h 30 18 12 6 3 2
qy 15 9 6 3 3/2 1
qx 10 6 4 2 1 2/3
qz 6 4 3 2 3/2 4/3

Table 2: Degree of variables

f and g are now specified by the ADE singularity types. We have

E8 : f = w2z
3 + w8z

2 + w14z + w20, g = z5 + w12z
3 + w18z

2 + w24z + w30, (2.4)

E7 : f = z3 + w8z + w12, g = w2z
4 + w6z

3 + w10z
2 + w14z + w18, (2.5)

E6 : f = w2z
2 + w5z + w8, g = z4 + w6z

2 + w9z + w12, (2.6)

D4 : f = z2 + w̃4, g = w2z
2 + w4z + w6, (2.7)

A2 : f = w2, g = z2 + w3, (2.8)

A1 : f = z, g = w2, (2.9)

where the wq are deformation parameters. Here z is understood as the gauge invariant

expectation value which parametrizes the vacuum moduli of N = 2 theory. In the brane

picture z is a coordinate of the position of the D3-brane probe on P1. In the cubic (2.1)

with (2.4)-(2.9) we take y2 to be of degree h with h being the Coxeter number ofG = ADE

(see Table 2). Then x, y, z have the degree qx, qy, qz as given in Table 2 and wqi has the

degree qi = ei +1 where ei is the i-th exponent of G. Note here that qx + qz = qy +1 and

2qy = h. The value of qz gives the scaling dimension of the expectation value z [8, 4].

Notice that only in the D4 theory the coupling constant τ is marginal, and hence the

curve may incorporate the τ -dependence. This is allowed since x and z have the same

degree qx = qz = 2 which holds only for the D4 case. In fact the Seiberg-Witten (SW)

curve for the D4 theory obtained originally in [6] depends on both τ and four bare quark

masses m1, m2, m3, m4. It is not difficult to work out how the SW curve in [6] is related

to our D4 curve (2.7). Let us write down the SW curve presented in (17.58), section 17
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of [6]†

Y 2 = X(X − αZ)(X − βZ) + aX2 + bX + cZ + d, (2.10)

where we have used Z instead of u to denote the adjoint Higgs expectation value and

a = (α− β)2u2/4, b = −(α− β)2αβu4/4 + iαβ(α2 − β2)ũ4/4,

c = −i(α− β)α2β2ũ4/2, d = (α− β)2α2β2u6/4,

α = −ϑ4
3(τ), β = −ϑ4

4(τ),

ϑ3(τ) =
∑

n∈Z
qn

2/2, ϑ4(τ) =
∑

n∈Z
(−1)nqn

2/2, q = e2πiτ . (2.11)

Here the D4 invariants made of quark masses are defined by

u2 = −
∑

a

m2
a, u4 =

∑

a<b

m2
am

2
b ,

u6 = −
∑

a<b<c

m2
am

2
bm

2
c , ũ4 = −2im1m2m3m4. (2.12)

Making a change of variables

X = −αβx, Y = αβ(α− β)y/2, Z = i(α− β)z/2− (α+ β)x/2, (2.13)

we see that (2.10) becomes

y2 = xz2 + x3 + u2x
2 + u4x+ ũ4z + u6 (2.14)

which is nothing but the standard form of deformations of the D4 singularity. We next

replace x by x− u2/3 and shuffle the D4 invariants as

u2 = −3w2, u4 = w̃4 + 3w2
2,

u6 = w6 − w2w̃4 − w3
2, ũ4 = w4. (2.15)

Then we obtain the D4 curve with (2.7).

†In writing (2.10) we have replaced ma by ma/2 in (17.58) of [6]. This is necessary to agree with
section 16 of [6]. See section 17.4 of [6].
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3 BPS mass formula

Having obtained the SW curve for N = 2 theory on a D3-brane probe, we next discuss

the BPS mass formula. In the brane probe approach, BPS states on the D3-brane world

volume are geometrically realized as Type IIB strings, or more generally string junctions

obeying the BPS condition. According to [18], junctions are specified by asymptotic

charges (p, q) and a weight vector of G = ADE. Denoting a junction as J we have [18]

J = pωp + qωq +
rank G∑

i=1

aiωi, (3.1)

where ω
p and ω

q are junctions which are singlets under G with asymptotic charges (1, 0)

and (0, 1) respectively, and the ωi with zero asymptotic charges are junctions correspond-

ing to the fundamental weights of G. Here the ai are the Dynkin labels representing a

weight vector. The BPS condition on J is described as [10, 11]

(J.J)− GCD(p, q) ≥ −2, (3.2)

where ( . ) stands for the bilinear form on the junction lattice [18].

The BPS junction with (p, q) charges can end on the D3-brane and realizes the BPS

state with electric p and magnetic q charges in the world volume N = 2 theory. Sen has

first figured out this and, furthermore, shown how the SW BPS mass formula in the D4

theory is obtained from the mass formula for a (p, q) string in Type IIB theory [19]. His

proof is easily extended to the general ADE case. For this, let us recapitulate the basic

elements in the SW theory [20, 6]. The SW differential λ associated with an elliptic curve

has to obey
∂λ

∂z
= κ

dx

y
+ d(∗) (3.3)

with a normalization constant κ. The SW periods are then given by

a(z) =
∮

α
λ, aD(z) =

∮

β
λ, (3.4)

where α and β are two homology cycles on a torus. The N = 2 central charge for a BPS

state with charges (p, q) reads

Z = pa(z) + qaD(z) +
1√
2

∑

a

sama, (3.5)

7



where the ma are the bare mass parameters and the sa are the global abelian charges.

The BPS mass is then given by

m =
√
2|Z|. (3.6)

Let us now recall the standard elliptic function formula for the discriminant of the

cubic

∆(z) = −220
(

π

2ω1

)12

η(τ)24, (3.7)

where η(τ) is the Dedekind eta function and 2ω1 is the period along the α-cycle

2ω1 =
∮

α

dx

y
. (3.8)

We thus verify the crucial formula from (3.7) that

da(z) = κπ(−1)
1

122
5

3η(τ)2∆(z)−
1

12dz. (3.9)

In Type IIB theory on P1, on the other hand, the mass of a (p, q) string stretched

along a path C is given by

mp,q =
∫

C
Tp,qds, (3.10)

where the tension of a (p, q) string reads

Tp,q =
1√
Im τ

|p+ qτ | (3.11)

and the line element is given in terms of the metric

ds2 = Im τ
∣∣∣η(τ)2∆(z)−

1

12dz
∣∣∣
2
. (3.12)

A BPS state with a mass mBPS
p,q is obtained by choosing a curve C so that C is a geodesic.

Then, following [19], one can show mBPS
p,q ∝ m with the aid of (3.9).

The BPS junctions are lifted to holomorphic curves in F/M theory compactified on

an elliptically fibered K3 surface. From this viewpoint, it is interesting to see that the

expression (3.1) of a junction looks quite similar in form to the central charge (3.5). We

may think of the α and β cycles as the projection of the ω
p and ω

q junctions on the x-

plane. It is obscure, however, how to understand the bare mass term in (3.5) in the light

of the third term of (3.1) which consists of the junctions associated to the fundamental
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weights. In fact there is an important subtlety here. In massive theory, the global abelian

charges sa in (3.5) carry only “constant parts” of the physical abelian charges [21]. The

periods a, aD can also produce terms of constants multiple of bare masses [21, 22]. These

terms can arise in the period integrals in massive theory since the SW differential has the

poles with residues proportional to bare masses [23]. In other words, to determine the

abelian charges appearing explicitly in the N = 2 central charge, one has to analyze the

meromorphic properties of the SW differential carefully.

4 Residues of the Seiberg-Witten differential

In this section our purpose is to discuss some general properties of the SW differential

λ associated to our ADE elliptic curves with (2.4)-(2.9) for the mass deformed ADE

theories. The differential λ satisfies (3.3) where a normalization constant κ will be fixed

later on. In order to find λ we first follow section 17.1 of [6]. Let X be a complex surface

defined by y2 = W (x, z;wi) as in (2.4)-(2.9). A holomorphic two-form Ω on the surface

reads

Ω = κ
dx ∧ dz

y
. (4.1)

We wish to rewrite the condition (3.3) in terms of Ω. To do so, note that, for λ = a(x, z)dx,

(3.3) is written as

κ
dx

y
=

∂a(x, z)

∂z
dx+

∂F (x, z)

∂x
dx, (4.2)

where F (x, z) has appeared from the total derivative term in (3.3). Define a one-form

λ̃ = −a(x, z)dx + F (x, z)dz, then (3.3) is succinctly written as

Ω = dλ̃. (4.3)

This means that there exists a smooth differential λ̃ obeying (4.3) if and only if the

cohomology H2(X,C) is trivial.

Suppose now that H2(X,C) is non-trivial, and let the [Ca] linearly span H2(X,C).

The Poincaré dual of [Ca], which is a complex curve, is a non-trivial homology cycle in

X . In this case, the relation (4.3) is modified to be

Ω = dλ̃− 2πi
∑

a

ResCa
(λ̃) · [Ca]. (4.4)
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This describes the situation in which λ̃ has poles on the Ca with residues ResCa
(λ̃) and

[Ca] is a delta function supported on Ca.

There is an important relation between the period integrals of Ω and the residues [6].

We may evaluate the periods

πa =
∮

Ca

Ω (4.5)

upon compactifying X in an appropriate way. Then the cohomology class [Ω] is expanded

in terms of [Ca] as

[Ω] =
∑

a,b

πa(M
−1)ab[Cb], (4.6)

where Mab = ♯(Ca · Cb) is the intersection matrix which is invertible. Expressing (4.4) in

cohomology and comparing to (4.6) one obtains [6]

ResCa
(λ̃) = − 1

2πi

∑

b

(M−1)abπb. (4.7)

Let us further examine the periods πa. Since the defining equation for X is y2 =

W (x, z;wi), the period integral (4.5) takes the form

πa = κ
∮

Ca

dx ∧ dz

W (x, z;wi)1/2
. (4.8)

We recall here that in the Landau-Ginzburg description of two-dimensional ADE N = 2

superconformal field theories, W (x, z;wi) is identified with the superpotential [24]. Being

twisted, these theories turn out to be topological ones which can couple to topological

gravity. Then, exactly the same periods as (4.8) have appeared when we calculate the

one-point functions in two-dimensional gravity [25]. It is shown there that the periods πa

obey the Gauss-Manin differential equation
(

∂2

∂ti∂tj
−

r∑

k=1

Cij
k(t)

∂2

∂tk∂tr

)
πa(t) = 0, (4.9)

where r = rankG (G = ADE), ti (i = 1, · · · , r) are the flat coordinates judiciously made of

the wi and Cij
k(t) are the three-point functions in the ADE topological Landau-Ginzburg

models. It is then clear from (4.7) that ResCa
(λ̃) satisfy (4.9).

To find a class of solutions of the Gauss-Manin system (4.9), we introduce

PR
G (t, ui) = det(t− ΦR). (4.10)

10



This is the characteristic polynomial in t of degree dimR where R is an irreducible

representation of G. Here ΦR is a representation matrix of R and ui (i = 1, · · · , r) is the
Casimir built out of ΦR whose degree equals ei + 1 with ei being the i-th exponent of G.

(4.10) may be solved formally with respect to the top Casimir ur, yielding

ur = W̃R
G (t, u1, · · · , ur−1). (4.11)

If we define

WR
G (t, u1, · · · , ur) = W̃R

G (t, u1, · · · , ur−1)− ur, (4.12)

then WR
G (t, ui) is the single-variable version of the Landau-Ginzburg superpotential which

gives rise to the same topological field theory results with the standard ADE topological

Landau-Ginzburg models equipped with the superpotential W (x, z;wi) independently of

the representations R [26, 27]. Upon doing these computations one figures out how the

Casimirs ui are related with the deformation parameters wi, and hence with the flat

coordinates ti.

Let ma (a = 1, · · · , dimR) be an eigenvalue of ΦR, then (4.10) is written as

PR
G (t, u1, · · · , ur) =

dimR∏

a=1

(t−ma) (4.13)

with

ma = (λa, φ), (4.14)

where the λa are the weights of R and ( , ) stands for the inner product. Here

φ =
r∑

i=1

φiαi (4.15)

with αi being the simple roots of G. Expanding the RHS’s of (4.10) and (4.13) we see

how the Casimirs ui are expressed in terms of φi.

In [28], using the technique of topological Landau-Ginzburg models, it is shown that

the zeroes ma of the characteristic polynomial for any irreducible representation of the

ADE groups satisfy the Gauss-Manin system (4.9) for the ADE singularity. Therefore

we are led to take

ResCa
(λ̃) = γR ma(w), a = 1, · · · , dimR, (4.16)
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where γR is a normalization constant which may depend on R. The residues of the SW

differential thus transform in the representation R of the global symmetry G.

Having fixed the residues we now would like to determine two-cycles Ca on which the

poles are located. This is the issue to which we turn in the next section.

5 Seiberg-Witten differential

In [4, 5] the SW differentials in the cases of D4, E6, E7 and E8 have been constructed

by exploiting the idea of [6] that y2 in the cubic becomes a perfect square when x is at

the position of the pole. It was then found that one can obtain the SW differentials for

the adjoint in addition to the fundamental of the global symmetry group. We wish to

demonstrate that the procedure can be formulated in a more transparent and systematic

way. For this purpose, it will be shown in this section that the complex curves Ca on

which the SW differential has poles are given by the global sections of the bundle in an

elliptic fibration, and furthermore Ca have one-to-one correspondence with the irreducible

representations of the global symmetry group G = ADE. The relations among the global

sections in the elliptic fibration, characteristic polynomials and algebraic equations have

been studied by Shioda in his works on the theory of Mordell-Weil lattice [29].‡

Let (xa(z), ya(z)) be such sections, then poles are located at x = xa(z) on the x-

plane. The residues of the poles are given by (4.16) where ma are the eigenvalues of a

representation matrix R. Then, following Minahan and Nemeschansky [4, 5], we assume

the SW differential in R to take the form

λR = (c1z + c3B(w))
dx

y
+ c2

∑

a

ma(w)ya(z)

x− xa(z)

dx

y
, (5.1)

where B(w) = w2 for D4, w
2
2 for E7, w

3
2 for E8 and 0 otherwise, and constants ci will be

determined up to the overall normalization in such a way that λR obeys (3.3). Note that

given the degree 1 to ma(w), λR has the degree 1 which equals mass dimension of λR.

Since ma = (λa, φ) as in (4.14), the φi are r (= rank G) independent mass parameters in

the theory.

‡One of us (SKY) is indebted to K. Oguiso for informing of Shioda’s works.
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In the following we construct λR explicitly for the A1, A2, D4 and En (n = 6, 7, 8)

theories. The A1 case is too simple to exhibit the essence of our calculations. So we start

with the case of A2 which is not only instructive but tractable by hand. In the D4 and

En theories we have used the Maple software on computer to carry out our calculations.

The A1 result is given at the end of this section. A full detail of how to evaluate ∂λR/∂z

is presented in Appendix A. The data of characteristic polynomials for D4, E6, E7 and

E8 is collected in Appendix B.

5.1 The A2 theory

The A2 curve is written in terms of the coefficient polynomials (2.8). As a section let us

assume

x = v, y = z. (5.2)

with v ∈ C. Substituting this into the A2 curve it is obvious that v has to satisfy

v3 + w2v + w3 = 0. (5.3)

The LHS is in the form of the characteristic polynomial P 3

A2
(t) for 3 of SU(3) with two

Casimirs w2 and w3 under the relation t ∝ v. Thus v is determined by the three zeroes

ma of P 3

A2
(t). Let us set t = v/2,§ then we have the three roots va of (5.3) as va = 2ma

and

w2 = v1v2 + v2v3 + v3v1 = −4(φ2
1 + φ2

2 − φ1φ2),

w3 = −v1v2v3 = −8φ1φ2(φ1 − φ2) (5.4)

with v1 + v2 + v3 = 0. Putting v = va we observe that the section (5.2) belongs to 3 of

SU(3).

It is quite interesting that the characteristic polynomial naturally appears when the

global sections are determined. Accordingly the residues of the differential λR are fixed

as was discussed before. We thus write down λ3 in the form

λ3 = c1z
dx

y
+ c2

3∑

a=1

maya
x− xa

dx

y
, ma =

va
2
. (5.5)

§There is no a priori reason for fixing a constant c in the relation t = cv. Our choice t = v/2 will be
justified in section 7 by considering the renormalization group flows from (or to) the D4 theory. This
remark also applies to the following cases studied in this section.
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Note that the sum of the residues has to vanish. This is ensured since there also exist

poles with residues with opposite sign on the other sheet. These poles belong to 3̄ of

SU(3). Here (A.15) yields

∂λ3

∂z
=

2c1
3

dx

y
+ (A1x+ A0)

dx

y3
+ d(∗), (5.6)

where

A1 =
1

3
(2c1 − 3c2)w2, A0 =

1

2
(2c1 − 3c2)w3 (5.7)

from which we get c1 = 3c2/2.

We can find another section by assuming





x(z) =
z2

v2
+ b1z + b0,

y(z) =
z3

v3
+ r2z

2 + r1z + r0,
(5.8)

where v, bi, ri ∈ C . Plugging this in the A2 curve one obtains the relations

r20 − w3 − b30 − w2b0 = 0,

−3b1b
2
0 + 2r1r0 − w2b1 = 0,

(
2r2r0 + r21 − 3b21b0 − 1

)
v2 − 3b20 − w2 = 0,

2r0 +
(
2r2r1 − b31

)
v3 − 6b1b0v = 0,

−3b0 + 2r1v − 3b21v
2 + r22v

4 = 0,

2r2v − 3b1 = 0. (5.9)

Eliminating bi and ri we are left with

64v6 + 96w2v
4 + 36w2

2v
2 + 4w3

2 + 27w2
3 = 0, (5.10)

while the characteristic polynomial for 8 of SU(3) reads

P 8

A2
(t) = t2

(
t6 +

3

2
w2t

4 +
9

16
w2

2t
2 +

w3
2

16
+

27

64
w2

3

)
. (5.11)

Thus the six roots va of (5.10) are identified with the generically non-vanishing zeroes of

(5.11), i.e.

P 8

A2
(va) = 0, (5.12)
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from which we see that the section (5.8) belongs to 8 of SU(3).

For the adjoint section (5.8) the SW differential is constructed as

λ8 = c1z
dx

y
+ c2

3∑

a=1

maya
x− xa

dx

y
, ma = va. (5.13)

The non-zero weights of 8 read λ±1 = ±(1, 1), λ±2 = ±(−1, 2) and λ±3 = ±(2,−1)

in the Dynkin basis. We have from (4.14) and (5.12) that v±a = (λ±a, φ). Note that

v−a = −va (a = 1, 2, 3) give the residues of the poles on the other sheet. In terms of this

parametrization, one can find var1a explicitly from (5.9)

v1r11 = −3(φ1 − φ2), v2r12 = 3φ1, v3r13 = −3φ2. (5.14)

A0 and A1 in (A.16) are then evaluated to be

A1 = (2c1 − 9c2)w2, A0 = −3c2z
2 +

1

2
(2c1 − 9c2)w3. (5.15)

To manipulate the z2 term in A0 we note

z2 = W − 1

3
x∂xW − 2

3
xf − (g − z2) (5.16)

which yields
z2

W 3/2
=

1

3
√
W

− 1

W 3/2

(
2w2

3
x+ w3

)
+

2

3
∂x

(
x√
W

)
. (5.17)

Thus
∂λ8

∂z
=
(
2c1
3

− 2c2

)
dx

y
+

2c1 + 3c2
2

(
2w2

3
x+ w3

)
dx

y3
+ d(∗), (5.18)

and hence we obtain c1 = −3c2/2.

Finally it should be mentioned that the elliptic fibration (2.1) with (2.4)-(2.9) admits

the section in the form of (5.8) and, as we will see, (5.8) always corresponds to the adjoint

representation of G = ADE.

5.2 The D4 theory

Taking the curve (2.7) for the D4 theory we obtain the SW differential in parallel with

the A2 case though the computations become slightly more involved. Let us first examine

the section in the form {
x(z) = δz + r,
y(z) = vz + b.

(5.19)
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For δ = 0, plugging (5.19) in the D4 curve gives

v2 − r − w2 = 0, 2vb− w4 = 0, b2 − r3 − rw̃4 − w6 = 0. (5.20)

The elimination procedure results in

v8 − 3w2v
6 +

(
w̃4 + 3w2

2

)
v4 +

(
w6 − w2w̃4 − w3

2

)
v2 − w2

4/4 = 0. (5.21)

This polynomial may be compared to the characteristic polynomial for 8v (vector) of

SO(8)

P 8v

D4
(t) = t8 + u2t

6 + u4t
4 + u6t

2 − ũ2
4/4. (5.22)

Then (5.21) is equivalent to

P 8v

D4
(va) = 0 (5.23)

under the relation (2.15), showing that the section with δ = 0 is in the vector representa-

tion.

For δ = ±i, on the other hand, we observe

P 8s

D4
(va/2) = 0, for δ = +i,

P 8c

D4
(va/2) = 0, for δ = −i, (5.24)

where the characteristic polynomial for 8s (spinor) of SO(8) is given by

P 8s

D4
(t) = t8 + u2t

6 +
(
3

8
u2
2 −

u4

2
− 3i

2
ũ4

)
t4 +

(
−u2u4

4
+

u3
2

16
− i

4
u2ũ4 + u6

)
t2

−u2
2u4

32
− i

8
ũ4u4 −

ũ2
4

16
+

i

32
u2
2ũ4 +

u2
4

16
+

u4
2

256
(5.25)

and that for 8c (conjugate spinor) is obtained by replacing ũ4 by −ũ4. Thus the sections

with δ = ±i are in the spinorial representations.

The SW differential for the 8v section turns out to be

λ8v
= c1z

dx

y
+

c1
2

4∑

a=1

mv
aya

x− xa

dx

y
, mv

a = va, (5.26)

where va = (λa, φ) with λ1 = (1, 0, 0, 0), λ2 = (−1, 1, 0, 0), λ3 = (0,−1, 1, 1) and λ4 =

(0, 0,−1, 1) in the Dynkin basis, while for the 8s and 8c sections we obtain

λ8s
= c1

(
z +

3i

2
w2

)
dx

y
− c1

2

4∑

a=1

ms
aya

x− xa

dx

y
, ms

a =
va
2
, (5.27)
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where va = 2(λa, φ) with λ1 = (0, 0, 0, 1), λ2 = (0, 1, 0,−1), λ3 = (1,−1, 1, 0) and λ4 =

(−1, 0, 1, 0), and

λ8c
= c1

(
z − 3i

2
w2

)
dx

y
− c1

2

4∑

a=1

mc
aya

x− xa

dx

y
, mc

a =
va
2
, (5.28)

where va = 2(λa, φ) with λ1 = (0, 0, 1, 0), λ2 = (0, 1,−1, 0), λ3 = (1,−1, 0, 1) and λ4 =

(−1, 0, 0, 1). These SW differentials obey

∂λR
∂z

=
c1
2

dx

y
+ d(∗) (5.29)

for R = 8v, 8s and 8c.

As in the A2 theory, (5.8) gives the section in 28 (adjoint) of SO(8). After bi and ri

are eliminated from the relations like (5.9), v is determined as the 24 non-zero roots ±va

(a = 1, · · · , 12) of
P 28

D4
(±va) = 0. (5.30)

Assuming the SW differential in the form

λ28 = (c1z + c3w2)
dx

y
+ c2

12∑

a=1

maya
x− xa

dx

y
, ma = va, (5.31)

we find c1 = c3 = 0 and
∂λ28

∂z
= −6c2

dx

y
+ d(∗). (5.32)

Thus there is no holomorphic piece in λ28 [5].

Finally we derive the differential λSW for the original SW curve (2.10) in theD4 theory.

For this let us first take λ8v
and make a change of variables (2.13)

x = − X

αβ
+

u2

3
, y =

2Y

αβ(α− β)
, z =

2Z

i(α − β)
+

i(α + β)

αβ(α− β)
X. (5.33)

Since

∂x = −α + β

2
∂Z − αβ∂X , (5.34)

one has to take care of the total derivative term in ∂λ8v
/∂z (see (A.15)) when converting

λ8v
into λ8v

SW . The result reads

λ8v

SW = c1

(
2Z − α + β

2
u2

)
dX

Y
− ic1

4∑

a=1

mv
aY

v
a

X −Xv
a

dX

Y
, (5.35)
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where Xv
a = −αβ(mv

a)
2 and Y v

a = [Y ]X=Xv
a
. In a similar vein we obtain from λ8s

and λ8c

that

λ8s

SW = c1

(
2Z +

α− β

2
u2

)
dX

Y
+ ic1

4∑

a=1

ms
aY

s
a

X −Xs
a

dX

Y
,

λ8c

SW = c1

(
2Z − α− β

2
u2

)
dX

Y
+ ic1

4∑

a=1

mc
aY

c
a

X −Xc
a

dX

Y
. (5.36)

These differentials obey
∂λR

SW

∂Z
= c1

dX

Y
+ d(∗) (5.37)

for R = 8v, 8s and 8c. Thus we set

c1 =

√
2

8π
(5.38)

according to the normalization adopted in [6].

5.3 The E6 theory

The global section which transforms in 27 of E6 is given by

{
xa(z) = vaz + ba,
ya(z) = z2 + raz + sa

(5.39)

with a = 1, · · · , 27 [29]. In fact, the elimination procedure yields

P 27

E6
(va) = 0. (5.40)

This reflects the well-known fact in classical algebraic geometry that the cubic surface in

P3 contains exactly 27 lines [30].

The SW differential associated with the 27 section is obtained as

λ27 = 36c2z
dx

y
+ c2

27∑

a=1

maya
x− xa

dx

y
, ma = va, (5.41)

where the poles with opposite residues on the other sheet transform in the 27 of E6. Upon

taking the derivative one gets

∂λ27

∂z
= 12c2

dx

y
+ d(∗). (5.42)
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In the E6 theory too, (5.8) yields the section in 78 (adjoint) of E6. We see that v

takes the values ±va (a = 1, · · · , 36) which correspond to the 72 non-zero roots of

P 78

E6
(±2va) = 0. (5.43)

Assuming the SW differential in the form

λ78 = c1z
dx

y
+ c2

36∑

a=1

maya
x− xa

dx

y
, ma = 2va, (5.44)

we find c1 = 0 and
∂λ78

∂z
= −24c2

dx

y
+ d(∗). (5.45)

As in the case of D4 the holomorphic piece is absent in λ78 [5].

5.4 The E7 theory

The global section in 56 of E7 is obtained by taking [29]
{

x(z) = cz + b,
y(z) = vz2 + rz + s.

(5.46)

We find after the elimination process that v is determined from the 56 non-zero roots

±2va (a = 1, · · · , 56) of
P 56

E7
(±2va) = 0. (5.47)

The SW differential associated with the 56 section turns out to be

λ56 = 48c2(z + w2
2)
dx

y
+ c2

28∑

a=1

maya
x− xa

dx

y
, ma = 2va, (5.48)

from which we get
∂λ56

∂z
= 12c2

dx

y
+ d(∗). (5.49)

The section given by (5.8) again corresponds to 133 (adjoint) of E7. We see that v

takes the values ±va (a = 1, · · · , 63) which yield the 126 non-zero roots of

P 133

E7
(±2va) = 0. (5.50)

We obtain the SW differential as

λ133 = −18c2z
dx

y
+ c2

63∑

a=1

maya
x− xa

dx

y
, ma = 2va, (5.51)

and
∂λ133

∂z
= −36c2

dx

y
+ d(∗). (5.52)
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5.5 The E8 theory

By counting degrees it is seen that there are no sections in the form of (5.39), (5.46).

This distinguishes the E8 case from E6 and E7, and corresponds to the fact that the

fundamental of E8 is identical with the adjoint. It is indeed proved by the elimination

procedure that the E8 curve possesses the section as in (5.8) which transforms in 248

of E8 [29]. As explained in [29], one can explicitly evaluate the resultant which appears

in the final step of the elimination process. The result is that v takes the values ±va

(a = 1, · · · , 120) which give the 240 non-zero roots of

P 248

E8
(±2va) = 0. (5.53)

The SW differential in 248 is then found to be

λ248 = −2c2(60z + w3
2)
dx

y
+ c2

120∑

a=1

maya
x− xa

dx

y
, ma = 2va (5.54)

and
∂λ248

∂z
= −60c2

dx

y
+ d(∗). (5.55)

5.6 The A1 theory

It is clear that the A1 curve admits the section

x = 0, y = v (5.56)

which transforms in 2 of SU(2) since v2 − w2 = 0. The SW differential in 2 is easily

obtained as

λ2 = c2

(
z

3
+

m1y1
x

)
dx

y
, (5.57)

where m1 = v1/2 =
√
w2/2 and y1 = v1. Thus we have

λ2 =
c2
2

(
2z

3
+

w2

x

)
dx

y
(5.58)

which obeys
∂λ2

∂z
=

c2
4

dx

y
+ d(∗). (5.59)
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The section in 3 of SU(2) is given by

x =
z2

v2
, y =

z3

v3
+

v

2
(5.60)

as in (5.8). Here v satisfies v2−4w2 = 0 while P 3

A1
(t) = t(t2−w2), and hence 3 is realized.

Correspondingly we find

λ3 = c2

(
−5z

6
+

m1y1
x− x1

)
dx

y

=
c2
2

(
−5z

3
+

z3 + 8w2
2

4w2x− z2

)
dx

y
, (5.61)

where m1 = v1/2 =
√
w2. This differential obeys

∂λ3

∂z
= −c2

dx

y
+ d(∗). (5.62)

6 The scaling limit

According to the results in the previous section, it is inferred that one can always construct

the SW differential λ in the fundamental as well as adjoint representations in general ADE

case. For D4, moreover, we have obtained λD4

8•
for the vector, spinor and conjugate spinor

of SO(8) which are permuted under the triality automorphism of D4. Thus there arises a

natural question whether the physics depends on representations chosen in constructing

the SW differential. In order to study this problem it is important to analyze how the

SW differential behaves under the renormalization group flow.

Let us analyze in great detail how the E6 SW differential reduces to the D4 SW

differential when we move simultaneously A- and C-branes out to infinity from the E6

seven brane background. When a A-brane is removed the E6 symmetry breaks down to

SO(10) × U(1). The E6 mass parameters φi are decomposed under the SO(10) × U(1)

subgroup as

φ1 = 2M1 + b1, φ2 = 4M1 + b2, φ3 = 6M1 + b3,

φ4 = 5M1 + b4, φ5 = 4M1, φ6 = 3M1 + b5, (6.1)

where the bi are the SO(10) mass parameters and M1 is the U(1) mass [31]. Here the

mass parameters are labeled as shown in the Dynkin diagrams (see Fig.1). Removing
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Figure 1: Dynkin diagrams

a C-brane induces the breaking of SO(10) to SO(8) × U(1). Under SO(8) × U(1) the

SO(10) mass parameters are decomposed into the SO(8) masses ci and U(1) mass M2 as

follows:

b1 = M2, b2 = M2 + c1, b3 = M2 + c2,

b4 = M2/2 + c3, b5 = M2/2 + c4. (6.2)

Upon sending A- and C-branes together to infinity we take the scaling limit [4]

M1, M2 → ∞,
M1

M2

= − α + β

6(α− β)
fixed, (6.3)

where the limit Mi → ∞ decouples two U(1) factors and the ratio with α, β defined in

(2.11) gives the value of the marginal gauge coupling constant in the D4 theory.

In order to see that the E6 curve reduces to the SO(8) SW curve (2.10) we first write

the E6 invariants wqi(φ) in terms of SO(8) masses ci

φ1 =
4

3
(α− 2β)M, φ2 =

2

3
(α− 5β)M + c1, φ3 = −4βM + c2,

φ4 = −2

3
(α + 4β) + c3, φ5 = −4

3
(β + α)M, φ6 = −2βM + c4, (6.4)

where M = −3M1/(α + β) = M2/(2(α − β)) and the explicit expressions of wqi(φ) in

terms of φi are given in [32] . Then making a change of variables

y = −iM3Y,

x = M2
(
−X − 1

12
(α− β)2u2 +

1

3
(α+ β)Z

)
,

z =
2

27
(β − 2α)(α− 2β)(α+ β)M3 +M

(
−1

2
Z +

1

24
(α + β)u2

)
(6.5)
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in the E6 curve and letting M → ∞, we obtain the SO(8) curve (2.10) where ma = mv
a =

(λa, c) with λa being a weight vector of 8v in section 5.2.

We next show explicitly that, in the limit (6.3), the E6 SW differential λE6

27 in 27 is

reduced to the sum of the D4 SW differentials in 8v, 8s, 8c we have constructed previously.

This corresponds to the fact that the fundamental representation 27 of E6 is decomposed

under the SO(8) subgroup into

27 = 8v ⊕ 8s ⊕ 8c ⊕ 1⊕ 1⊕ 1. (6.6)

Let us put (6.4), (6.5) in the E6 differential (5.41)

λE6

27
= c2

(
36z +

27∑

a=1

ma(φi)ya(z, φi)

x− xa(z, φi)

)
dx

y
. (6.7)

and let M → ∞, then we obtain

36z
1

i

dx

y
=
(
−3

8
(α+ β)(2α− β)(2β − α)M2 + 18u− 3

2
(α + β)u2(ci)

)
dX

Y
+O

(
1

M

)
.

(6.8)

The poles in the singlets of SO(8) go to infinity in this limit. Remember that the poles

appear pairwise on two sheets of the Riemann surface in such a way that the sum of

residues vanish. Indeed we have

∑

a∈S

1

i

maya
x− xa

dx

y

=
(
3

8
(α + β)(2α− β)(2β − α)M2 − 2Z +

1

6
(α + β)u2(ci)

)
dX

Y
+O

(
1

M

)
, (6.9)

where S denotes a set of SO(8) singlets, and hence the divergent pieces of (6.8) and (6.9)

cancel out.

The pole terms in 8v turn out to be

1

i

maya
x− xa

dx

y
= M

Aa
1(Z, ci) + Aa

2(Z, ci)
1
M

+O
(

1
M

)

X − Aa
3(Z, ci) + Aa

4(Z, ci)
1
M

+O
(

1
M

) dX
Y

, (6.10)

where Aa
i is a polynomial of Z and cj. Although this seems to be divergent at first sight,

the poles associated with weights λ and −λ in 8v coalesce at the same point, making
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these contributions finite in the limit M → ∞. It is verified that the sum over terms with

these weights ±λ of 8v becomes finite,

M
Aa

1 + Aa
2

1
M

+O
(

1
M

)

X − Aa
3 + Aa

4
1
M

+O
(

1
M

) dX
Y

+M
−Aa

1 + Aa
2

1
M

+O
(

1
M

)

X −Aa
3 − Aa

4
1
M

+ O
(

1
M

) dX
Y

=
−2Aa

1A
a
4

(X −Aa
3)

2

dX

Y
+

2Aa
2

X −Aa
3

dX

Y
+O

(
1

M

)
, (6.11)

where we found that Aa
3 is equal to the pole position Xv

a of λD4

8v
. Thus we get

∑

a∈8v

1

i

maya
x− xa

dx

y
→

4∑

a=1

(
−2Aa

1A
a
4

(X −Xv
a )

2

dX

Y
+

2Aa
2

X −Xv
a

dX

Y

)

=
4∑

a=1

(
d

(
2Aa

1A
a
4

X −Xv
a

1

Y

)
+

Aa
1A

a
4

X −Xv
a

1

Y 2

∂Y 2

∂X

dX

Y
+

2Aa
2

X −Xv
a

dX

Y

)

=
4∑

a=1


 1

X −Xv
a

Aa
1A

a
4
∂Y 2

∂X
+ 2Aa

2Y
2

Y 2

dX

Y
+ d

(
2Aa

1A
a
4

X −Xv
a

1

Y

)
 ,

(6.12)

where the sum on the RHS is taken over half of the weights of 8v. We can proceed further

by showing that

Aa
1(Z, ci)A

a
4(Z, ci) = −γv [Y

2]X=Xv
a
(Z, ci), (6.13)

and

γv

[
∂Y 2

∂X

]

X=Xv
a

− 2Aa
2 = 2imv

a [Y ]X=Xv
a
(Z, ci), (6.14)

where γv =
α+β
3αβ

.

Thus

∑

a∈8v

1

i

maya
x− xa

dx

y
→

4∑

a=1

(
1

i

2mv
a[Y ]X=Xv

a

X −Xv
a

dX

Y
− d

(
2γv[Y

2]X=Xv
a

X −Xv
a

1

Y

)
− Rv

a

)
, (6.15)

where

Rv
a =

γv
Y 2

[Y 2]X=Xv
a

∂Y 2

∂X
− Y 2

[
∂Y 2

∂X

]
X=Xv

a

X −Xv
a

dX

Y
. (6.16)

For the pole terms in 8s of SO(8) we obtain the result as in (6.15) except that we put

α → −α and β → β − α in γv in (6.16) in accordance with the triality transformation

and replace Xv
a and mv

a by Xs
a and ms

a for 8s respectively. Likewise, for the pole terms in

8c we let Xv
a → Xv

c , m
v
a → mc

a and β → −β and α → α− β in (6.15).

24



Finally we sum up the three pieces from 8v, 8s, 8c. In doing so, we observe that

∑

r=v,s,c

4∑

a=1

Rr
a = P1(Z, ci)

dX

Y
+ 2d

(
P1(Z, ci)X − P2(Z, ci)

Y

)
, (6.17)

where

P1 = 4Z − 1

3
(α+ β)u2(ci),

P2 = −2

3
(α + β)(α2 − αβ + β2)u4(ci)− 2i(α− β)(α2 − αβ + β2)ũ4(ci)

+
1

12
(α + β)3u2(ci)

2 − 4

3
(α2 − αβ + β2)u2(ci)Z +

4

3
(α+ β)Z2. (6.18)

As a result, we find in the scaling limit that the E6 SW differential in 27 is reduced to

the SO(8) ones as

λE6

27
→ ic2

(
12Z

dX

Y
− (α + β)u2(ci)

dX

Y
+ 2

∑

r=v,s,c

4∑

a=1

1

i

mr
a[Y ]X=Xr

a

X −Xr
a

dX

Y

)
+ d(∗)

= 8π
√
2ic2

(
λ8v

SW + λ8s

SW + λ8c

SW

)
+ d(∗), (6.19)

where λ8•

SW has been normalized as in (5.38).

We encounter here a somewhat curious situation; λE6

27 does not reduce to one of the

λ8•

SW , but the sum of λ8•

SW . In view of (6.6) and SO(8) triality, on the one hand, (6.19)

seems natural. Then one would say that picking up any one of λ8•

SW is sufficient to

describe the physics. Note, however, that the location of poles and their residues depend

on 8v, 8s, 8c, and it is not so obvious if the irrelevance of which 8 of SO(8) we choose

to construct the SW differential is really due to triality invariance which is inherent in

SO(8). In addition to this, the SW differential λE6

78 looks totally different from λE6

27 . This

is also the case in the D4 theory. In what follows we will study if the representation chosen

in constructing λ is relevant to the physics or not.

7 Universality of Seiberg-Witten periods

Having derived (6.19), how do we fix the normalization constant c2 for λE6

27? Let us first

point out that, under the renormalization group flows (2.2), the period integrals

∮ ∂λG
R

∂z
(7.1)
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index
A1 ℓ(3) = 4 ℓ(2) = 1
A2 ℓ(8) = 6 ℓ(3) = ℓ(3̄) = 1
D4 ℓ(28) = 12 ℓ(8v) = ℓ(8s) = ℓ(8c) = 2
E6 ℓ(78) = 24 ℓ(27) = ℓ(27) = 6
E7 ℓ(133) = 36 ℓ(56) = 12
E8 ℓ(248) = 60

Table 3: Index of representations. ℓ(adjoint)= 2h and ℓ(1) = 0.

exhibit the smooth limiting behavior at the generic points on the moduli space. Then we

obtain from (5.42) and (6.5) that c2 =
√
2

48πi
for λE6

27 . Eq.(6.19) is written as

λE6

27
→ 1

3

(
λ8v

SW + λ8s

SW + λ8c

SW

)
+ d(∗). (7.2)

We also observe that the residues of the poles of λE6

27 turn out to be

2πiResx=xa
(λE6

27
) =

1

k27

ma

2
√
2

(7.3)

with k27 = 6. Notice that the index of 27 (or 27) is equal to 6. The appearance of the

index of representations is not peculiar to this case. For example, in (5.49) and (5.52) we

see 12 = ℓ(56) and 36 = ℓ(133), respectively, where ℓ(R) is the index of the representation

R (see Table 3).

Now examining the SW differentials obtained for various instances in section 5 and

the renormalization group flows (see also [5, 6, 8]), we find that the residue should be

normalized as

2πiResx=xa
(λG

R) =
1

kR

ma

2
√
2
, ma = (λa, φ), (7.4)

where kR = ℓ(R), or kR = ℓ(R)/2 if the sum of the poles is taken over half of the (non-

zero) weights of R, and we use λR
SW for the D4 differential. Here the mass parameter

φ is normalized so that we have mv
a = (λa, φ) in the D4 theory along the flows (2.2).

This explains why we need to be a little careful to fix a numerical constant upon relating

ma and va in section 5. With this normalization of residues, it can be checked that the

two-form Ω in (4.1) is invariant under the successive flows (2.2). We also see that

∂λG
R

∂z
= κG

dx

y
, (7.5)
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where κG is independent of R as read off from section 5.

We claim that (7.4) is the correct normalization of the residue. Taking this for granted,

consider the renormalization group flow from the G theory to the G′ theory. In the G

theory, let the residues of the SW differential transform in the representation R of G. If

the R branches to ⊕iR′
i under G ⊃ G′, the pole terms of λG

R reduce to the sum of pole

terms each of which transforms in R′
i of G

′. As observed in the flow E6 → D4 we expect

that the pole terms belonging to non-singlets of G′ remain finite in the scaling limit which

implements the flow G → G′. If this is assumed to be the case, we obtain

λG
R −→

∑

R′

i
6=1

ℓ(R′
i)

ℓ(R)
λG′

R′

i
+ d(∗) (7.6)

by matching the normalization of residues. This behavior is actually observed in (6.19).

7.1 Irrelevance of representations

For a branchingR = ⊕iR′
i, we recall the identity ℓ(R) =

∑
i ℓ(R′

i).
¶ Then (7.6) may imply

that the period integrals of λG′

R′

i
are independent of R′

i. This may sound surprising, but

we now prove that the SW differentials in any representation yield the identical physics

result.

Since λG
R has the poles with nonzero residues, there is ambiguity in evaluating the

periods if we specify the cycles, along which λG
R is integrated, only in terms of the homology

class of the SW curve. Thus we consider the SW curve as the torus with punctures at the

location of the poles of λG
R. The homology class of this punctured torus has a basis α, β

and γa. Here γa goes around a pole at x = xa counterclockwise, and the cycles α and β

will be specified later.

Given λG
Rj

in the representation Rj , we define

aRj
(z, φ) =

∮

α
λG
Rj
, aDRj

(z, φ) =
∫

β
λG
Rj

(7.7)

and

f(z, φ) = aR1
− aR2

, fD(z, φ) = aDR1
− aDR2

. (7.8)

¶This identity holds for the regular embedding since the embedding index is unity. Every embedding
in the flows (2.2), (2.3) is regular.

27



It is an immediate consequence of (7.5) that f(z,m) = f(m) and fD(z,m) = fD(m).

When we loop around a singularity at z = zk on the z-plane, λG
R remains invariant but

the cycles undergo the monodromy

α → nα +mβ +
∑

a

laγa,

β → n′α +m′β +
∑

a

l′aγa, (7.9)

where the matrix
(
n m
n′ m′

)
is conjugate to T =

(
1 1
0 1

)
and l, l′ are some integers

which are non-zero when a cycle crosses a pole under a monodromy transformation. At

the singularity z = zk, therefore, we have a linear relation among aRj
, aDRj

and Res(λG
Rj
).

This in turn gives rise to a linear relation for f(m), fD(m) and the residues. A similar

consideration at different singularity, say at z = zk′ , yields another linear relation. These

two relations are linearly independent when two 7-branes at z = zk and at z = zk′ are

mutually non-local. Then we find

f(m) =
2∑

j=1

∑

aj

cajResx=xaj
(λG

Rj
), fD(m) =

2∑

j=1

∑

aj

c′ajResx=xaj
(λG

Rj
), (7.10)

where caj , c
′
aj

are some constants. Hence we have shown that f(m) and fD(m) are linear

in ma. In fact, if f(m) were not linear in ma, then for every z, we could have taken

1/f(m) = 0 in the codimension one subspace of the space of bare mass parameters. For a

generic value of z, however, f(m) may not be divergent, and hence f(m) should be linear

in m.

Let us now apply a Weyl transformations ma → m̃a under which λG
Ri

is left invariant.

The SW periods a(z,m) and aD(z,m), however, may exhibit a non-trivial behavior under

the Weyl reflection. This occurs if the Weyl reflection moves a pole of λG
R on the x-plane

across the α and/or β cycles. The SW periods, on the other hand, should beWeyl invariant

as gauge invariant expectation values. We thus prescribe that the positions of the cycles α

and β are fixed relatively to the poles in such a way that the relative positions of the cycles

and the poles do not change under a Weyl transformation. Since it is always possible to

take such α and β in the asymptotic region z ≫ ma of the moduli space, we henceforth

specify the cycles according to this prescription.‖ As a consequence of this, we see that

‖See [23] for an explicit example in the case of N = 2 SU(2) QCD with Nf = 2 massive quarks.
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f(m) = f(m̃) and fD(m) = fD(m̃). Remember here the fact that there are no Weyl

invariants which are linear in ma, and hence we obtain f(m) = fD(m) = 0. Therefore,

we conclude that the SW periods a, aD are independent of the choice of a representation

in constructing λG
R as long as the cycles α, β are fixed properly as described above.

7.2 Numerical check

One can numerically evaluate the period integrals and check that a and aD are independent

of the representation R of the residues of λG
R. In the case of A2 and D4, we express aR

and aDR for R = f(undamental) and adj(oint) in terms of standard elliptic integrals by

taking two cycles α, β as we prescribed above. With the use of Maple, we then obtain, for

example, af = −28.99673387 + 16.74790178 i and aadj = −28.99673386 + 16.74790178 i

in the A2 theory at z = 10, m1 = 1 − 0.2 i and m2 = −0.4 + 0.75 i. The error is

indeed extremely small compared to the ratio of z to mi. Varying the values of mi

we plot in Fig.2 the real and imaginary parts of af in the A2 theory for z = 10 and

m1 = 2x− 0.2 i, m2 = −0.4 + 1.5 i x. Computing the periods at various values of z and

mi, we have observed in both A2 and D4 theories that

af − aadj
af

< 10−8,
aDf − aDadj

aDf

< 10−8, (7.11)

where the differentials (5.26), (5.31) have been utilized in the D4 theory. Since the values

of a and aD change substantially as shown in Fig.2 upon varying parameters of the moduli

space, we believe that the RHS of (7.11) are numerical errors and really mean zero.

To summarize, the SW periods will jump by a constant given by the residue of λG
R if we

continuously deform the α, β cycles across a pole. Namely, the dependence of the periods

on the cycles cannot be absorbed by the redefinition of the periods among themselves.

Furthermore, since the positions of the poles and their residues are solely determined

by the representation R chosen to construct λG
R, how to fix the location of the cycles

relatively to the poles is a subtle issue. In spite of these, we have prescribed a way of

specifying the cycles, based on which the irrelevance of representations to the SW periods

is proved. To fix the BPS central charge, it remains to determine the constant piece of

the global abelian charges as mentioned in section 3. This will be possible once we locate
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Figure 2: The period a =
∫
α λ

A2

f in the fundamental of SU(3) is plotted for z = 10, m1 =
2x− 0.2 i, m2 = −0.4 + 1.5 i x .

the cycles along which λG
R is integrated. It is also important to study the monodromy

properties explicitly toward a full account of the BPS spectrum.

8 Flows to N = 2 SU(2) QCD with Nf ≤ 3

It is well known that in N = 2 SU(2) QCD with Nf fundamental quarks, the global

symmetry is enhanced to SO(2Nf) when the quarks are massless [6]. We now analyze

how the SW differentials in the Nf = 4 theory reduce to those in Nf < 4 theories.

8.1 Vector representation

Let us first take the Nf = 4 SW differential λ8v

SW in the vector representation of SO(8).

Upon taking the scaling limit αβ → 1, α+β → −2 andm4 → ∞ with (α−β)m4 = −Λ3/4

fixed [6], we obtain the Nf = 3 theory. In this limit the D4 curve (2.10), which can be

rewritten as

Y 2 = αβX

(
Z − (α− β)α2β2∏4

b=1mb + (α + β)X2

2αβX

)2

− (α− β)2

4αβX

4∏

a=1

(X+αβm2
a), (8.1)

becomes

Y 2 = X
(
X + Z +

m1m2m3Λ3

8X

)2

− Λ2

64X

3∏

a=1

(X +m2
a). (8.2)
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This is shown to be equivalent to the usual Nf = 3 curve by setting X = X ′ − Z

Y 2 = X ′2(X ′ − Z)− Λ2
3

64
(X ′ − Z)2 − Λ2

3

64
(m2

1 +m2
2 +m2

3)(X
′ − Z)

+
Λ3

4
m1m2m3X

′ − Λ2
3

64
(m2

1m
2
2 +m2

2m
2
3 +m2

1 m
2
3). (8.3)

Turning to the differential, one can verify that λ8v

SW in (5.35) with Xv
a = −αβm2

a and

Ya = −iαβma

(
Z +

(α− β)α2β2∏4
a=1ma + (α + β)α2β2m4

a

2α2β2m2
a

)
, (8.4)

yields the Nf = 3 SW differential

λ6v

D3
=

√
2

8π

(
2Z −X ′ − (m2

1 +m2
2 +m2

3)
) dX ′

Y
−

√
2

8π

3∑

a=1

m2
aZ − 1

8
m1m2m3Λ3 −m4

a

X ′ − Z +m2
a

dX ′

Y
(8.5)

which corresponds to the vector representation of SO(6).

Taking here the limit m3 → ∞ with Λ3m3 = Λ2
2 fixed, we have the Nf = 2 theory

with the curve

Y 2 = X ′2(X ′ − Z)− Λ2
2

64
(X ′ − Z) +

Λ2
2

4
m1m2X

′ − Λ4
2

64
(m2

1 +m2
2). (8.6)

The SW differential obtained from (8.5) turns out to be

λ4v

D2
=

√
2

8π

(
2Z − 2X ′ − (m2

1 +m2
2)
) dX ′

Y
−

√
2

8π

2∑

a=1

m2
aZ − 1

8
m1m2Λ

2
2 −m4

a

X ′ − Z +m2
a

dX ′

Y
. (8.7)

Next, in the limit m2 → ∞ with Λ2
2m2 = Λ3

1 fixed, we obtain the Nf = 1 curve from (8.6)

Y 2 = X ′2(X ′ − Z) +
Λ3

1

4
m1X

′ − Λ6
1

64
(8.8)

and the differential

λ2v

D1
=

√
2

8π

(
2Z − 3X ′ −m2

1

) dX ′

Y
−

√
2

8π

m2
1Z − 1

8
m1Λ

3
1 −m4

1

X ′ − Z +m2
1

dX ′

Y
. (8.9)

Finally, letting m1 → ∞ with Λ3
1m1 = Λ4

0 fixed, we arrive at the Nf = 0 theory with the

curve

Y 2 = X ′2(X ′ − Z) +
Λ4

0

4
X ′ (8.10)
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and the standard form of the differential

λYM =

√
2

8π
(2Z − 4X ′)

dX ′

Y
. (8.11)

Thus, under these renormalization group flows, we obtain the SW differentials in the

vector representation of SO(2Nf).

We see from the above that the residues of λ2nv

Dn
read

2πiRes
(
λ2nv

Dn

)
=

ma

2
√
2

(8.12)

for n ≤ 4, which agrees with (7.4) because k2nv
= 1, but differs from (17.1) of [6].∗∗ The

present result is the correct one since λYM derived through the successive flows from D4

coincides with that obtained in [33]. In order for this to hold, it is important that λ2nv

Dn

obeys
∂λ2nv

Dn

∂Z
=

√
2

8π

dX ′

Y
. (8.13)

Furthermore it is clear that the massless limit of λ2nv

Dn
is in agreement with the ones

obtained in [33].

8.2 Spinor representation

One may notice that the differentials λ2nv

Dn
do not look like those obtained in [6, 34, 23].

Our next task is to show that they are indeed derived from the Nf = 4 SW differentials

in spinors of SO(8) and their residues transform in the spinor representation of SO(2Nf)

with Nf ≤ 3.

First of all we note that the weights of 8s of SO(8) are given by

ms
1 =

1

2
(m1 +m2 +m3 +m4),

ms
2 =

1

2
(m1 +m2 −m3 −m4),

ms
3 =

1

2
(m1 −m2 +m3 −m4),

ms
4 =

1

2
(m1 −m2 −m3 +m4) (8.14)

∗∗Our result resolves the puzzle in section 17 of [6] why one has to replace ma by ma/2 in the final
form of the Nf = 4 curve derived from the consideration of the residues. Thus it is also required to make
this replacement in (17.1) of [6], yielding the correct result as we have obtained here.
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and ms
4+a = −ms

a. Note also u2 = −∑4
a=1 m

2
a = −∑4

a=1(m
s
a)

2. In λ8s

SW (5.27), one has

Xs
a = αZ − α(α − β)(1

4
u2 + (ms

a)
2). Under the flow D4 → D3 generated by taking the

scaling limit m4 → ∞, 8s of SO(8) is reduced to 4s + 4c of SO(6) where the weights of

4s are

m4s

1 = (m1 +m2 +m3)/2, m4s

2 = −(m1 +m2 −m3)/2,

m4s

3 = −(m1 −m2 +m3)/2, m4s

4 = (m1 −m2 −m3)/2 (8.15)

and the weights of 4c are m4c

a = −m4s

a . The positions Xs
a of the poles become

Xs
a = −Z − 1

4
m4s

a Λ3

− 1

m4

(
1

32
m4s

a Λ2
3 +

1

8
ZΛ3 +

1

16
Λ3

(
−

4∑

b=1

(m4s

b )2 + 4(m4s

a )2
))

+O

(
1

m2
4

)
,

(8.16)

from which we see that the poles are not sent to infinity. On the other hand, the residue

is evidently divergent. This gives rise to a divergent piece in the SW periods in the scaling

limit m4 → ∞. We note that this is a necessary divergence to make certain BPS states

decouple. To avoid this divergent behavior, though harmless, let us alternatively take the

differential 1
2
(λ8s

SW + λ8c

SW ). For this combination, we can evaluate the limit as performed

in the flow from E6 to D4. The result is

1

2
(λ8s

SW + λ8c

SW ) → λ4s

D3
+ dF (X ′, Z,m4s

a ), (8.17)

where

λ4s

D3
=

√
2

8π
(2Z −X ′)

dX ′

Y
−

√
2

8π

4∑

a=1

m4s

a
Λ3

32
(4Z − 2

∑4
b=1(m

4s

b )2 + 8(m4s

a )2 + Λ3m
4s

a )

X ′ + 1
4
m4s

a Λ3

dX ′

Y
(8.18)

and

F =

√
2

256π

1

Y

(
64X ′2 − 64(Z + Λ2

3)X
′ + 16m1m2m3Λ3

+2ZΛ2
3 + 64

4∑

a=1

[Y ]X′=− 1

4
m4s

a Λ3

X ′ + 1
4
m4s

a Λ3

)
. (8.19)

The differential (8.18) for the Nf = 3 theory indeed agrees with [34] and has the poles

with residues in the form of (7.4) since the index of 4s of SO(6) is 1.
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Next, taking the limit m3 → ∞ with Λ3m3 = Λ2
2 fixed to have the Nf = 2 theory, it

is shown that

λ4s

D3
→ λ2L2R

D2
+ d

(√
2
4X ′2 − 4ZX ′ +m1m2Λ

2
2

8πY
+

√
2

2π

2∑

a=1

[Y ]X′=− 1

8
Λ2

2

X ′ + 1
8
Λ2

2

1

Y

)
, (8.20)

where

λ2L2R

D2
=

√
2

4π
(Z −X ′)

dX ′

Y
−

√
2

4π


m2L

Λ2

2

4
m2L

X ′ + 1
8
Λ2

2

− m2R
Λ2

2

4
m2R

X ′ − 1
8
Λ2

2


 dX ′

Y

=
−
√
2

4π

Y dX ′

X ′2 − 1
64
Λ4

2

, (8.21)

which is in agreement with the one obtained in [6]. Here 4s of SO(6) is decomposed into

(2, 1) + (1, 2) of SU(2) × SU(2) (= Spin(4)) and the corresponding highest weights are

given by m2R = (m1 +m2)/2 and m2L = (m1 −m2)/2. Thus the residues of λ2L2R

D2
read

off from (8.21) become 1
2πi

m1±m2

2
√
2

, which is the well-known result [6].

In the limit m2 → ∞ with Λ2
2m2 = Λ3

1 fixed, we find the differential for the Nf = 1

theory

λ2s

D2
→ λ1s

D1
+ d

(√
2
−2X ′2 + 2ZX ′ −m1Λ

3
1 − Λ6

1/x

8πY

)
, (8.22)

where

λ1s

D1
=

√
2

8π
(2Z − 3X ′)

dX ′

Y
−

√
2

8π

m1Λ
3
1

4X ′
dX ′

Y
(8.23)

which again agrees with [34, 23].

Finally, we let m1 → ∞ with Λ3
1m1 = Λ4

0 fixed to obtain the Nf = 0 theory. In this

limit we see that the pole at X ′ = 0 in (8.23) turns out to be a double pole. Then, using

the Nf = 0 curve 1
X′

= 1
Y 2 (X

′2 − ZX ′ + 1
4
Λ4

0), we arrive at

λ1s

D1
→ λYM −

√
2

8π
d

(
−4X ′2 + 4ZX ′ − Λ4

0

2Y

)
. (8.24)

In this section, we have shown that the SW differentials in the Nf ≤ 3 theories can be

built from the vector as well as spinor representations of SO(2Nf). According to section

7 they describe the same physics in the Coulomb branch of N = 2 SU(2) QCD with

massive quarks. The SW differentials for Nf ≤ 3 in general take the form

λR
DNf

=

√
2

8π
(2Z − (4−Nf)X

′)
dX ′

Y
+ (pole terms). (8.25)

34



Note here that X ′dX ′/Y has double poles at infinity whose existence is characteristic of

the asymptotic freedom. It is interesting that simple poles of λR
DNf

due to a massive quark

become congruent to the double poles at infinity in the scaling limit Nf → Nf − 1.

9 Conclusions

In the framework of the F-theory compactification, we have written down the elliptic

curves for describing the N = 2 theories with ADE global symmetries on a D3-brane in

the Type IIB 7-brane background. The SW differentials λ have then been constructed

for the fundamental and adjoint representations of the ADE groups. It is shown that the

physics results are independent of the representation of λ. It is interesting to compare the

present result with what has been known in four-dimensional N = 2 Yang-Mills theory

with ADE gauge symmetries. For N = 2 ADE Yang-Mills theory the SW curves are

given by the spectral curves whose form depends explicitly on the representations R of

ADE. However, the physics of the Coulomb branch is equally described irrespective of R.

In [35] this is shown in terms of the universality of the special Prym variety known in the

theory of spectral curves [36]. This is seen more explicitly by analyzing the Picard-Fuchs

equations for the SW periods [28]. Therefore, the universality we found here is considered

as the global symmetry version of the universality in N = 2 Yang-Mills theory with local

ADE gauge symmetries.

It is clear in the framework of Type II string theory that the ADE global symmetries

on a D3-brane and the ADE gauge symmetries of four-dimensional Yang-Mills theory

have the common origin in the ADE singularities appearing in the degeneration of a K3

surface. In fact, if we replace the top Casimir wh by wh+ρ+Λ2h/ρ in (2.4)-(2.9), our ADE

curves are recognized as the equations for the ADE ALE space fibered over P1. Here ρ is

a complex coordinate of the base P1. This reflects the compactification of Type II string

theory on a K3 fibered Calabi-Yau threefold. From this point of view, our calculation for

the fundamental of E6 in section 5.3 is indeed equivalent to that in [37] to obtain the SW

curve for the N = 2 E6 Yang-Mills theory from the fibration of the E6 ALE space. Hence

our computations in section 5 can be viewed as the determination of the SW curves in the

fundamental and adjoint representations for N = 2 Yang-Mills theory with ADE gauge
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symmetries.

The global sections of an elliptic fibration in higher representations than the adjoint

may be found by constructing the meromorphic sections.†† The lattice structure hidden

in our explicit computations will be related to the lattice which arises in the Mordell-Weil

group. It will be interesting to formulate our present results in more precise mathematical

terms in view of the relation between the Mordell-Weil lattice and the ADE singularity

theory.

Finally, it is very interesting to analyze the BPS spectrum of the En theories using

our results. One application is to construct the junction lattice explicitly to describe the

BPS states. This can be done at least numerically as has been performed in N = 2

SU(2) theory [38, 39]. In the En theories the BPS spectrum possesses the rich structure

in comparison with the Dn≤4 theories [11]. For instance, BPS states in arbitrary higher

representations of the En groups are shown to exist on the basis of (3.2). Combining the

SW description properly formulated in the present paper and the junction approach will

be efficient to gain a deeper understanding of still mysterious four-dimensional N = 2

superconformal field theories with exceptional symmetry.
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Appendix A

We explain in detail how to evaluate ∂λR/∂z. For an elliptic curve

y2 = W (x, z) (A.1)

with

W (x, z) = x3 + f(z)x+ g(z), (A.2)

the SW differential is assumed to be

λR = (c1z + c3B(w))
dx

y
+ c2

∑

a

vaya(z)

x− xa(z)

dx

y
. (A.3)

Here (xa(z), ya(z)) are the global sections of an elliptic fibration (A.1) and va stand for

the generically non-vanishing zeroes of the characteristic polynomial for a representation

R of G

PR
G (va) = 0. (A.4)

Taking the derivative with respect to z, we obtain

∂λR
∂z

= c1
2(qz + qx)− h

2qz

dx√
W

+
c1

2qzW 3/2
LWdx− c3B(w)

2W 3/2
(x∂zf + ∂zg) dx

+
c2

2W 3/2

∑

a

(va(2∂zyaW − ya∂zW )− vaya∂zxa∂xW )
dx

x− xa

−∂x

(
c1qx
qz

x√
W

+ c2
∑

a

vaya∂zxa

(x− xa)
√
W

)
dx, (A.5)

where we have defined the Euler operator

L =
∑

i

qiwqi

∂

∂wqi

(A.6)

in making use of the scaling equation for W

qxx∂xW + qzz∂zW + LW = hW (A.7)

to rewrite the z∂zW term. Notice that

2∂zya = ∂zW (xa(z), z)

= ∂zxa[∂xW ]x=xa(z) + [∂zW ]x=xa(z). (A.8)
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Then the term with dx/(x− xa) in (A.5) is expressed as

c2
2W 3/2

∑

a

va(B1 +B2)

x− xa

dx√
Wa

, (A.9)

where Wa = W (xa(z), z) and

B1 = ∂zxa

(
W [∂xW ]x=xa(z) −Wa∂xW

)
,

B2 = W [∂zW ]x=xa(z) −Wa∂zW (A.10)

which vanish for x = xa(z). In fact, substituting (A.2) one finds

B1 = (x− xa)∂zxa

(
(x− xa)

2f − 3(x− xa)g + 3x2
ax

2 − 6xag + f 2
)
,

B2 = (x− xa)
(
xax(x+ xa)∂zf + (x2 + xax+ x2

a)∂zg + f∂zg − g∂zf
)
. (A.11)

Now, after some algebra, we get

∂λR
∂z

= c1
2(qz + qx)− h

2qz

dx√
W

+ ∂x(· · ·)dx

+

(
c1
2qz

(xLf + Lg)− c3B(w)

2
(x∂zf + ∂zg) + c2(h2x

2 + h1x+ h0)

)
dx

W 3/2
,

(A.12)

where

h2 =
∑

a

va∂zya,

h1 =
∑

a

va

(
xa∂zya −

3

2
∂zxaya

)
,

h0 =
∑

a

va

(
(x2

a + f)∂zya −
1

2
(∂zf + 3xa∂zxa)ya

)
. (A.13)

Using
x2

W 3/2
=

1

3W 3/2
(∂xW − f) = − f

3W 3/2
− 2

3
∂x

(
1√
W

)
, (A.14)

we arrive at
∂λR
∂z

=
c1
qz

dx

y
+ (A1(z)x+ A0(z))

dx

y3
+ ∂xF (x, z)dx, (A.15)

where we have used qx + qz = qy − 1, 2qy = h, and

A1(z) =
c1
2qz

Lf − c3
2
B(w)∂zf + c2h1,

A0(z) =
c1
2qz

Lg − c3
2
B(w)∂zg + c2

(
h0 −

1

3
h2f

)
, (A.16)
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F (x, z) = −
(
c1qx
qz

x+ c2
∑

a

vaya∂zxa

x− xa
+

2c2h2

3

)
1

y
. (A.17)

At this stage one has to calculate A1, A0 which depend on the explicit form of the section.

After tedious calculations for higher rank groups, the results are expressed in terms of the

deformation parameters wqi. Imposing A1 = A0 = 0 now brings about the overdetermined

system with respect to c1, c2 and c3. It is quite impressive that we can nevertheless find

the solution so as to determine ci up to an overall normalization factor.

When we deal with the section in the adjoint representation (5.8) we need one more

step of integrating by parts. This step produces an extra contribution to the term pro-

portional to dx/y as observed in the explicit computations in the text.

Appendix B

In this appendix, we present the explicit form of characteristic polynomials PR
G (t) for D4,

E6, E7 and E8 from which one can read off the relation between the Casimir invariants

and the deformation parameters.

First of all, the characteristic polynomial for 28 (adjoint) of D4 reads

P 28

D4
(t) = t4

(
t24 − 18w2t

22 + 135w2
2t

20 + (12w̃4w2 − 24w6 − 552w3
2)t

18

+(1359w4
2 − 10w̃2

4 − 114w2
2w̃4 + 30w2

4 + 198w2w6)t
16 + · · · · · ·

)
. (B.1)

Next, we give the characteristic polynomial for 27 of E6:

P 27

E6
(t) = t27 + 12w2t

25 + 60w2
2t

23 − 48w5t
22 + (168w3

2 + 96w6)t
21

−336w5w2t
20 + (294w4

2 + 528w2w6 + 480w8)t
19

−(1008w2
2w5 + 1344w9)t

18

+(336w5
2 + 1152w2

2w6 + 2304w2w8 + 144w2
5)t

17

−(1680w3
2w5 + 5568w2w9 + 768w5w6)t

16

+(252w6
2 + 1200w3

2w6 + 4768w2
2w8 + 608w2w

2
5

−1248w2
6 + 17280w12)t

15 + · · · · · · · · · , (B.2)

while P 27

E6
(t) is obtained by letting w5 → −w5 and w9 → −w9.
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For 78 (adjoint) of E6 we have

P 78

E6
(t) = t6

(
t72 + 48w2t

70 + 1080w2
2t

68 + (15152w3
2 − 576w6)t

66

+(8640w8 + 148764w4
2 − 22752w6w2)t

64

+(297216w8w2 − 418176w2
2w6 + 1087632w5

2 + 6048w2
5)t

62

+(−1071360w12 + 4749888w2
2w8 + 55872w2

6 − 4760352w3
2w6

+187584w2
5w2 + 6152776w6

2)t
60 + · · · · · · · · ·

)
. (B.3)

The characteristic polynomials for 56 and 133 (adjoint) of E7 are given by

P 56

E7
(t) = t56 − 22 · 36w2t

54 + 24 · 594w2
2t

52 + 26(72w6 − 6084w3
2)t

50

+28(−1800w2w6 + 60w8 + 43875w4
2)t

48

+210(21600w2
2w6 − 504w10 − 1008w8w2 − 238680w5

2)t
46

+212(−540w12 + 1022580w6
2 + 7008w2

2w8 + 10344w2w10

−165600w6w
3
2 + 540w2

6)t
44

+214(910800w4
2w6 − 3552120w7

2 + 7944w12w2 − 1092w8w6

−100824w2
2w10 − 20592w8w

3
2 + 3828w14 − 11592w2w

2
6)t

42

+216(−49284w2
2w12 + 630w2

8 + 620424w10w
3
2 + 22716w2w6w8

−3825360w6w
5
2 − 63468w2w14 + 10212345w8

2 − 3528w10w6

−38808w4
2w8 + 118692w2

2w
2
6)t

40

+218(683760w5
2w8 − 12656w2

8w2 − 24667500w9
2 + 1848w3

6

−771120w3
2w

2
6 − 29496w18 + 489288w2

2w14 − 2702280w4
2w10

+8760w12w6 − 224040w2
2w6w8 + 5024w10w8 + 12751200w6

2w6

+61824w2w6w10 + 145200w12w
3
2)t

38 + · · · · · · · · · , (B.4)

P 133

E7
(t) = t7

(
t126 − 22 · 108w2t

124 + 24 · 5616w2
2t

122 + 26(−144w6 − 187200w3
2)t

120

+28(14400w2w6 + 600w8 + 4492800w4
2)t

118

+210(−691200w2
2w6 + 1008w10 − 54144w8w2 − 82667520w5

2)t
116

+212(16200w12 + 1212456960w6
2 + 2337792w2

2w8 − 78144w2w10

+21196800w6w
3
2 + 5400w2

6)t
114

+214(−466329600w4
2w6 − 14549483520w7

2 − 1345728w12w2 − 59736w8w6

+2809344w2
2w10 − 64272384w8w

3
2 + 71544w14 − 518976w2w

2
6)t

112

40



+216(7834337280w6w
5
2 + 145494835200w8

2 + 53671104w2
2w12

+4816944w2w6w8 − 61360128w10w
3
2 + 1263144960w4

2w8

−5463792w2w14 + 23770368w2
2w

2
6 + 27900w2

8 − 210672w10w6)t
110

+218(2679792w18 + 199042752w14w
2
2 − 331440w12w6 − 1368980736w12w

3
2

−339328w10w8 + 14852352w10w6w2 + 886013952w10w
4
2 − 1824128w2

8w2

−184786752w8w6w
2
2 − 18885672960w8w

5
2 + 252624w3

6 − 690619392w2
6w

3
2

−104457830400w6w
6
2 − 1228623052800w9

2)t
108 + · · · · · · · · ·

)
. (B.5)

Finally, we write the characteristic polynomial

P 248

E8
(t) = t8

240∑

n=0

cnt
n (B.6)

for 248 (adjoint) of E8. In this case, we show only eight coefficients which are sufficient

to determine the relation between the Casimirs and the deformation parameters. They

are given by

c238 = 22 · 60w2,

c232 = 28(478170w4
2 + 720w8),

c228 = 212(47747700w6
2 + 15120w12 + 1030320w2

2w8),

c226 = 214(361791144w7
2 + 79200w14 + 17858880w3

2w8 + 753840w2w12),

c222 = 218(13257944700w9
2 + 2620800w18 + 293378400w3

2w12 + 5240640w2w
2
8

+2277007200w5
2w8 + 96593280w2

2w14),

c220 = 220(11040480w20 + 65910925080w10
2 + 123173712w2w18 + 1545977808w3

2w14

+3431681424w4
2w12 + 18595558800w6

2w8 + 128513424w2
2w

2
8

+2492208w8w12),

c216 = 224(419237280w24 + 1153992168420w12
2 − 35394408w2

12 + 4551984w3
8

+11556147624w2
2w20 + 42618310896w3

2w18 + 168171466680w5
2w14

+234127252800w6
2w12 + 24236204440w4

2w
2
8 + 2516521104w2

2w8w12

+749135368800w8
2w8 + 387688872w14w8w2),

c210 = 230(65945880000w30 + 39472177353840w15
2 + 5508702912024w24w

3
2

+15986969259936w20w5
2 − 3209804640w20w8w2

+28604105079744w18w
6
2 + 234901945584w18w8w

2
2

−4971002400w18w12 − 18339605640w2
14w2 + 250521815304w14w12w

2
2
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−422863200w14w
2
8 + 1528645019808w14w8w

4
2

+43713099157440w14w
8
2 − 521644115232w2

12w
3
2

+8050693680w12w
2
8w2 + 3139744251456w12w8w

5
2

+36016821822240w12w
9
2 + 71061462976w3

8w
3
2

+10597571701120w2
8w

7
2 + 68920453929600w8w

11
2 ). (B.7)
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