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AUTOMORPHISM GROUP OF k((t)):
APPLICATIONS TO THE BOSONIC STRING
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Abstract. This paper is concerned with the formulation of a non-
pertubative theory of the bosonic string. We introduce a formal
group G which we propose as the “universal moduli space” for
such a formulation. This is motivated because G establishes a
natural link between representations of the Virasoro algebra and
the moduli space of curves.
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1. Introduction

On the moduli space of smooth algebraic curves of genus g,Mg, one
can define a family of determinant invertible sheaves {λn|n ∈ Z}. In a
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2 J. M. MUÑOZ AND F. J. PLAZA

remarkable paper, Mumford ([Mu]) proved the existence of canonical
isomorphisms:

λn
∼
−→ λ

(6n2−6n+1)
1 ∀n ∈ Z

which have been studied in depth from different approaches.
For instance, within the frame of string theory, these isomorphisms

are one of the main tools in the explicit computation of the Polyakov
measure for bosonic strings in genus g ([BK, MM]). Proposals for
developing a genus-independent (or “non-pertubative”) formulation of
the theory of bosonic strings have been made by several authors (e.g.
[BR, Mo, BNS]).
In this paper we propose a “universal moduli space” as the main

ingrident for a non-perturbative string theory which is different from
those introduced by the above authors.
Following the spirit of previous papers ([AMP, MP]), where a “formal

geometry” of curves and Jacobians was developed (see [BF, P] for other
applications of these ideas), we introduce a formal group scheme G
representing the functor of automorphisms of k((t)) (see § 3); more
precisely, the points of G with values in a k-scheme S are:

G(S) = AutH0(S,OS)−algH
0(S,OS)((t))

The formal group scheme G might be interpreted as a formal mod-
uli scheme for parametrized formal curves. The canonical action of G
on the infinite Grassmannian Gr(k((t))dt⊗n) allow us to construct an
invertible sheaf, Λn, on G (for every n ∈ Z) endowed with a bitorsor
structure. Using a generalization of the Lie Theory for certain non com-
mutative groups (given in Appendix B), we prove that these sheaves
satisfy an analogous formula of the Mumford Theorem; that is, there
exist canonical isomorphisms (see Theorem 4.7):

Λn
∼
−→ Λ

(6n2−6n+1)
1 ∀n ∈ Z

To show that our formula is a local version of Mumford’s, rather than
a mere “coincidence”, we relate G and the moduli of curves by means
of infinite Grassmannians (see subsection 4.D for precise statements).
LetM∞

g be the moduli space of pointed curves of genus g with a given
parameter at the point (see Definition 4.9). Then, the action of G on
Gr(k((t))) induces an action, φ, on M∞

g . Moreover, given a rational
point X ∈M∞

g , the action induces a morphism of schemes:

G
φX−→M∞

g

Let φ̂X be the composite of the immersion of Ĝ (the formal completion
of G at the identity) into G, φX , and the projection M∞

g → Mg.
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Let (M∞
G )̂X be the formal completion of M∞

G at X . Then, from the

surjectivity of the map Ĝ → (M∞
G )̂X induced by φX (see Theorem

4.13), it follows easily that there exist isomorphisms:

φ̂∗
X(λn)

∼
−→ Λn ∀n ∈ Z

Finally, the last section offers a proposal on how to apply these results
to a non-perturbative formulation of the bosonic string. The explicit
development of these ideas and the geometric interpretation of partition
functions in terms of the geometry of the group G will be performed
elsewhere.

2. Background on Grassmannians

2.A. The Grassmannian Gr(k((t))). This section summarizes re-
sults on infinite Grassmannians as given in [AMP] in order to set no-
tations and to recall the facts we will need.
Below, V will always denote the k-vector space k((t)) and V + the

subspace k[[t]]. Let Bf be the set of subspaces generated by {ts0 , ts1, . . . }
for every strictly increasing sequence of integers s0 < s1 < . . . such that
si+1 = si + 1 for i >> 0. Let B denote the set of subspaces of V given
by the t-adic completion of the elements of Bf . We can now interpret
B as a basis of a topology on V . It is easy to characterize the neigh-
borhoods of 0 as the set of subspaces A of V such that there exists an
integer n >> 0 with tnk[[t]] ⊆ A and it is of finite codimension.
Now the pair (V,B) satisfies the following properties:

• the topology is separated and V is complete,
• for every A,B ∈ B, it holds that (A+B)/(A∩B) is finite dimen-
sional,
• if A,B ∈ B, then A+B,A ∩ B ∈ B,
• V/A = lim−→

B∈B

(B + A/A) for every A ∈ B.

and hence there exists a k-scheme, called the Grassmannian of (V,B)
and denoted by Gr•(V ), whose S-valued points is the set:




quasi-coherent sub-OS-modules L ⊆ V̂S such that for every point s ∈ S,

Lk(s) ⊆ V̂k(s) and there exists an open neighborhood U of s and A ∈ B

such that V̂U/LU + ÂU = (0) and LU ∩ ÂU is free of finite type





(k(s) is the residual field of s) where L̂T := lim←−(L/L∩AS)⊗OS
OT for

a submodule L of VS and a morphism of k-schemes T → S.
The very construction of Gr•(V ) shows that {FA | A ∈ B} is an

open covering by affine subschemes where FA is the k-scheme whose
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S-valued points are:
{
locally free sub-OS-modules L ⊆ V̂S such that LS ⊕ ÂS ≃ V̂S

}

From this fact one deduces (see [AMP]) that the complexes ofOGr•(V )-

modules L⊕ÂGr•(V ) → V̂Gr•(V ) are perfect (L being the universal object
of Gr•(V )) for every A ∈ B. Moreover, the Euler-Poincarè characteris-

tic of the complex L ⊕ ÂGr•(V ) → V̂Gr•(V ):

L 7−→ dim(L ∩ V +)− dim(V/L+ V +)

gives the decomposition of Gr•(V ) into connected components. The
connected component of characteristic 0 will be denoted by Gr(V ). It
is easy to show that these complexes are all quasi-isomorphic.
From the theory of [KM] on determinants, it follows that their de-

terminants are well defined and that they are isomorphic. The choice
of V + ∈ B now enables us to construct a line bundle on the Grass-
mannian as follows: on the connected component of characteristic n
consider the determinant of Det(L⊕ tnV̂ +

Grn(V ) → V̂Grn(V )). The result-
ing bundle will be called “the determinant bundle” and will be denoted
simply by DetV .

It is also known that given a complex L⊕ÂGr•(V )
δA→ V̂Gr•(V ) (A ∈ B),

the morphism δA gives a section of Det(L ⊕ ÂGr•(V ) → V̂Gr•(V ))
∗. By

fixing the basis {tn|n ∈ Z} of V one checks that the induced isomor-
phisms among determinants of these complexes are compatible (see
[AMP]). Using such isomorphisms the above-defined section gives a
section ΩA of Det∗V . The section defined on the connected component
of characteristic n by the determinant of the addition homomorphism
L⊕ tnV̂ +

Grn(V ) → V̂Grn(V ) will be denoted by Ω+.

2.B. The Linear Group Gl(V ). For each k-scheme S, let us denote

by AutOS
(V̂S) the group of automorphisms of the OS-module V̂S.

Definition 2.1.

• A sub-OS-module L ⊆ V̂S is said to be a B-neighborhood if there
exists a vector subspace A ∈ B such that ÂS ⊂ L and L/ÂS is
locally free of finite type.
• An automorphism g ∈ AutOS

(V̂S) is called B-bicontinuous if g(ÂS)

and g−1(ÂS) are B-neighborhoods for all A ∈ B.
• The linear group, Gl(V ), of (V,B) is the contravariant functor
over the category of k-schemes defined by:

S  Gl(V )(S) := {g ∈ AutOS
(V̂S) such that g is B-bicontinuous }
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Theorem 2.2. There exists a natural action, µ, of Gl(V ) on the Grass-
mannian, preserving the determinant bundle.

Proof. The first part is easy to show. It suffices to prove that g(L)
belongs to Gr•(V )(S) for an S-valued point L ∈ Gr•(V )(S) and an
arbitrary g ∈ Gl(V )(S) using that g is B-bicontinuous.
Note that given g ∈ Gl(V )(S) and an S-scheme, T , one has an

induced isomorphism V̂S/ÂS → V̂S/g(ÂS) for each A ∈ B. Twist-
ing by OT , and taking inverse limit over A ∈ B, one obtains an
OT -automorphism gT of V̂T , which due to the very construction is B-
bicontinuous. Moreover, the map:

Gl(V )(S)→ Gl(V )(T )

g 7→ gT

is functorial. So, for an element g ∈ Gl(V )(S) we have constructed gT ∈
Gl(V )(T ) for every S-scheme T ; hence, g yields an S-automorphism
of Gr•(V )S := Gr•(V ) ×k S. We have then constructed a functor
homomorphism:

Gl(V )→ Aut(Gr•(V ))

g 7→ g•

where Aut(Gr•(V ))(S) := AutS-sch(Gr•(V )S).
With the expression “preserving the determinant bundle” we mean

that g∗•p
∗
1Det ≃ p∗1Det⊗p∗2N (where pi denotes the projection onto the

i-th factor of Gr•(V )×k S) for a line bundle N over S. It is therefore
enough to prove the statement when S is a local affine scheme.
Recall that:

g∗•p
∗
1DetV ≃ Det

(
g∗•p

∗
1L⊕ g

∗
•p

∗
1ÂGr•(V ) → g∗•p

∗
1V̂Gr•(V )

)

for A ∈ B. Take A ∈ B such that ÂS ⊆ g−1(V̂ +
S ) and g−1(V̂ +

S )/ÂS are
free of finite type. Then, g induces an isomorphism:

g∗•p
∗
1DetV ≃ p∗1DetV ⊗Det

(
p∗1V̂

+
Gr•(V )/g

∗
•(p

∗
1ÂGr•(V ))

)∗

From the very construction of g• it follows that there is an isomor-
phism:

p∗1V̂
+
Gr•(V )/g

∗
•(p

∗
1ÂGr•(V )) ≃ p∗2

(
V̂ +
S /g(ÂS)

)

and the claim follows.

Theorem 2.3. There exists a canonical central extension of functors
of groups over the category of k-schemes:

0→ Gm → G̃l(V )→ Gl(V )→ 0
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and a natural action, µ̃, of G̃l(V ) over the vector bundle, V(DetV ),
defined by the determinant bundle lifting the action µ.

Proof. For an affine k-scheme S, define G(S) as the set of commutative
diagrams (in the category of S-schemes):

V(Det∗V )S
ḡ

−−−→ V(Det∗V )Sy
y

Gr•(V )S
g

−−−→ Gr•(V )S

where ḡ is an isomorphism and g ∈ Gl(V )(S) and the homomorphism
G → Gl(V ) by ḡ 7→ g. For an arbitrary scheme S define G(S) by
sheafication; that is, consider a covering {Ui} by open affine subschemes
of S and G(S) the kernel of the restriction homomorphisms:

∏

i

G(Ui)
−→
−→

∏

i,j

G(Ui ∩ Uj)

We have then obtained an extension:

0→
∏

Z

Gm → G → Gl(V )→ 0

since H0(Gr•(V )S,OGr•(V )S) =
∏

ZH
0(S,OS) ([AMP]).

Finally, define G̃l(V )(S) as the direct image of this extension by the
morphism

∏
Z Gm → Gm which maps {ai} to a0. Observe that for any

projection {ai} 7→ an the resulting extensions are isomorphic.

Let us compute the cocycle associated with this central extension.
For the sake of clarity we shall begin with the finite dimensional sit-
uation: V finite dimensional, {v1, . . . , vd} a basis, B consists of all fi-
nite dimensional subspaces and V + :=< vn+1, . . . , vd > (for an integer
0 ≤ n ≤ d). Then, Gr(V ) parametrizes the n-dimensional subspaces of

V . Let ḡ denote the morphism < v1, . . . , vn >→֒ V
g
→ V → V/V + for

an element g ∈ Gl(V ) (observe that ḡ consists of the first n columns
and rows of the matrix associated with g).
We now have the following exact sequence:

0→ Gm → G̃l(V )
p
→ Gl(V ) ≃ Aut(∧nV )→ 0

Let us consider the subgroup Gl+(V ) consisting of those automor-
phisms g ∈ Gl(V ) such that ḡ is an isomorphism. It is easy to check
that:

g 7−→
(
g, det(ḡ)

)
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is a section of p over Gl+(V ). The cocycle associated to the central
extension is given by:

c(g1, g2) = det
(
ḡ1 ◦ (g1 ◦ g2)

−1 ◦ ḡ2
)

The cocyle corresponding to the Lie algebra level follows from a
straightforward computation. Let Id+ǫiDi be a k[ǫi]/ǫ

2
i -valued point

of Gl(V ) (i = 1, 2). The very definition of the cocycle:

cLie(D1, D2)ǫ1ǫ2 = c(Id+ǫ1D1, Id+ǫ2D2)− c(Id+ǫ2D2, Id+ǫ1D1)

yields the expression:

cLie(D1, D2) = Tr(D+−
1 D−+

2 −D+−
2 D−+

1 ) (2.4)

where D+−
i : V + → V − :=< v1, . . . , vn > is induced by Id+ǫiDi ∈

Gl(V ) with respect to the decomposition V ≃ V − ⊕ V + (and, analo-
gously, D−+

i : V − → V +).
The case of (V = k((t)),B, V + = k[[t]]) and V − = t−1k[t−1] is very

similar and the same formulae remain valid.

3. The Automorphism Group of k((t)): G

This section aims at studying the functor (on groups) over the cat-
egory of k-schemes defined by:

S  G(S) := AutH0(S,OS)-algH
0(S,OS)((t))

where the group law in G is given by the composition of automorphisms
(here R((t)) stands for R[[t]][t−1] for a commutative ring R with iden-
tity; or, what amounts to the same, the Laurent developments in t with
coefficients in R).

3.A. Elements of G. Let us consider the following functor over the
category of k-schemes:

S  k((t))∗(S) :=
{
invertibles of H0(S,OS)((t))

}

The first result is quite easy to show:

Lemma 3.1. The functor homomorphism:

ψR : AutR-algR((t))→ k((t))∗(R)

g 7→ g(t)

induces an injection of G into the connected component of t, k((t))∗
1
.

Moreover, G(R) → k((t))∗
1
(R) is a semigroup homomorphism with re-

spect to the following composition law on k((t))∗
1
:

m : k((t))∗
1
(R)× k((t))∗

1
(R)→ k((t))∗

1
(R)

(g(t), h(t)) 7→ h(g(t))
(3.2)
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Theorem 3.3. The morphism ψR induces a natural isomorphism of
functors:

G
∼
−→ k((t))∗

1

Proof. The only delicate part of the proof is the surjectivity of ψR. The
idea is to relate G(R) with the group of automorphisms of R[[x]][y].
Let I be the ideal of R[[x]][y] generated by (x · y − 1), and let

AutI R[[x]][y] be the group:

{g ∈ AutR-algR[[x]][y] such that g(I) = I}

Since there is an isomorphism R[[x]][y]/I
∼
−→ R((t)) (which maps x to

t and y to t−1), one has a morphism AutI R[[x]][y] → AutR-algR((t)),
and a commutative diagram:

AutI R[[x]][y]
ψ̄R−−−→ R[[x]][y]

π
−−−→ R[[x]][y]/Iy ≃

y

AutR-algR((t))
ψR−−−→ R((t))∗1 −−−→ R((t))∗

where ψ̄R(f) := f(x).
Observe that the induced morphism:

π

({
series f(x, y) ∈ x · R[[x]]⊕ Rad(R)[y]

such that the coefficient of x is invertible

})
−→ R((t))∗1

is surjective. The claim being equivalent to the surjectivity of ψR, it is
then enough to show that:

{
series f(x, y) ∈ x · R[[x]]⊕ Rad(R)[y]

such that the coefficient of x is invertible

}
⊆ Im(ψ̄R)

Given an element x · f(x) +n(y) ∈ x ·R[[x]]⊕Rad(R)[y] where f(0)
is invertible, consider the following R-endomorphism:

φ : R[[x]][y]→ R[[x]][y]

x 7→ x · f(x) + n(y)

y 7→
y

f(x)
·

(
1 +

y · n(y)

f(x)

)−1

(which is well defined since f(x) ∈ R[[x]]∗ and n(y) is nilpotent).
Provided that φ is an isomorphism, it holds that φ(I) = I and that

ψ̄R(φ) = x · f(x) + n(y). To show that φ is actually an R-isomorphism
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of R[[x]][y], observe that φ = φ3 ◦ φ2 ◦ φ1 where φ1, φ2, φ3 are R-
isomorphisms of R[[x]][y] defined by:
{
φ2(x) = x · f(x)

φ2(y) = y




φ3(x) = x

φ3(y) =
y

f(x) ·
(
1 + y·n(y)

f(x)

)−1

{
φ1(x) = x+ (φ3 ◦ φ2)

−1(n(y))

φ1(y) = y

3.B. Formal Scheme Structure of G. Set an k-scheme S and an
element f ∈ k((t))∗(S). From [AMP] we know that the function:

S −→ Z

s 7→ vs(f) := order of fs ∈ k(s)((t))

is locally constant and that the connected component of t, k((t))∗
1
, is

identified with the set of S-valued points of a formal k-scheme, k((t))∗1.
One therefore obtains an isomorphism between the functor G and the
functor of points of the formal scheme k((t))∗1:

G(S)
∼
−→ k((t))∗1(S) =

{
series (art

r + · · ·+ a0 + a1t+ . . . )t such that

ar, . . . , a−1 ∈ Rad(R), a0 ∈ R
∗ and r < 0

}

(where R = H0(S,OS)).

3.C. Subgroups of G. Two important subgroups of G
∼
−→ k((t))∗1 are

the subschemes G+ and G− defined by:

G+(S) :=

{
t · (1 +

∑

i>0

ai t
i) where ai ∈ R

}

G−(S) :=




polynomials t · (ar t

r + · · ·+ a1 t
−1 + 1) such

that ai ∈ R are nilpotent and r arbitrary





respectively.
Let Ĝ (respectively Ĝ−, Ĝm and Ĝ+) be the completion of the formal

scheme G (G−,Gm and G+) at the point {Id}.

Lemma 3.4. The subgroups Ĝ−, Ĝm and Ĝ+ commute with each other
and:

Ĝ− · Ĝm · Ĝ+ = Ĝ

Proof. Recall that Hom(Spec(A), Ĝ) is the union of Hom(O/mn
O, A)

where O is the ring of G and mO is the maximal ideal corresponding
to the identity. It therefore suffices to show that:

1. Ĝ−(A), Ĝm(A) and Ĝ+(A) commute with each other,

2. Ĝ−(A) · Ĝm(A) · Ĝ+(A) = Ĝ(A),
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for each local and rational k-algebra A such that mn+1
A = 0 for n >> 0.

Let us proceed by induction on n. The case n = 1 is a simple
computation.

1. Let us prove that Ĝ−(A) and Ĝm(A) commute with each other.
Consider the following subgroup of G(A):

H(A) :=
{
ant

−n + . . .+ a0 with ai ∈ mA for i < 0 and a0 ∈ A
∗
}

and note that we have the group exact sequence:

0→ Ĥ(k[mn
A])→ Ĥ(A)

ρ
→ Ĥ(B)→ 0

where B = A/mn
A.

For an element h ∈ Ĥ(A) there exist h− ∈ Ĝ−(B) and h0 ∈

Ĝm(B) such that ρ(h) = ρ(h−◦h0); or what amounts to the same:

h−1
− ◦ h ◦ h

−1
0 ∈ Ĥ(k[mn

A])

The induction hypothesis implies that Ĥ(k[mn
A]) = Ĝ−(k[m

n
A]) ·

Ĝm(k[m
n
A]) and hence there exist h′− ∈ Ĝ−(k[m

n
A]) and h′0 ∈

Ĝm(k[m
n
A]) such that:

h−1
− ◦ h ◦ h

−1
0 = h′− ◦ h

′
0

and therefore:
Ĥ = Ĝ− · Ĝm

Analogously, one proves that Ĥ = Ĝm · Ĝ−.
The proofs of the other commutation relations are similar.

2. Note that g0 ◦ g− = g− ◦ g0 for g0 ∈ Ĝm(A) and g− ∈ Ĝ−(k[m
n
A])

and proceed similarly.

Theorem 3.5. The functor G is canonically a subgroup of Gl(V ).

Proof. Note that it suffices to show that G−(S),Gm(S) and G+(S) are
canonically subgroups of Gl(V )(S) for each k-scheme S, since:

• Ĝ = Ĝ− · Ĝm · Ĝ+,
• Ĝ− = G− and Ĝ+ ⊆ G+,
• G = Ĝ ·G+.

By the very definition of Gl(V ), it is enough to prove the case when
S is a local affine scheme, Spec(R).
The cases of Gm and G+ are straightforward since:

φ(tnR[[t]]) = tnR[[t]] ∀n

for φ ∈ Gm(S) or φ ∈ G+(S).
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Let us now consider φ ∈ G−(S). Let u(t) be such that φ−1(t) =
t(1 + u(t)). It then holds that:

φ−1(tr) = tr(1 + u(t))r = tr ·
r∑

i=0

(
r

i

)
u(t)i

Since u(t) is nilpotent, there exists s such that:

φ−1(trR[[t]]) ⊆ tsR[[t]]

in other words:
trR[[t]] ⊆ φ(tsR[[t]])

The Nakayama lemma implies that the family {φ(ts), . . . , φ(tr−1)}
generates φ(tsR[[t]])/trR[[t]]. Using the fact that φ ∈ G− one proves
that they are linearly independent; summing up, φ(tsR[[t]])/trR[[t]] is
free of finite type.

3.D. The Lie Algebra of G, Lie(G).

Theorem 3.6. There is a natural isomorphism of Lie algebras:

Lie(G)
∼
−→ k((t))∂t

compatible with their natural actions on the tangent space to the Grass-
mannian, TGr(V ). (From now on Derk k((t)) will denote k((t))∂t)

Proof. Take an element g(t) = t(1 + ǫg0(t)) ∈ Lie(G) (recall that by
definition Lie(G) = G(k[ǫ]/ǫ2) ×G(k) {Id}). Let us compute µ(g)(tm)
for m ∈ Z:

µ(g)(tm) = g(t)m = tm(1 + ǫg0(t))
m =

= tm(1 +mǫg0(t)) = (Id+ ǫ · g0(t)t∂t)(t
m)

It is now natural to define the following map:

Lie(G)→ Derk k((t))

t(1 + ǫg0(t)) 7→ g0(t)t · ∂t

and this turns out to be an isomorphism of k-vector spaces.
In order to check that this map is actually an isomorphism of Lie

algebras, let us compute explicitly the Lie algebra structure of Lie(G).
Given two elements gn(t) = t(1+ǫ1t

n) and gm(t) = t(1+ǫ2t
m) (where

ǫ2i = 0), we have:

gn(gm(t)) = gm(gn(t))(1 + (m− n)ǫ1ǫ2t
m+n)

that is:
[gm, gn] = (m− n)gm+n

Since [tm+1∂t, t
n+1∂t] = (m−n) · tm+n+1∂t, one concludes that the map

is in fact an isomorphism of Lie algebras.
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Let us check that the actions of these Lie algebras on TGr(V ) co-
incide. Fix a rational point U ∈ Gr(V ) and take an element g(t) =
t(1 + ǫg0(t)) ∈ Lie(G). Clearly, the image of (g, U) by µ lies on:

TUGr(V ) = Gr(V )(k[ǫ]/ǫ2) ×
Gr(V )(k)

{U} ≃ Homk(U, V/U)

which is associated with the morphism:

U →֒ V
·tg0(t)
−→ V → V/U

Consider an element D ∈ Derk k((t)). Then the image of (D,U) under
the action of Derk k((t)) on TGr(V ) is:

U →֒ V
D
−→ V → V/U

and the conclusion follows.

Let Vir denote the Virasoro algebra; that is, the Lie algebra with a
basis {{dm|m ∈ Z}, c} and Lie brackets given by:

[dm, c] = 0

[dm, dn] = (m− n)dm+n + δn,−m
(m3 −m)

12
c

By abuse of notation Vir and Virasoro will also denote the Lie alge-
bra given by lim←−

n

Vir /{dm|m > n}. Both algebras have a “universal”

central extension:

Ext1(k((t))∂t,C) = C · Vir

and this is the important feature for our approach (see [KR] Lecture 1,
[ACKP] 2.1, [LW]).

Definition 3.7. The central extension of G given by Theorem 2.3, G̃,
will be called the Virasoro Group.

Proposition 3.8. The Lie algebra of G̃, Lie(G̃), is isomorphic to the
Virasoro algebra, Vir.

Remark 1. Let us compute the cocycle associated with Lie(G̃). Let
Gl+(V ) be the subgroup of Gl(V ) consisting of elements g such that

g(FV +) = FV + . Since Ĝ is contained in Gl+(V ), one can use the

formula 2.4. Recall that a basis of Lie(Ĝ) is given by the set {gn(t) :=

t(1 + ǫtn)|n ∈ Z} since Lie(Ĝ) = Ĝ(k[ǫ]/ǫ2).
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The element of Gl+(V ) (a Z× Z matrix) corresponding to gm is:

(gm)ij =





1 if i = j

ǫ · j if i = j +m

0 otherwise

and the cocycle is therefore:

c(gm, gn) = δn,−m ·
n−1∑

j=0

j(j − n) = δn,−m ·
m3 −m

6

3.E. Central Extensions of G. We begin with an explicit construc-
tion of an important family of central extensions of G.
Fix two integer numbers α, β and consider the k-vector space Vα,β :=

tαk((t))(dt)⊗β. The natural isomorphism:

dα,β : V −→ Vα,β

f(t) 7→ tαf(t)(dt)⊗β

allows us to define a triplet (Vα,β,Bα,β := dα,β(B), V
+
α,β := dα,β(V

+)).
One has therefore an isomorphism:

Gr(V )
∼
−→ Gr(Vα,β)

Observe that the action of G on Vα,β defined by:

(
g(t), tαf(t)(dt)⊗β

)
7→ g(t)αf(g(t))(dg(t))⊗β = tα

(g(t)
t

)α
f(g(t))g′(t)β(dt)⊗β

induces an action on Gr(Vα,β) (by a straightforward generalization of
Theorem 3.5), and also in Gr(V ):

µα,β : G×Gr(V )→ Gr(V )

Note that µ0,0 is the action of G on Gr(V ) defined in the previous
section. Moreover, these actions are related by:

µα,β(g(t)) =

((g(t)
t

)α
· g′(t)β

)
◦ µ0,0(g(t))

where the first factor is the homothety defined by itself.
The Theorem 2.3 implies that there exists a central extension:

0→ Gm → G̃α,β → G→ 0
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corresponding to the action µα,β. Moreover, it follows from its proof

that G̃α,β consists of commutative diagrams:

V(Det∗V )
ḡ

−−−→ V(Det∗V )y
y

Gr(V )
µα,β(g)
−−−−→ Gr(V )

or equivalently:

G̃α,β = {(g, g̃) where g ∈ G and g̃ : µα,β(g)
∗DetV

∼
−→ DetV }

since µα,β(g)
∗DetV ≃ DetV for all g ∈ G. It is not difficult to show

that the extensions G̃α,β and G̃α′,β are isomorphic for every α, α′ ∈ Z.

Then, G̃0,β (respectively µ0,β) will be denoted by G̃β (µβ). The group

law of G̃β is:

(h, h̃) · (g, g̃) = (h · g, g̃ ◦ µβ(g)
∗(h̃))

since we have:

µβ(h · g)
∗DetV = (µβ(g)

∗ ◦µβ(h)
∗) DetV

µβ(g)
∗(h̃)

−→ µβ(g)
∗DetV

g̃
−→ DetV

These central extensions induce extensions of the Lie algebra Lie(G)
whose corresponding cocycles are:

cβ(m,n) = δn,−m ·
n−1∑

j=0

(j + (m+ 1)β)(j − n+ (n + 1)β)

= δn,−m ·
(m3 −m

6

)
(1− 6β + 6β2)

(3.9)

To obtain such a formula, one only has to check that the matrix corre-
sponding to µβ(gm) is:

(µβ(gm))ij =





1 if i = j

ǫ · (j + (m+ 1)β) if i = j +m

0 otherwise

Remark 2. It is worth pointing out that one can continue with this geo-
metric point of view for studying the representations of Lie(G) since
it acts on the space of global sections of the Determinant line bun-
dle which contains the “standard” Fock space. (For an explicit con-
struction of sections of Det∗V , see [AMP]). An algebraic study of the
representations of Vir induced by µα,β has been done in [KR].
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3.F. Line Bundles on G. Formula 3.9 may be stated in terms of line
bundles. For this goal, let us first recall from [SGA] the relationships
among line bundles, bitorsors and extensions.
Recall that a central extension of the group G by Gm:

0→ Gm → E → G→ 0

(E being a group) determines a bitorsor over
(
(Gm)G, (Gm)G

)
, which

will be denoted by E again.
Moreover, given two bitorsors E and E ′, one defines their product by

E
Gm

× E ′, which is the quotient of E × E ′ by the action of Gm:

Gm ×
(
E × E ′

)
→ E × E ′

(g, (e, e′)) 7→ (e · g, g · e′)

(where the dot denotes the actions on E and E ′).
From [SGA] §1.3.4 we know that the group law of E induces a canon-

ical isomorphism:

p∗1E
Gm

× p∗2E
∼
−→ m∗E (3.10)

of
(
(Gm)G×G, (Gm)G×G

)
-bitorsors (where pi : G × G → G is the pro-

jection in the i-th component and m the group law of G).
Conversely, a bitorsor E satisfying 3.10 and an associative type prop-

erty (see [SGA] for the precise statement) determines an extension of
G.
Observe that one can associate a line bundle to such an extension.

Given:

0→ Gm → E → G→ 0

consider the line bundle:

L := E
Gm

× A
1
k

where E is interpreted as a principal fiber bundle of group Gm and Gm

acts on A1
k by the trivial character and on E via the inclusion Gm ⊂

E . Further, the structure of E implies that there exists a canonical
isomorphism:

p∗1L⊗ p
∗
2L

∼
−→ m∗L (3.11)

One proves that the product of bitorsors corresponds to the tensor
product of line bundles; that is, for two extensions E and E ′ there exists
a canonical isomorphism:

L
E
Gm
× E ′

∼
−→ LE ⊗ LE ′
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Conversely, if L is a line bundle satisfying 3.11 and an associative
type property, then the principal fibre bundle Isom(OG,L) is a principal
fibre bundle of group Gm which can be endowed with the structure of
central extension such that the associated line bundle is L.

Definition 3.12. The invertible sheaf on G associated with G̃β will be
denoted by Λβ.

4. Main Results

4.A. Modular properties of the τ-function. Let us fix a point
X ∈ Gr(V ) and a non negative integer β. From Theorem 2.2 we know
that there exists Lβ, a line bundle over G, such that:

µβ
∗

•
p∗2DetV ≃ p∗2DetV ⊗p

∗
1Lβ (4.1)

where:
G×Gr(V )

µβ
−→ G×Gr(V )

p2
→ Gr(V )

Then, restricting to G×X and looking at sections we have:

Ω+(µβ(g)(X)) = lβ(g) · Ω+(X)

for a certain section lβ(g) of Lβ (we assume here that Ω+(X) 6= 0, so
that it generates (Det∗V )X).
The above identity is the cornerstone of the modular properties of

the τ -functions. However, let us give a more precise statement. As-
sume that the orbit of X under Γ (consisting of invertible Laurent
series acting by multiplication, see [AMP]) is contained in FV + . Note,
further, that Lβ may be trivialized. Then, with the above premises,
the following Theorem holds:

Theorem 4.2. There exists a function l̄β(g) on G, such that:

τµβ(g)(X) = l̄β(g) · τX

To finish this section let us offer a few hints on the explicit compu-
tation of lβ. The previous statement is to be understood as an equality
of S-valued functions (for a fixed k-scheme S and g ∈ G(S)).
However, in order to describe this isomorphism explicitly it suffices

to deal with the case of the universal automorphism, g, corresponding
to the identity point of G(G). Note that the following relation holds:

µβ(g) = g′ ◦ µβ−1(g)

(where g′ acts as a homothety) and observe that the proof of Theorem
2.2 implies that the existence of canonical isomorphisms:

µβ(g)
∗
•p

∗
2DetV ≃ µβ−1(g)

∗
•p

∗
2DetV ⊗p

∗
1(N) β ≥ 1

µ0(g)
∗
•p

∗
2DetV ≃ p∗2DetV ⊗p

∗
1(M)
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where:

• M = (∧V̂ +
G /g(ÂG))⊗ (∧V̂ +

G ÂG)
∗,

• N = (∧V̂ +
G /g

′ · ÂG)⊗ (∧V̂ +
G /ÂG)

∗,

(A ∈ B is locally choosen such that A ⊂ V +, g′ · ÂG ⊂ V̂ +
G and

g(ÂG) ⊂ V̂ +
G ). Thus, we obtain:

L∗
β = M ⊗Nβ (4.3)

and the computation of l̄β(g) := lβ(g)/lβ(1) (g ∈ G(S)) is now straight-
forward.

Remark 3. The above Theorem can be interpreted as the formal ver-
sion of Theorems 5.10 and 5.11 of [KNTY].

4.B. Central Extensions of G and Lie(G). Along the rest of this
section it will be assumed that k = C. Nevertheless, some results
remain valid for char(k) = 0. (We refer the reader to Appendix B for
notations and the main results on Lie theory for formal group schemes).

Theorem 4.4. The functor Lie induces an injective group homomor-
phism:

Ext1(G,Gm) →֒ Ext1(Lie(G), Ĝa)

Proof. Here Ext1(G,Gm) denotes the group of equivalence classes of

central extensions of G by Gm as formal groups, and Ext1(Lie(G), Ĝa)
denotes the group of equivalence classes of central extensions of Lie
algebras.
Given an extension of G, G̃, the restriction of the group functors

Gm, G̃ and G to the category Ca (Ĝm,
̂̃
G and Ĝ respectively) gives rise

to a class in Ext1(Ĝ, Ĝm). Observe that this map is injective. Recalling

that Lie(G) = Lie(Ĝ), Ĝa ≃ Ĝm and Theorem B.5, one concludes.

4.C. Some Canonical Isomorphisms.

Theorem 4.5.

Lβ ≃ Λβ

Proof. Observe that equation 4.1 implies that:

p∗1Lβ ≃ Isom
(
µβ

∗

•
p∗2DetV , p

∗
2DetV

)

and hence Lβ is the line bundle associated with the central extension

G̃β.

Theorem 4.6. There are canonical isomorphisms:

m∗Λβ
∼
−→ p∗1Λβ ⊗ p

∗
2Λβ ∀β ∈ Z
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Proof. This is a consequence of the subsection 3.F.

Theorem 4.7 (Local Mumford formula). There exist canonical isomor-
phisms of invertible sheaves:

Λβ
∼
−→ Λ

⊗(1−6β+6β2)
1 ∀β ∈ Z

Proof. This is a consequence of Theorem 4.4 and formula 3.9.

Remark 4. This Theorem is a local version of Mumford’s formula. The
next subsection will throw some light on the relation between this for-
mula and the original global one. It is worth pointing out that the
calculations performed in subsection 4.A throw light on the explicit
expression of the above isomorphism. This can be done with proce-
dures similar to those of [BM].

Corollary 4.8. Let H be the subgroup of G consisting of series
∑
i≥0 aiz

i

where a0 is nilpotent and a1 = 1.
There is a canonical isomorphism:

(L2|H)
⊗12 ≃ OH

(see [Se] §6 for explicit formulae).

4.D. Orbits of G: relation with the moduli space of curves.

Recall from [MP] the definition (which follows the ideas of [KNTY,
Ue]):

Definition 4.9. Set a k-scheme S. Define the functor M̃∞
g over the

category of k-schemes by:

S  M̃∞
g (S) = { families (C,D, z) over S }

where these families satisfy:

1. π : C → S is a proper flat morphism, whose geometric fibres are
integral curves of arithmetic genus g,

2. σ : S → C is a section of π, such that when considered as a
Cartier Divisor D over C it is smooth, of relative degree 1, and
flat over S. (We understand that D ⊂ C is smooth over S, iff for
every closed point x ∈ D there exists an open neighborhood U of
x in C such that the morphism U → S is smooth).

3. φ is an isomorphism of OS-algebras:

Σ̂C,D
∼
−→ OS((z))
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On the set M̃∞
g (S) one can define an equivalence relation, ∼: (C,D, z)

and (C ′, D′, z′) are said to be equivalent, if there exists an isomorphism
C → C ′ (over S) such that the first family goes to the second under
the induced morphisms. Let us define the moduli functor of pointed
curves of genus g, M∞

g , as the sheafication of M̃∞
g (S)/∼. We know

from Theorem 6.5 of [MP] that it is representable by a k-schemeM∞
g .

The following Theorems are now standard results:

Theorem 4.10. Let g, β be two non-negative integer numbers. The
“Krichever morphism”:

Kβ :M∞
g −→ Gr(k((t))(dt)⊗β)

(C, p, z) 7−→ H0(C − p, ω⊗β
C )

is injective in a (formal) neighborhood of every geometric point. The
image will be denoted byM∞

g,β.

Theorem 4.11. The action µβ of G on Gr(V ) induces an actionM∞
g,β.

Proof. Recall that G(R) = AutR−alg R((t)) and that the points of
M∞

g (R) are certain sub-R-algebras of R((t)) (R being a commuta-
tive ring with identity). We thus have that the Krichever morphism is
equivariant with respect to the canonical action of G onM∞

g and µ0 on
Gr(V ). This implies the β = 0 case. The claim is now a straightforward
generalization.

In order to study the deformations of a given datum, more definitions
are needed. First, letM′

g be the subscheme ofM∞
g defined by the same

conditions as in Definition 4.9 except that the third one is replaced by:

• z is a formal trivialization of C along D; that is, a family of
epimorphisms of rings:

OC −→ σ∗ (OS [t]/t
mOS[t]) m ∈ N

compatible with respect to the canonical projectionsOS[t]/t
mOS[t]→

OS[t]/t
m′

OS[t] (for m ≥ m′), and such that that corresponding
to m = 1 equals σ.

Analogously, we introduce the moduli space of pointed curves with an
n-order trivialization, Mn

g (n ≥ 1), as the k-scheme representing the
sheafication of the following functor over the category of k-schemes:

S  { families (C,D, z) over S }/ ∼

where these families satisfy the same conditions except for the third
which is replaced by:
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• z is a n-order trivialization of C along D; that is, an isomorphism:

OC/OC(−nD) −→ σ∗ (OS[t]/t
nOS[t])

The canonical projections M∞
g → M

n
g will be denoted by pn. Ob-

serve that the natural projectionsMm
g →M

n
g (m > n) render {Mn

g |n ≥
0} an inverse system and that M′

g is its inverse limit. In particular,
we have:

M′
g = lim←−

n

Mn
g

The deformation functor of a rational point X of M∞
g , DX , is the

following functor over Ca (local rational and artinian k-algebras):

A  M∞
g (A) ×

M∞

g (k)
{X}

Similarly, define D′
X (resp. Dn

Xn
), the deformation functor of X (resp.

Xn := pn(X)) inM′
g (resp. Mn

g ). Since all theM’s are schemes, the
corresponding deformation functors are representable by the comple-
tion of the local rings.

Lemma 4.12. Let X ∈ M′
g(k) be a triplet (C, p, z) with C smooth.

Then, the following sequence:

0→ H0(C − p,TC) → k((t))∂t → lim←−
n

H1(C,TC(−np))→ 0

(where TC is the tangent sheaf on C) is exact.

Proof. Let m,n be two positive integers. Let us consider the exact
sequence:

0→ OC(−np)→ OC(mp)→ OC(mp)/OC(−np)→ 0

Since z is a formal trivialization and p is smooth, it induces an isomor-
phism OC(mp)/OC(−np)

∼
−→ t−mk[[t]]/tnk[[t]]. Twisting the sequence

with TC and taking cohomology one obtains:

0→ H0(TC(−np))→ H0(TC(mp))→ t−mk[[t]]∂t/t
nk[[t]]∂t →

→ H1(TC(−np))→ H1(TC(mp))→ 0

since Op ⊗OC
TC ≃< ∂t >. Taking direct limit on m and inverse limit

on n, the result follows.

Theorem 4.13. Let k be a field of characteristic 0. Fix a rational
point X ∈M∞

g (k) corresponding to a smooth curve.
The morphism of functors:

Ĝ −→ DX

induced by Theorem 4.11 is surjective.
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Proof. Let OX be the local ring ofM∞
g at X . The statement is equiv-

alent to showing the surjectivity of the induced maps:

Ĝ(A)→ DX(A) = Spf(ÔX)(A)

for all A ∈ Ca. Now, Lemma A.2 reduces the problem to the case
A = k[ǫ]/ǫ2:

π : Ĝ(k[ǫ]/ǫ2)→ TXM
∞
g

(where T denotes the tangent space).

Observe that given X there exists an element g ∈ Ĝ such that the
transform of X under g, Xg, belongs toM′

g. Then, the proof is equiv-
alent to showing that:

TXgM′
g ⊆ Im π

From Lemma 4.12, it follows that the action of Ĝ(k[ǫ]/ǫ2) = k((t))∂t =
Lie(G) on k((t)) and that of Der(H0(C − p,OC)) = H0(C − p,TC) on
H0(C−p,OC) are compatible; further, the isotropy of X under k((t))∂t
is precisely H0(C−p,TC). One can now check that the above sequence
induces a map:

lim←−
n

H1(C,TC(−np)) →֒ TXM
∞
g

whose image is naturally identified with TXgM′
g = lim←−

n

TXn
Mn

g via the

Kodaira-Spencer isomorphism. And the Theorem follows.

Remark 5. Let us now compare Theorem 4.7 and the standard Mum-
ford formula. Let Mg denote the moduli space of genus g curves,
πg : Cg →Mg the universal curve, and ω the relative dualizing sheaf.
Let us consider the family of invertible sheaves:

λβ := Det(R•πg,∗ω
⊗β) β ∈ Z

Let p :M∞
g →Mg be the canonical projection. Then, it holds that:

K∗
β DetV

∼
−→ p∗λβ

Furthermore, choose a rational point X ∈ M∞
g and let pβ be the

composite:

Ĝ → Dβ
X → Mg

Then, it holds that there exist isomorphisms:

Λβ
∼
−→ p∗βλβ

The compatibility of these isomorphisms with those of the Mumford

formula, λβ
∼
−→ λ

⊗(1−6β+6β2)
1 , should follow from the proof Theorem 4.7

and the computations of [BM, BS].
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5. Application to a non-perturbative approach to bosonic

strings

Two standard approaches to Conformal Field Theories are based
on moduli spaces of Riemann Surfaces (with additional structure) and
on the representation theory of the Virasoro algebra, respectively. It is
thus natural to attempt to “unify” both interpretations (e.g. [KNTY]).
In our setting, subsections 3.D and 4.D unveil the important role

of the group G in both approaches. Motivated by this fact and by
the suggestions of [BR] and [Mo], we propose G as a “universal moduli
space” which will allow formulation of a non-perturbative string theory.
Let us remark that in the formal geometric setting developed in [MP],
the group G is the moduli space of formal curves.
Let us sketch how this construction should be carried out, although

details and proofs will be given in a forthcoming paper.
Let us consider the vector space Vd = C

d ⊗C C((t)). The natural
representation, µ1, of G on V1 induces a representation ofG on Vd, given
by µ1⊕ d. . .⊕µ1. Following the procedure given in § 3, it is easily proved
that this representation yields an action, ρd, of G on the Grassmannian
Gr(Vd) preserving the determinant bundle. The corresponding central
extension determines a line bundle Lρd on G with a bitorsor structure.
In order to clarify the physical meaning of this higher dimensional

picture, it is worth pointing out that the Fock space corresponding
to string theory in the space-time R2d−1,1 is naturally interpreted as
a subspace of H0(Gr(Vd),Det∗), the space of global sections of the
dual of the determinant bundle. Moreover, the actions of the Virasoro
algebra on the Fock space and that of Lie(G) on H0(Gr(Vd),Det∗) are
compatible.
The calculations in section 5 of [BR] can now be restated in the fol-

lowing form: there exists a canonical isomorphism of invertible sheaves:

Lρd
∼
−→ Λ⊗d

1

This isomorphism, together with the Local Mumford Formula (Theo-
rem 4.7), implies that Lρd and Λ2 are isomorphic if and only if d = 13
(complex dimension).

Observe that the group scheme G̃ carries a filtration {Gn|n ≥ 0},
where:

Gn(R) := {φ ∈ G̃(R)|φ(t) =
∑

i≥−m

ait
i with m ≤ n}

The restriction homomorphisms:

j∗n : H0(G,Λβ)→ H0(Gn,Λβ|Gn
)
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associated with the inclusions jn : Gn →֒ G give:

j∗ : H0(G,Λβ)→ lim←−
n

H0(Gn,Λβ|Gn
)

Let X be a rational point ofM∞
g . The action of G on X induces:

φng : Gn −→M
∞
g

which takes values in the deformation functor of X , DX . Moreover,
Gn → DX happens to be surjective for all n ≥ 3g − 3 (see Theorem
4.13). Denote by Fg ∈ H

0(G3g−3,Λ2|G3g−3
) the inverse image by φ3g−3

g

of the section of λ2 corresponding to the partition function of genus g.
Then, there exists a global section F ∈ H0(G,Λ2) such that j∗(F ) is
precisely {Fg}.
The relationship between hermitian forms on the canonical sheaf of

a complex manifold and holomorphic measures on them is well known.
The generalization of this relation to infinite-dimensional manifolds
would allow us to give a genus-independent Polyakov measure on G
constructed in terms of the above introduced F .

Appendix A. Deformation Theory

Let us recall some notations and give some results on deformation
theory as exposed in [Sc].
Let Ca be the category of local rational Artin k-algebras. An ad-

missible linearly topologized k-algebra O (see [EGA] §7) canonically
defines a functor from Ca to the category of sets:

A  hO(A) := Homcont(O, A)

(where A is endowed with the discrete topology). Observe that hO(A) =
Homk-alg(O, A) for a discrete k-algebra O.
The condition that hO consists of only one point is equivalent to

saying that O is local and rational.
The definition below is that given in [Sc] 2.2, which generalizes the

concept of “formal smoothness” of [Ma].

Definition A.1. A functor homomorphism F → G is smooth iff the
morphism:

F (B) → F (A)×G(A) G(B)

is surjective for every surjection B → A in Ca.

Remark 6. The following remarks merit attention:

• if F → G is smooth, then F (A)→ G(A) is surjective for all A in
Ca ([Sc] 2.4),
• hO → hO′ is smooth iff O is a series power ring over O′ ([Sc] 2.5),
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• hO is said to be smooth iff the canonical morphism hO → hk is
smooth.

The tangent space to a functor over Ca, F , is defined by:

tF := F (k[ǫ]/ǫ2)

Recall Lemma 2.10 of [Sc]: if it holds that:

F (k[V ⊕W ]) ≃ F (k[V ])× F (k[W ])

for arbitrary vector spaces V,W (where k[V ] is the ring k ⊕ V with
V 2 = 0), then F (k[V ]) (and in particular tF ) has a canonical vector
space structure such that F (k[V ]) ≃ tF ⊗ V . Observe that the functor
hO satisfies the above condition for all O.

Lemma A.2. Let φ : F := hOF
→ G := hOG

and F → hk be two
morphisms of functors over Ca such that:

• F → hk is smooth,
• the sets F (k) and G(k) consist of one element,
• tF := F (k[ǫ]/ǫ2)→ tG := G(k[ǫ]/ǫ2) is surjective,

then F → G is smooth (and hence surjective).

Proof. First, we claim that F (k[V ]) → G(k[V ]) is surjective for every
k-vector space V (k[V ] denotes the ring k⊕V in which V 2 = 0). Since
F (k[V ⊕W ]) ≃ F (k[V ]) × F (k[W ]) and G(k[V ⊕W ]) ≃ G(k[V ]) ×
G(k[W ]) for vector spaces V,W , Lemma 2.10 of [Sc] holds, and hence
there are canonical vector space structures on F (k[V ]) and G(k[V ])
such that they are isomorphic to tF ⊗ V and tG ⊗ V (in a functorial
way) respectively. Since tF → tG is surjective by hypothesis, the claim
follows.
Let A be an object of Ca and I ⊂ A an ideal such that I2 = 0. Then,

one has a commutative diagramm:

F (A)
φA−−−→ G(A)

ρF

y ρG

y

F (A/I)
φI−−−→ G(A/I)

where we can assume by induction over dimk A that φI is surjective
(since tF → tG is surjective).
Let (f, g) be an element of F (A/I)×G(A) such that φI(f) = ρG(g).

Since F → hk is smooth and O is local it follows that ρF is a surjection.
Let f̄ ∈ F (A) be a preimage of f . Then the images of φA(f̄) and g
under ρG coincide; both of them are φI(f). Note that ρ

−1
G (φI(f)) is an
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affine space modeled over Derk(OG, I); or what amounts to the same:

g − φn(f̄) ∈ Derk(OG, I)

Observe that the bottom arrow of the following commutative dia-
gramm:

Derk(OF , I) −−−→ Derk(OG, I)

≃

y ≃

y
F (k[I]) −−−→ G(k[I])

is surjective. Let D ∈ F (k[I]) be a preimage of g − φn(f̄).
It is now easy to verify that f̄ +D is a preimage of (f, g) under the

induced morphism:

F (A) −→ F (A/I)×G(A)

and the statement follows.

Appendix B. Lie Theory

This appendix aims at generalizing some results of Lie Theory for
the case of (infinite) formal groups. To this end, we recall some more
results of [Sc] and proceed with ideas quite close to those of [Ha] §14.

Definition B.1. A functor F from Ca to the category of groups will be
called a group functor. If, moreover, there exists a k-algebra O and an
isomorphism F ≃ hO, then F will be called a formal group functor.

Let Cgr and Cfor gr denote the categories of group functors and formal
group functors over Ca, respectively. Let C

0
for gr denote the full subcate-

gory of Cfor gr consisting of those F such that F (k) has only one element
and F is smooth.

Remark 7.

• Let F be a formal group functor over Ca. Then, the “tangent
space at the neutrum”:

Lie(F ) := F (k[ǫ]/ǫ2)×F (k) {1}

(which coincides with tF ) is a Lie algebra where the Lie bracket
is induced by the product of F .
• Finally, for a formal group functor and a morphism A → A/I
with I2 = 0 one has the following exact sequence of groups:

0→ F (k[I])→ F (A)→ F (A/I)→ 0
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Lemma B.2. Let char(k) = 0. Let F and G be two formal group
functors. Assume that F is smooth and that F (k) = {e} (one point).
Then, the canonical map:

Homgr(F,G)→ Homvect. sp.(tF , tG)

is injective.

Proof. Let A be an object of Ca and m ⊂ A its maximal ideal and n
such that mn+1 = 0. Let φ, ψ be in Homgr(F,G) such that the induced
vector space homomorphisms φ∗, ψ∗ from tF to tG coincide. One has
to prove that φ = ψ.
Let us first deal with the case n = 1. By Lemma 2.10 of [Sc], there

exist functorial isomorphisms F (A) ≃ tF ⊗ m and G(A) ≃ tG ⊗ m (m
as a k-vector space). It is now clear that both, φ and ψ, give the same
morphism F (A)→ G(A).
Now assume n ≥ 2. Using the Nakayama Lemma one obtains a

surjection:

Ar,n := k[x1, . . . , xr]/(x
n+1
1 , . . . , xn+1

r )→ A

and hence a commutative diagramm:

F (Ar,n) −−−→ F (A)

φ

y φ

y
G(Ar,n) −−−→ G(A)

and similarly for ψ. Observe that the top row is surjective since F is
smooth and Ar,n → A is surjective. Therefore, it suffices to prove the
statement for Ar,n.
Note that the injection Ar,n →֒ Ar·n,1 (char(k) = 0):

k[{xi | 1 ≤ i ≤ r}]/(xn+1
i )→ k[{xij | 1 ≤ i ≤ r, 1 ≤ j ≤ n}]/(x2ij)

xi 7−→ xi1 + . . .+ xin

induces two commutative diagramms (for φ and ψ):

0 −−−→ F (Ar,n) −−−→ F (Ar·n,1)y
y

0 −−−→ G(Ar,n) −−−→ G(Ar·n,1)

It is then enough to check the case of Ar,1. Let us proceed by induction
on r. The case r = 1 follows directly from the hypotheses.
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We claim that the the following diagramm is commutative:

0 −−−→ F (k[ker(p)]) −−−→ F (Ar,1)
pF−−−→ F (Ar−1,1) −−−→ 0

φp

y φr

y φr−1

y

0 −−−→ G(k[ker(p)]) −−−→ G(Ar,1)
pG−−−→ G(Ar−1,1) −−−→ 0

(and analogously for ψ). The morphisms pF and pG are surjective
since they have sections, because the natural inclusion Ar−1,1 →֒ Ar,1
is a section of the projection:

p : Ar,1 → Ar−1,1

xr 7→ 0

Bearing in mind that (ker p)2 = 0, the claim follows.
The first case, which we have already proved (the square of the max-

imal ideal is (0)), implies that the φp = ψp. The induction’s hypothesis
implies that φr−1 = ψr−1.
Now, recalling that both sequences split, one concludes that φr = ψr

as desired.

Let us now relate the study of group functors with that of Lie alge-
bras. Let CLie denotes the category of Lie k-algebras. Then, there is a
functor:

Lie : Cfor gr −→ CLie

F 7−→ Lie(F ) = tF

For a Lie k-algebra L define a functor on Ca:

A  L(A) := L⊗k mA

(the Lie bracket of L(A) is that of L extended by A-linearity).
Let CH(x, y) denote the Campbell-Hausdorff series (see, for instance,

[Ha] 14.4.15):

CH(x, y) = x+ y +
1

2
[x, y] +

1

12
[x, [x, y]] +

1

12
[y, [y, x]] + . . .

(B.3)

then the map:
L(A)× L(A)→ L(A)

(x, y) 7−→ CH(x, y)

(note that CH(x, y) is a finite sum since A is artinian) endows L(A)
with a group structure ([Ha] 14.4.13-16). Let us denote this group
functor by L

g. Moreover Lg → hk is smooth and L
g(k) consists of one

point. Finally, since CH(x, y) only depends on additions of iterated
Lie brackets one has that every morphism of Lie algebras L1 → L2
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induces a morphism of group functors Lg1 → L
g
2. In other words, there

is a functor:
G : CLie −→ Cgr

L 7−→ L
g

such that Lie ◦G = Id.

Example 1. It is now easy to prove that finite dimensional Lie algebras
are the Lie algebras of formal groups. Indeed, let L∗ be the dual vector
space of a given Lie algebra L. Then, it holds that:

Homcont(O, A) = L⊗k mA

where O := Ŝ•
L
∗ is the completion of the symmetric algebra, S•

L
∗,

with respect to the maximal ideal generated by L
∗.

It is now straightforward to see that Lg = hO and that:

Lie(hO) = (mO/m
2
O)

∗ = L

Lemma B.4. Let F be an object of C0for gr. The functor homomorphism
(which will be called exponential) defined by:

tF → F

D 7→ exp(D) :=
∑

i≥0

1

i!
Di

yields an isomorphism t
g
F ≃ F .

Proof. Note that the sum is finite since D ∈ tF (A) = tF ⊗ mA (for
A ∈ Ca) is of the type D =

∑
jmjDj (where mj ∈ mA and Dj ∈ tF )

and hence Di has coefficients in m
j
A. By the above construction, the

exponential is a group homomorphism since it holds that ([Ha] 14.14):

exp(D) · exp(D′) = exp(CH(D,D′))

In the same way that the exponential map has been defined a loga-
rithm can also be introduced. Now the conclusion follows trivially.

From all these results one has the main Theorem of this appendix
which is a version for (certain) non-commutative group functors of the
standard Lie Third Theorem.

Theorem B.5. The functor Lie renders C0for gr a full subcategory of
CLie.

Proof. This follows from the following two facts:

• if F,G ∈ Cgr have isomorphic Lie algebras tF ≃ tG, then they are
isomorphic. (Recall that there are group isomorphisms t

g
F ≃ F

and t
g
G ≃ G).
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• HomCgr(F,G) ≃ HomCLie
(tF , tG) (Lemma B.2 proves the injectiv-

ity and the equality Lie ◦G = Id the surjectivity).
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