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We rederive the nonrelativistic Lagrangian for the low energy dynamics of 1/4 BPS

dyons by considering the time dependent fluctuations around classical 1/4 BPS con-

figurations. The relevant fluctuations are the zero modes of the underlying 1/2 BPS

monopoles.
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Recently the 1/4 BPS dyonic configurations are constructed and their nature has been ex-
ploited in the N = 4 supersymmetric Yang-Mills theories [1, 2, 3, 4]. Since the supersymmetric
Yang-Mills theories arise as a low energy description of parallel D3 branes in the type IIB string
theory [5], the quantum 1/4 BPS states have the string interpretation as multi-pronged string [6].
In the classical field theory, the 1/4 BPS configurations can be viewed as a collection of 1/2 BPS
dyons positioned with respect to each other so that a balance of the Coulomb and Higgs forces is
achieved. The BPS equations satisfied by the classical 1/4 BPS configurations consist of the 1/2
BPS monopole equation and its gauge zero mode equation. The underlying 1/2 BPS configurations
are uniquely determined by the moduli coordinates, which in turn determine the solution of the
second BPS equation uniquely [1].

The low energy dynamics of 1/4 BPS monopoles has been explored in Ref. [7] and it is shown
that a specific potential is required in addition to the kinetic terms over the moduli space. The basic
ideas of the construction were as follows. In the limit where 1/4 BPS configurations are almost 1/2
BPS, it should be possible to rediscover the physics of 1/4 BPS configurations from the zero mode
dynamics of 1/2 BPS configurations. Since static forces exist between 1/2 BPS solitons in the case
of misaligned vacua [8], the simplest possibility is to add a potential term to the moduli space
dynamics. The potential is indeed uniquely determined from the given knowledge of the electric
charge and mass of the 1/4 BPS states. Here the result by Tong was particularly useful [9]. The low
energy Lagrangian has a BPS bound and its BPS configuration corresponds to the 1/4 BPS field
configuration [7]. For a simple case, quantum 1/4 BPS states of the corresponding supersymmetric
Lagrangian have been found in Ref. [10].

However, the derivation of the low energy dynamics was in some sense indirect. Even though
the presence of the potential is obvious by considering the interaction between point particle dyons,
the exact structure of the potential cannot be obtained from the particle point of view. In this note,
we rederive the low energy Lagrangian for 1/4 BPS configurations by the field theoretic method.
The dynamical variables are the zero modes, or the moduli of the underling 1/2 BPS configurations.

We begin with the N = 4 supersymmetric Yang-Mills theory. We choose the compact
semisimple group G of the rank r. Among the six Higgs fields, only two Higgs fields a, b play the
role in the BPS bound. The bosonic part of the Lagrangian is given by

L =
1

2

∫

d3x tr
{

E2 −B2 + (D0a)
2 − (Da)2 + (D0b)

2 − (Db)2 − (−i[a, b])2
}

, (1)

where D0 = (∂0 − iA0), D = ∇− iA, and E = ∂0A−DA0. The four vector potential (A0,A) =
(Aa

0T
a,AaT a) and the group generators T a are traceless hermitian matrices such that trT aT b = δab.

As shown in Ref. [1], there is a BPS bound on the energy functional, which is saturated when
configurations satisfy

B = Db , (2)

E = Da , (3)

D0b− i[a, b] = 0 , (4)

D0a = 0 , (5)

together with the Gauss law,

D ·E− i[b,D0b]− i[a,D0a] = 0 . (6)
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Equation (2) is the old BPS equation for 1/2 BPS monopoles and is called the primary BPS
equation. Equations (3), (4), (5), and (6) can be put together into a single equation,

D2a− [b, [b, a]] = 0, (7)

which is called the secondary BPS equation. This equation is the global gauge zero mode equation
for the first BPS equation. We can choose the gauge where A0 = −a, in which case the configuration
itself becomes static in time.

In the asymptotic region, two Higgs fields take the form

b ≃ b ·H−
g ·H

4πr
, (8)

a ≃ a ·H−
q ·H

4πr
, (9)

where H is the Cartan subalgebra. We are interested in the case where the expectation value b

breaks the gauge group G maximally to abelian subgroups U(1)r. Then, there exists a unique set
of simple roots β1,β2, ...,βr such that βα ·b > 0 [11]. The magnetic and electric charges are given
by

g = 4π
r

∑

α=1

nαβα, (10)

q =
r

∑

α=1

qαβα, (11)

where integer nα ≥ 0. Any solution to these BPS equations possesses a mass that saturates the
BPS bound

M = Z = b · g + a · q, (12)

where Z is the larger one out of two central charges in the N = 4 supersymmetric theory.

The solutions of the primary BPS equation describe the collection of 1/2 BPS monopoles. For
each simple root, there exists a fundamental monopole of four zero modes. The integer nα denotes
the number of the βα fundamental monopoles. We consider the case where all nα are positive so
that the monopoles do not separate into mutually noninteracting subgroups. The moduli space
of the 1/2 BPS configuration has the dimension of the number of zero modes, 4

∑

α nα. With
the moduli space coordinates zM , the zero modes are a linear combination of moduli coordinate
dependence and a local gauge transformation. With a simple pseudo four dimensional vector
Aµ(x, z

M ) = (A, b) with µ = 1, 2, 3, 4, the zero modes will be

δMAµ =
∂Aµ

∂zM
+DµǫM , (13)

where DµǫM = ∂µǫM − i[Aµ, ǫM ] with understanding ∂4 = 0. The zero mode equations for the
primary BPS equation are

∇× δMA = ∇δMb− i[δMA, b], (14)

DµδMAµ = 0, (15)

where the second equation is the background field gauge fixing condition. From the field theory,
there is well defined metric on the moduli space [12, 13, 14],

gMN (z) =

∫

d3x trδMAµδNAµ. (16)
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The low energy dynamics of 1/2 BPS configurations is given by the nonrelativistic Lagrangian

L1/2 =
1

2
gMN (z)żM żN . (17)

As there are r unbroken global U(1) symmetries, the corresponding electric charges should
be conserved. In another word, L1/2 should have r cyclic coordinates corresponding to these gauge
transformations. For each βα U(1) symmetry the corresponding cyclic coordinate is denoted by ψα

with α = 1, ..., r. Expanding the asymptotic value a =
∑

α a
αλα, where λα’s are the fundamental

weights such that λα · ββ = δαβ , we notice Dµa is the gauge zero mode

Dµa = aαKM
α δMAµ, (18)

where

KM
α

∂

∂zM
=

∂

∂ψα
(19)

is the Killing vector for the βα U(1) symmetry. If we divide the moduli coordinates zM to ψα and
the rest yi, the Lagrangian (17) can be rewritten as

L1/2 =
1

2
hij(y)ẏ

iẏj +
1

2
Lαβ(y)(ψ̇

α + wα
i (y)ẏ

i)(ψ̇β + wβ
j (y)ẏ

j). (20)

Here hij = gij , Lαβ = gMNK
M
α KN

β , and wα
i = Lαβgβi. Notice that all metric components are

independent of ψα.

Let us now explore the low energy dynamics of 1/4 BPS configurations. The idea is to
calculate the field theoretic Lagrangian for a suitable initial condition in the field theory. It needs
to specify the fields and their time derivatives or their momenta. Clearly we require the initial
condition to be given by a 1/4 BPS configuration when there is no real time evolution. As the
momentum variables E and D0b are nonzero for 1/4 BPS configurations, nontrivial time evolution
will ensue only if we add additional field momenta or time derivatives to the 1/4 BPS configuration.

The moduli space dynamics of 1/2 BPS configurations is correct when the kinetic energy is
much smaller than the rest mass. This means the order of the velocities, v ∼ żM is much smaller
than 1. For 1/4 BPS configurations, there is a natural scale η ∼ |a|/|b|. We will see that the limit
η << 1 is the suitable region for the low energy dynamics.

Thus, let us put the initial condition to be A(x, yi), b(x, yi), a(x, yi) and the momentum
variables, Da + żMδMA, i[a, b] + żMδMb, and żM δMa. Here we have replaced the zeroth order
momentum variables with the field variables by using the 1/4 BPS equations. We also choose the
gauge A0 = −a. δMa cannot be defined by the zero mode equation of the secondary BPS equation.
Otherwise the asymptotic form (9) implies nonzero contribution from ∂0q(z) to ∂0a. The 1/4 BPS
condition involves the field momenta and we cannot include the additional field momenta at a given
point of the moduli space, maintaining the 1/4 BPS equations. Rather we choose żMδMa to be
an unspecified quantity of order ηv, whose exact nature, as we will see soon, is irrelevant for the
low energy dynamics. As δMA and δMb satisfy the background gauge, the Gauss law is satisfied
for the initial condition to order v. There is a correction of order η2v due to the a field, but it is
negligible to the order we are working on.

Let us now calculate the Lagrangian (1) for this initial condition. It becomes

L = −b · g +
1

2

∫

d3x tr
{

(żMδMAµ)
2
}

+

∫

d3x tr
{

żM δMA ·Da+ żMδM b i[a, b]
}

, (21)
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where the first order in velocity terms appear as there were nonzero field momenta for the 1/4 BPS
configurations. Here again we used 1/4 BPS equations to replace the momenta with the fields.
This Lagrangian is of order v2 or ηv. We have neglected the terms of order v2η2, which comes from
the kinetic energy of a field. The terms linear in żM can be rewritten as a boundary contribution
by using the background gauge condition,

żM
∫

d3x tr {δMA ·Da+ δMb i[a, b]} = żM
∫

d3x ∇ · tr (aδMA). (22)

Noticing that Da and i[a, b] are a global gauge zero mode, aαKM
α δMAµ, we can rewrite the non-

relativistic Lagrangian as

L1 =
1

2
gMN ż

M żN + gMN ż
MaαKN

α (23)

where −b · g is omitted.

Let us introduce new moduli coordinates {ζM} = yi, χα such that

χα = ψα + aαt. (24)

Since this transformation shifts only cyclic coordinates, the above Lagrangian becomes

L1/4 =
1

2
gMN (ζ)ζ̇M ζ̇N −

1

2
gMN (ζ)aαKM

α aβKN
β . (25)

The kinetic term of this Lagrangian is the low energy Lagrangian (17) for 1/2 BPS configurations
and there is an additional potential. In terms of the yi, χα variables,

L1/4 =
1

2
hij(y)ẏ

iẏj +
1

2
Lαβ(y)(χ̇

α + wα
i (y)ẏ

i)(χ̇β + wβ
j (y)ẏ

j)−
1

2
Lαβ(y)a

αaβ. (26)

This is exactly the low energy Lagrangian obtained in Ref. [7].

There is a couple of more points to be discussed. The exact 1/4 BPS configuration is static
in yi and ψα coordinates, so that χα = aαt + constant term. The velocity of χα coordinates is of
order η, which is all right as v and η can be of the same order. When we define the Hamiltonian,
the zM coordinates are not appropriate. Again from the field theory, the energy function we have
has the contribution from the momentum variables. In terms of zM variables, the field theoretic
energy functional for our initial condition becomes

E = b · q+ a · q+ L1. (27)

In terms of the {ζM} = {yi, χα} variables, this energy becomes

E = b · q+ E1/4, (28)

where E1/4 is the energy corresponding to the Lagrangian (25),

E1/4 =
1

2
gMN (ζ)ζ̇M ζ̇N +

1

2
gMN (ζ)aαKM

α aβKN
β . (29)

Here we have used the Tong formula

a · q = gMN (ζ)aαKM
α aβKN

β . (30)
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The energy E1/4 has a BPS bound, which is saturated when żM = 0 or ζ̇M = aαKM
α , and has the

value of the electric mass a · q. This nonrelativistic BPS configuration describes the field theoretic
1/4 BPS configurations. Thus, a consistent picture of the moduli space has been emerged.

As shown in the Ref. [7], the above Lagrangian can be generalized to supersymmetric case
so that it describes 1/4 BPS dyons in the N = 4 supersymmetric Yang-Mills theory. There exists
naturally quantum BPS bound on this supersymmetric Lagrangian. In Ref. [10], the quantum 1/4
BPS states are found by solving the quantum BPS conditions on the wave functions for the case
of the SU(3) group.

Acknowledgments

Part of this work is accomplished during our stay for Particles Fields and Strings ’99 Con-
ference of Pacific Institute for the Mathematical Sciences at Vancouver, for which we thank the
hospitality of the center. We acknowledge a useful discussion with Piljin Yi. D.B. is supported in
part by Ministry of Education Grant 98-015-D00061. K.L. is supported in part by the SRC program
of the SNU-CTP and the Basic Science and Research Program under BRSI-98-2418. D.B. and K.L.
are also supported in part by KOSEF 1998 Interdisciplinary Research Grant 98-07-02-07-01-5.

References

[1] K. Lee and P. Yi, hep-th/9804174, Phys. Rev. D58 (1998) 066005.

[2] K. Hashimoto, H. Hata and N. Sasakura, hep-th/9803127, Phys. Lett. B431 (1998) 303; hep-
th/9804164, Nucl. Phys. B535 (1998) 83; T. Kawano and K. Okuyama, hep-th/9804139, Phys.
Lett. B432 (1998) 338.

[3] D. Bak, K. Hashimoto, B-H. Lee, H. Min and N. Sasakura, hep-th/9901107, Phys. Rev. D60

(1999) 046005.

[4] K. Lee, hep-th/9903095, Phys. Lett. B458 (1999) 53.

[5] E. Witten, Nucl. Phys. B460 (1996) 335; A.A. Tseytlin, Nucl. Phys B469 (1996) 51; M.B.
Green and Gutperle, Phys. Lett. B377 (1996) 28.

[6] O. Bergman, hep-th/9712211, Nucl. Phys. B525 (1998) 104; O. Bergman and B. Kol, hep-
th/9804160, Nucl. Phys. B536 (1998) 149.

[7] D. Bak, C. Lee, K. Lee, and P. Yi, Low Energy Dynamics for 1/4 BPS Dyons, hep-th/9906119.

[8] C. Fraser and T.J. Hollowood, Phys. Lett. B402 (1997) 106.

[9] D. Tong, hep-th/9902005, Phys. Lett. B460 (1999) 295.

[10] D. Bak, K. Lee and P. Yi, Quantum 1/4 BPS Dyons, hep-th/9907090.

[11] E. Weinberg, Nucl. Phys. B167 (1980) 500.

[12] N.S. Manton, Phys. Lett. 110B (1982) 54.

[13] M.F. Atiyah and N.J. Hitchin, The Geometry and Dynamics of Magnetic Monopoles, (Prince-
ton University Press, Princeton, 1988).

[14] J.P. Gauntlett, Nucl. Phys. B411 (1994) 443; J. Blum, Phys. Lett. B333 (1994) 92.

5

http://arxiv.org/abs/hep-th/9804174
http://arxiv.org/abs/hep-th/9803127
http://arxiv.org/abs/hep-th/9804164
http://arxiv.org/abs/hep-th/9804164
http://arxiv.org/abs/hep-th/9804139
http://arxiv.org/abs/hep-th/9901107
http://arxiv.org/abs/hep-th/9903095
http://arxiv.org/abs/hep-th/9712211
http://arxiv.org/abs/hep-th/9804160
http://arxiv.org/abs/hep-th/9804160
http://arxiv.org/abs/hep-th/9906119
http://arxiv.org/abs/hep-th/9902005
http://arxiv.org/abs/hep-th/9907090

