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Abstract

We apply general formalism of quantum field theory and addition theo-
rem for Bessel functions to derive formula for the Casimir-Polder energy of
interaction between a polarizable particle and a dilute dielectric ball and
Casimir energy of a dilute dielectric ball. The correspondence between
the Casimir-Polder formula and Casimir energy of a dilute dielectric ball
is shown. Different approaches to the problem of Casimir energy of a di-
electric ball are reviewed and analysed by use of addition theorem for Bessel
functions.
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1 Introduction

The study of spherical geometry in Casimir effect meets a lot of technical
problems, the most difficult one is the problem of divergencies, which appear
in many expressions. The special interest to the subject arised after the
series of articles by Julian Schwinger where he had proposed a connection
between the Casimir effect and sonoluminescence [1, 2]. The main reason for
drastically different results in the calculations on the topic is the problem of
divergent expressions and their regularization. In the present paper we show
how the calculations can be performed to obtain finite results for the case
of a dilute dielectric ball. For a discussion of possible divergencies and their
regularization in this case see also [3].

We study a dielectric nonmagnetic ball of radius a and permittivity ε,
surrounded by a vacuum. The ball is dilute, i.e. all final expressions are
obtained under the assumption ε− 1 ≪ 1. The permittivity ε for simplicity
is a constant.

In the present paper we follow the formalism which was developed by
E.Lifshitz et.al.[4] and K.Milton et.al.[5]. We start from a short overview of
known facts. Then we derive the Casimir-Polder energy between a dielectric
ball and a particle of constant polarizability α, which is placed at the distance
r from the centre of the ball. The addition theorem for Bessel functions
is used. In the limiting case r ≫ a the Casimir-Polder formula for two
polarizable particles [6] can be simply obtained from this expression. Also we
show how Casimir energy of a dilute dielectric ball can be derived analytically
with no divergencies in intermediate calculations by use of proper analytic
continuation. The value of Casimir energy of a dilute dielectric ball has
been obtained in [7, 8, 9, 10, 11, 12] using various methods, an overview and
analysis of different approaches to this problem by use of addition theorem
for Bessel functions are given in the Conclusions section.

We put ~ = c = 1. Heaviside-Lorentz units are used.

2 Energy calculation

The change in the ground state energy E of the system under the infinitesimal
variation of ε is

δE =
1

2

∫

d3x

∫ +∞

−∞

dω

2π
δε(x, ω) 〈E2(x,x, ω)〉 . (1)
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Here

〈E2(r, r′, ω)〉 =
3

∑

i=1

〈Ei(r),Ei(r
′)〉(ω) (2)

is a Fourier component of electric field propagator trace. The system of
equations for this Green’s function was discussed extensively in [4, 5]. The
solution of this system for spherical geometry with standard boundary con-
ditions classically imposed at r = a can be written as in [13] (δ-functions are
omitted since we are interested in the limit r → r′):

〈Ei(r),Ej(r
′)〉(ω) = 1

i

∞
∑

l=1

l
∑

m=−l

(ω2Fl(r, r
′)Xilm(Ω)X

∗

jlm(Ω
′) +

+
1

ε
rot

r
rot

r
′Gl(r, r

′)Xilm(Ω)X
∗

jlm(Ω
′)). (3)

Here we have used the following notations (Xilm(Ω) are vector spherical har-

monics; jl(r), h
(1)
l (r) are spherical Bessel functions, ẽl(r) = rh

(1)
l (r), s̃l(r) =

rjl(r) are Riccati-Bessel functions [14]):

Xilm(Ω) =
1

√

l(l + 1)
(LYlm(Ω))i (4)

Fl, Gl =

{

ikjl(kr<)[h
(1)
l (kr>)− AF,Gjl(kr>)], k =

∣

∣ω
∣

∣

√
ε, r, r′ < a,

i
∣

∣ω
∣

∣h
(1)
l (

∣

∣ω
∣

∣r>)[jl(
∣

∣ω
∣

∣r<)− BF,Gh
(1)
l (

∣

∣ω
∣

∣r<)], r, r′ > a,
(5)

AF =
ẽl(

∣

∣ω
∣

∣

√
εa)ẽ′l(

∣

∣ω
∣

∣a)−√
εẽl(

∣

∣ω
∣

∣a)ẽ′l(
∣

∣ω
∣

∣

√
εa)

∆l
, (6)

BF =
s̃l(

∣

∣ω
∣

∣

√
εa)s̃′l(

∣

∣ω
∣

∣a)−√
εs̃l(

∣

∣ω
∣

∣a)s̃′l(
∣

∣ω
∣

∣

√
εa)

∆l
, (7)

AG =

√
εẽl(

∣

∣ω
∣

∣

√
εa)ẽ′l(

∣

∣ω
∣

∣a)− ẽl(
∣

∣ω
∣

∣a)ẽ′l(
∣

∣ω
∣

∣

√
εa)

∆̃l

, (8)

BG =

√
εs̃l(

∣

∣ω
∣

∣

√
εa)s̃′l(

∣

∣ω
∣

∣a)− s̃l(
∣

∣ω
∣

∣a)s̃′l(
∣

∣ω
∣

∣

√
εa)

∆̃l

, (9)

∆l = s̃l(
∣

∣ω
∣

∣

√
εa)ẽ′l(

∣

∣ω
∣

∣a)−
√
εs̃′l(

∣

∣ω
∣

∣

√
εa)ẽl(

∣

∣ω
∣

∣a), (10)

∆̃l =
√
εs̃l(

∣

∣ω
∣

∣

√
εa)ẽ′l(

∣

∣ω
∣

∣a)− s̃′l(
∣

∣ω
∣

∣

√
εa)ẽl(

∣

∣ω
∣

∣a), (11)
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differentiation is taken over the whole argument.
When we insert point particle of constant polarizability α into the point

r, |r| > a from the centre of the ball, the energy change is given by (1)
with δǫ = 4παδ3(r − x). However, we have to subtract contact terms -
the volume vacuum contribution, i.e. when we calculate physical quanti-
ties in the region r, r′ > a we have to subtract the volume vacuum term
i
∣

∣ω
∣

∣h
(1)
l (

∣

∣ω
∣

∣r>)jl(
∣

∣ω
∣

∣r<) from (5) (for r, r′ < a in full analogy the term

ikjl(kr<)h
(1)
l (kr>) should be subtracted from (5)). Doing so, we have to

substitute F̃l, G̃l instead of Fl, Gl in all the expressions, where

F̃l, G̃l =

{ −iAF,Gkjl(kr<)jl(kr>), k =
∣

∣ω
∣

∣

√
ε, r, r′ < a,

−iBF,G

∣

∣ω
∣

∣h
(1)
l (

∣

∣ω
∣

∣r>)h
(1)
l (

∣

∣ω
∣

∣r<), r, r′ > a.
(12)

The Casimir-Polder energy of this configuration is

E1(r, a) = α

∫ +∞

−∞

dω〈Ẽ2(r, r, ω)〉 = α

i

∫ +∞

−∞

dω

∞
∑

l=1

2l + 1

4π
×

×
(

ω2F̃l(r, r
′) + l(l + 1)

G̃l(r, r
′)

rr′
+

1

rr′
∂

∂r
r
∂

∂r′
(r′G̃l(r, r

′))
)
∣

∣

∣

r′→r
. (13)

We perform a Euclidean rotation then: ω → iω ,

s̃l(x) → sl(x) =

√

πx

2
Il+1/2(x), ẽl(x) → el(x) =

√

2x

π
Kl+1/2(x). (14)

Let x = ωa . For E1(r, a) we obtain

E1(r, a) =
2α

a

∫ +∞

0

dx
+∞
∑

l=1

2l + 1

4π

[ x

ar2
e2l (xr/a)BF −

− l(l + 1)a

r4x
e2l (xr/a)BG − x

r2a
(e′l(xr/a))

2BG

]

. (15)

This expression can be transformed to a simple formula in the limit ε−1 ≪ 1.
The functions BF and BG are proportional to (ε−1) in this limit. To proceed,
the following addition theorem for Bessel functions [15] is useful:

u(p, k, x, ρ) ≡
+∞
∑

l=0

(2l + 1)sl(xp)el(xk)Pl(cos θ) =
xe−xρpk

ρ
, (16)

ρ =
√

p2 + k2 − 2pk cos θ. (17)
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To our knowledge this formula was first used in Casimir effect calculations in
[16],where it was applied to analytic calculation of Casimir energy of perfectly
conducting spherical shell and dilute dielectric ball satisfying εµ = 1.

In our case it can be applied as follows. The simple identity holds (we
assume k > p > 0 for definiteness):

∫

dx

+∞
∑

l=0

(2l + 1)f(x)sl(xp)el(xk)sl(xp)el(xk) =

=
1

2

∫ k+p

k−p

dρ ρ

pk

∫

dxf(x)u(p, k, x, ρ)u(p, k, x, ρ), (18)

where we have used
∫ 1

−1

d(cos θ)Pl(cos θ)Pm(cos θ) =
2

2l + 1
δlm, (19)

∫ +1

−1

d(cos θ) · · · =
∫ k+p

k−p

dρ ρ

pk
· · · . (20)

We only need the first order ∼ (ε− 1) in E1. We put k = r/a, p = 1 and use
(18) and its obvious generalizations in (15) to calculate E1. Finally we get

E1(r, a) = −23

15
α
ε− 1

4π

a3(5r2 + a2)

r(r + a)4(r − a)4
, r > a . (21)

Substitution ε− 1 = 4πNmolαball in the limit r ≫ a yields

E1(r, a)
∣

∣

∣

r≫a
= Nmol

(4πa3

3

)−23ααball

4πr7
= Nmol

(4πa3

3

)

ECas−Pol . (22)

Thus in this limit the famous Casimir-Polder energy of interaction between
two polarizable particles ECas−Pol [6] can be obtained directly from (22).

Imagine now that there is a bubble of radius a in a dielectric of permit-
tivity ε and we insert dielectric into the point r, |r| < a inside the bubble so
that the change in dielectric permittivity is equal to δε = (ε − 1)δ3(r − x).
The energy change is given by (1) again. We omit details of calculations
because of obvious similarity with discussion above , note only that formula
for energy change E2(r, a) in the order (ε−1)2 can be obtained from formula
for E1(r, a) in the order (ε − 1)2 written in terms of Bessel functions by a
simple interchange sl ↔ el, α → (ε − 1)/(4π) and adding an overall minus
sign. The result for E2 can be written as follows :

E2(r, a) =
(ε− 1)2

16π2a4
23

60

(d4 − 10d2 − 15)

(1 + d)4(1− d)4
, d =

r

a
, r < a. (23)
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To obtain Casimir energy of a dilute dielectric ball we calculate the energy
change δECas using formula (1) and symmetry in interchange ε ↔ 1 in the
order (ε− 1)2, so that δECas can be written via previously obtained E1(α =
(ε− 1)/(4π), r, a) and E2(r, a) :

δECas =
1

2

[

E1(r, a)(4πa
2)da−E2(r, a)(4πa

2)da
]
∣

∣

∣

r=a
=

= −(ε− 1)2

8πa

23

60

r
a
+ 4

r(1 + r
a
)4

∣

∣

∣

∣

r=a

da = −(ε− 1)2

πa2
23

1536
da . (24)

(Strictly speaking, we had to substitute r ↔ a in E2(r, a) first and only after
that perform the subtraction. We would have got two divergent terms then
and a finite term that is general for all approaches - see Conclusions section
for an overview. However, there is a possibility to derive the finite term
directly - to use analytic continuation from r < a to r > a in E2 and then
perform the subtraction as in (24) - a simple way to cancel divergent terms.)
If we take into consideration only the finite term (for an extensive discussion
of this issue see [8]), the Casimir energy of a dilute dielectric ball and surface
force on a unit area are given by

ECas =
23

1536

(ε− 1)2

πa
, Fsurf = − 1

4πa2
∂

∂a
ECas . (25)

3 Conclusions

We derive formulas for Casimir-Polder type energy between a polarizable
particle and a dilute dielectric ball (21,22) and Casimir surface force on a
dilute dielectric ball (25) analytically using quantum field theory approach
and addition theorem for Bessel functions. Our approach directly shows
correspondence of this force and Casimir-Polder potential. Proper analytic
continuation has been used to obtain the final result (25).

It is of interest to give here an overview of different approaches which have
been used to derive the result (25) and show how formula (18) can effectively
be used in other approaches.

First attempts to solve the problem of finding the Casimir energy of a
dielectric ball gave a lot of different answers, as it is described in [10]. The
mathematical reason for these differences was found in the work [7], where
by use of Debye expansion for Bessel functions and ζ-function the correct
limits on Casimir surface force in the order (ε− 1)2 were established. Later
in the article [8] the value of Casimir energy of a dilute dielectric ball was
calculated numerically with high accuracy, which made it possible to establish
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equivalence of Casimir effect and retarded van der Waals energy for the case
of nondispersive dielectric ball.

The retarded van der Waals energy for two distant molecules or the
Casimir- Polder potential is ECas−Pol = −23α1α2/4πr

7. The mutual van
der Waals energy for molecules inside the compact sphere (ball) was calcu-
lated by Milton and Ng [9], and its finite part after regularization in terms
of gamma functions was first given by (25) in the work [9].

In the article [8] the Casimir energy of a dilute dielectric ball was studied
via the formula which has the following form for nondispersive case:

EC = −(ε− 1)2

8πa

∞
∑

l=1

(2l + 1)

∫

∞

0

dx x
d

dx
Fl(x), (26)

where

Fl(x) = −1

4

(

d

dx
(elsl)

)2

− x2
(

s′ 2 − ss′′
)(

e′ 2 − ee′′
)

, (27)

and Riccati-Bessel functions are assumed to depend on argument x. This
formula possesses an interesting symmetry : sl ↔ el. From our derivation of
formula (25) and discussion before formula (23) it follows that this symmetry
is equivalent to the symmetry ε ↔ 1, so our derivation clarifies this point.

The formula (26) can be studied using formula (18) as well. We put
k = 1, p = 1 −m, where we are interested in the limit m → 0. For EC we
find

EC = lim
m→0

(ε− 1)2

πa

(

23

1536
+O

( 1

m

)

)

. (28)

Recently the formula (26) has been obtained from the mode summation
method [12], there divergent terms being analysed and the finite result (25)
being derived also by making use of the addition theorem for the Bessel
functions.

Another approach based on quantum mechanical perturbation theory was
suggested in the work [10]. The Casimir energy was obtained there in the
form:

E = −(ε− 1)
3

2π2

V

λ4
+

+ (ε− 1)2(− 3

128π2

V

λ4
+

7

360π3

S

λ3
− 1

20π2

1

λ
+

23

1536π

1

a
) . (29)

Here V is the volume and S the surface area, 1/λ is an exponential cutoff on
wavenumbers. In this approach the contact terms haven’t been subtracted,
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this is why the term proportional to ε − 1 is present in (29). The cutoff
independent term is essentially the same in all approaches.

The approach based on quantum statistical mechanics was developed in
[11]. This work led to similar results.

The theory of QED in a dielectric background was studied in [3] by path
integral and ζ-function methods. ζ-function can be written as in [3]:

ζ(s) =
sin πs

π

∞
∑

l=1

(2l + 1)

∫

∞

0

dω ω−2s ∂

∂ω
ln(∆l∆̃l). (30)

For a dilute ball it is possible to expand the logarithm in powers of ε − 1,
here we analyse only the order (ε− 1)2 of this expansion:

ζ(s) =
(ε− 1)2

4

sin πs

π

∞
∑

l=1

(2l + 1)

∫

∞

0

dω ω−2s ∂

∂ω
Fl(ωa), (31)

where Fl(x) is defined in (27). We assume s > 1 and calculate expression
(31) using formula (18) again, where now we put p = k = 1. The result is

ζ(s) = −(ε− 1)2
sin(πs)

πs
a2s 24s−7 (s

2 − 3s+ 4)Γ(−2s+ 2)

(s− 1)
, (32)

with no poles in this expression for s < 1. After analytic continuation to
s = −1/2, for Casimir energy we find

ECas =
ζ(−1/2)

2
=

23

1536

(ε− 1)2

πa
, (33)

ζ-function method makes it possible to avoid divergent terms in calculations.
Most difficulties in Casimir effect problems result from divergent struc-

ture of different expressions near boundaries, though the divergent behaviour
of these expressions is general for all Casimir effect calculations. When dis-
persion is neglected, divergent behaviour is the same as in (21) or (23) when
r → a (the simplest example is the Casimir-Polder energy between the polar-
izable particle and perfectly conducting plate, see e.g. [17] and a discussion
there). Divergencies are usually present in Casimir effect calculations as the
reminders of short-distance behaviour of Casimir-Polder type and van der
Waals type potentials between interacting particles, the example presented
in this work serves as a confirmation of this statement. It would be illumi-
nating to overcome the problem of divergencies and understand how to deal
with van der Waals and Casimir-Polder type potentials in Casimir related
problems by methods of quantum field theory, though probably this is not
only the problem of Casimir effect itself but rather quantum field theory in
general.
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