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Elliptic analog of the Toda lattice

I.Krichever ∗

Abstract

The action-angle variables for N -particle Hamiltonian system with the Hamilto-
nian H =

∑N−1
n=0 ln sh−2 (pn/2) + ln (℘(xn − xn−1)− ℘(xn + xn−1)) , xN = x0, are

constructed, and the system is solved in terms of the Riemann θ-functions. It is shown
that this system describes pole dynamics of the elliptic solutions of 2D Toda lattice
corresponding to spectral curves defined by the equation w2 − P el

N (z)w + Λ2N = 0,
where P el

N (z) is an elliptic function with pole of order N at the point z = 0.
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1 Introduction

The main goal of this paper is to construct the action-angle variables for a finite dimensional
Hamiltonian system of equations

ẍn = (ẋ2n − 1)(V (xn, xn+1) + V (xn, xn−1), xn+N = xn, (1.1)

where

V (u, v) = ζ(u− v) + ζ(u+ v)− ζ(2u) = −
1

2

℘′(u− v)− ℘′(u+ v)

℘(u− v)− ℘(u+ v)
, (1.2)

and to identify it as an elliptic analog of N-periodic Toda lattice. Here ℘(x) = ℘(x|2ω, 2ω′)
and ζ(x) = ζ(x|2ω, 2ω′) are classical Weierstrass functions.

Recently, finite-dimensional integrable soliton systems have attracted very special inter-
est due to their unexpected relations to the theory of supersymmetric gauge models. The
celebrated Seiberg-Witten ansatz ([1, 2]) identifies moduli space of physically non-equivalent
vacua of the model with moduli space of a certain family of algebraic curves. In [3, 4] it was
shown that the family of curves corresponding to four-dimensional N = 2 supersymmetric
SU(Nc) theory is defined by the equation

w2 − wPNc
(E) + Λ2Nc = 0, PNc

(E) = ENc +
Nc−1∑

i=0

uiE
i. (1.3)

In [5] it was noted that this family can be identified with the family of spectral curves
of Nc-periodic Toda lattice, and the Seiberg-Witten ansatz was linked with the Whitham
perturbation theory of finite-gap solutions of soliton equations proposed in [6, 7]. Integrable
systems related to various gauge models coupled with matter hypermultiplets in various
representations were considered in [8]-[33], where more complete list of references can be
found.

In [32, 33] Nc-periodic spin chain related to XY Z model was proposed as soliton coun-
terpart of N = 1 supersymmetric SU(Nc) theory in six dimensions compactified in two di-
rections, and coupled with Nf = 2Nc matter hypermultiplets. Spectral curves of Nc-periodic
homogeneous XY Z spin chain have the form

w2 − wP el
Nc
(z) +Qel

2Nc
(z) = 0, (1.4)

where P el
Nc
(z) and Qel

2Nc
(z) are elliptic polynomials, i.e. elliptic functions with poles of order

Nc and 2Nc at the point z = 0. Note, that (1.4) is an elliptic deformation of the family
of curves found in [34] for four-dimensional N = 2 sypersymmetric SU(Nc) model coupled
with matter hypermultiplets.

A particular case of (1.4), when Qel
2Nc

(z) is a constant, Qel
2Nc

(z) = Λ2Nc can be seen as an
elliptic deformation of (1.3). The corresponding family of curves depends on Nc parameters
which can be chosen as Λ and the coefficients ui of the representation of P el

N (z) in the form:

P el
N (z) =

(−1)N

(N − 1)!
∂N−2
z ℘(z) +

N−2∑

i=1

ui∂
i−1
z ℘(z) + u0, (1.5)
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An attempt to find a soliton system corresponding to the family of spectral curves defined
by the equation

w2 − wP el
N (z) + Λ2N = 0, (1.6)

led us to (1.1). After the system was found it turned out that, by itself, it is not new. Up to
a change of variables qn = ℘(xn), it coincides with one of the systems listed in [35], where the
classification of all Toda type chains which have Toda type symmetries was obtained. The
new results obtained in this work are: isomorphism of (1.1) with a pole system corresponding
to elliptic solutions of 2D Toda lattice, the construction of action-angle variables, and explicit
solution of the system in terms of the theta-functions.

In [16, 17] it was shown that a wide class of solutions of the Seiberg-Witten ansatz can
be described in terms of a special foliation on the moduli space of curves with punctures.
That allows one to consider such systems as reductions of 2D soliton equations. Following
this approach, let us note, that (1.6) defines an algebraic curve Γ as two-sheeted cover of
the elliptic curve Γ0 with periods 2ω, 2ω′. Let P± be preimagies on Γ of z = 0. According
to the construction of [36], any algebraic curve with two punctures generates a family of
algebro-geometric solutions of 2D Toda lattice

(∂2tt − ∂2xx)ϕn = 4
(
eϕn+1−ϕn − eϕn−ϕn−1

)
, (1.7)

parameterized by points of the Jacobian J(Γ) of the curve.

In the next section we show that algebro-geometric solutions ϕn(x, t) corresponding to Γ
defined by (1.6) are periodic in n up to the shift, ϕn = ϕn+N + 2N ln Λ, and have the form

ϕn(x, t) = αn(t) + ln
σ(x− xn+1(t) + a)σ(x+ xn+1(t) + a)

σ(x− xn(t) + a)σ(x+ xn(t) + a)
. (1.8)

Substitution of (1.8) into (1.7) leads to equations (1.1) for xn(t).

It section 3 we construct a new Lax representation for (1.1) and show that the spectral
curve defined by the Lax operator has the form (1.6). We prove also, that if xn(t) is a
solution of (1.1), then there exist functions αn(t) (unique up to the transformation αn(t) →
αn(t) + c1t+ c2, ci = const), such that the functions ϕn(x, t) of the form (1.8) satisfy (1.7).

The last section is devoted to the Hamiltonian theory of system (1.1). Equations (1.1)
are generated by the Hamiltonian

H =
N−1∑

n=0

ln sh−2 (pn/2) + ln (℘(xn − xn−1)− ℘(xn + xn−1)) , (1.9)

and the canonical Poisson brackets {pm, xn} = δnm. We would like to emphasize that though
this Hamiltonian structure can be easily checked directly, it was found by the author using
the algebro-geometric approach to Hamiltonian theory of the Lax equations proposed in
[16, 17], and developed in [39]. The main advantage of this approach is that it allows us
to find simultaneously the action-angle variables and a generating differential which defines
low-energy effective prepotential.

Note, that from the relation of system (1.1) to 2D Toda lattice it is clear that degeneration
of the elliptic curve Γ0 corresponds to a degeneration of this system to the Toda lattice.
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It would be very interesting to consider this degeneration explicitly on the level of the
Hamiltonian structure. We will consider this problem elsewhere.

2 Elliptic solutions of 2D Toda lattice

Algebro-geometric solutions of 2D Toda lattice were constructed in [36]. Let Γ be a smooth
genus g algebraic curve with fixed local coordinates z±(Q) in neighborhoods of two punctures
P± ∈ Γ, z±(P±) = 0. Then, for any set of g points γ1, . . . , γg in general position there exists
a unique function ψn(x, t, Q) such that:

10. ψn(x, t, Q), as a function of the variable Q ∈ Γ, is meromorphic on Γ outside the
punctures P± and has at most simple poles at the points γs (if all of them are distinct);

20. in the neighborhoods of the punctures the function ψn has the form

ψn = z∓N
± e(x±t)z−1

(
∞∑

s=0

ξ±s (x, t)z
s
±

)
, ξ+0 = 1. (2.1)

Uniqueness of ψn implies that it satisfies the following system of linear equations

(∂t + ∂x)ψn(x, t, Q) = 2ψn+1(x, t, Q) + vn(x, t)ψn(x, t, Q), (2.2)

(∂t − ∂x)ψn(x, t, Q) = 2cn(x, t)ψn−1(x, t), (2.3)

where the coefficients are defined by the leading coefficient ξ−0 of expansion (2.1) with the
help of the formulae:

vn = (∂t + ∂x)ϕn(x, t), cn = eϕn(x,t)−ϕn−1(x,t), ϕn(x, t) = ln ξ−0 (x, t). (2.4)

Compatibility of (2.2) and (2.3) implies that ϕn(x, t) is a solution of 2D Toda lattice (1.7).

The function ψn(x, t, Q) is called the Baker-Akhiezer function and can be explicitly ex-
pressed in terms of the Riemann theta-function associated with a matrix of b-periods of
holomorphic differentials on Γ. The corresponding formula for ϕn is as follows.

Let us fix a basis of cycles ai, bi, i = 1, . . . , g, on Γ with the canonical matrix of intersec-
tions: ai ◦ aj = bi ◦ bj = 0, ai ◦ bj = δij. The basis of normalized holomorphic differentials
dΩh

j (Q), j = 1, . . . , g, is defined by conditions
∮
ai
dΩh

j = δij . The b-periods of these differen-
tials define the Riemann matrix Bkj =

∮
bj
dΩh

k . The basic vectors ek of C
g and the vectors Bk,

which are columns of the matrix B, generate a lattice B in Cg. The g-dimensional complex
torus

J(Γ) = Cg/B, B =
∑

nkek +mkBk, nk, mk ∈ Z, (2.5)

is called the Jacobian variety of Γ. A vector with the coordinates

Ak(Q) =
∫ Q

P+

dΩh
k (2.6)

defines the Abel map A : Γ −→ J(Γ).
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The Riemann matrix has a positive-definite imaginary part. The entire function of g
variables z = (z1, . . . , zg)

θ(z) = θ(z|B) =
∑

m∈Zg

e2πi(z,m)+πi(Bm,m),

is called the Riemann theta-function. It has the following monodromy properties

θ(z + ek) = θ(z), θ(z +Bk) = e−2πizk−πiBkkθ(z). (2.7)

The function θ(A(Q) +Z) is a multi-valued function of Q. But according to (2.7), the zeros
of this function are well-defined. For Z in a general position the equation θ(A(Q) + Z) = 0
has g zeros γ1, . . . , γg. The vector Z and the divisor of these zeros are connected by the
relation Z = −

∑
sA(γs) +K, where K is the vector of Riemann constants.

Let us introduce normalized Abelian differentials dΩ(x) and dΩ(t) of the second kind.
They are holomorphic on Γ except at the punctures P±. In the neighborhoods of P± they
have the form

dΩ(x) = d(z−1
± +O(1)), dΩ(t) = d(±z−1

± +O(1)).

Normalized means that they have zero a-periods. The vectors of b-periods of these differen-
tials are denoted by 2πiV and 2πiW , i.e. the coordinates of the vectors V and W are equal
to

Vk =
1

2πi

∮

bk
dΩ(x), Wk =

1

2πi

∮

bk
dΩ(t). (2.8)

Let dΩ(n) be a normalized abelian differential of the third kind with simple poles at the
punctures P± with residues ∓1. From the Riemann bilinear relations it follows that the
vector of its b-periods satisfies the relation

Uk =
1

2πi

∮

bk
dΩ(n) = A(P−)− A(P+). (2.9)

If we choose a branch of the Abelian integral Ω(n) near P+ such that Ω(n) = − ln z++O(z+),
then near P− it has the form

Ω(n) = ln z− + I0 +O(z−).

Theorem 2.1 ([36]) The Baker-Akhiezer function is equal to

ψn(x, t, Q) =
θ(A(Q) + nU + xV + tW + Z)θ(Z)

θ(nU + xV + tW + Z)θ(A(Q) + Z)
exp

(
nΩ(n) + xΩ(x) + tΩ(t)

)
. (2.10)

The function ϕn(x, t) given by the formula

ϕn(x, t) = nI0 + ln
θ((n+ 1)U + xV + tW + Z)

θ(nU + xV + tW + Z)
(2.11)

is a solution of 2D Toda lattice.
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For a generic set of the algebro-geometric data the function ϕn(x, t) given by (2.11) is a
quasi-periodic meromorphic function of all the variables (n, x, t). In [37] the solutions of 2D
Toda lattice which are elliptic in the discrete variable n were considered. It was found that
dynamics of its poles coincides with the elliptic Ruijsenaars-Schneider system [38]. In this
paper we consider solutions that are elliptic in the variable x and are periodic in n.

The condition that ϕn is elliptic in one of the variables is equivalent to the property
that the complex linear subspace in J(Γ) spanned by the corresponding directional vector
is compact, i.e. it is an elliptic curve Γ0. In the case of x-variable it means that the vectors
2ωαV, α = 1, 2, belong to the lattice B defined by (2.5):

2ωαV =
∑

k

nα
kek +mα

kBk, nα
k , m

α
k ∈ Z. (2.12)

Here and below ω1 = ω, ω2 = ω′ are half-periods of the elliptic curve Γ0.

Theorem 2.2 Let Γ be a smooth curve defined by equation (1.6) and let P± be preimages
on Γ of the point z = 0 ∈ Γ0 with local coordinates in their neighborhoods defined by the local
coordinate z on Γ0. Then the corresponding algebro-geometric solutions given by formula
(2.11) satisfy the relation

ϕn+N(x, t) = ϕn(x, t) + 2N ln Λ, (2.13)

and have the form (1.8), i.e.

ϕn(x, t) = αn(t) + ln
σ(x− xn+1(t) + a)σ(x+ xn+1(t) + a)

σ(x− xn(t) + a)σ(x+ xn(t) + a)
.

The functions xn(t) defined by this representation enjoy equations (1.1). The functions αn

satisfy the relation

4eαn−1(t)−αn(t) =
(
1− ẋ2n(t)

)
W (xn, xn+1)W (xn, xn−1), (2.14)

where

W (u, v) =
σ(u− v)σ(u+ v)

σ(2u)
. (2.15)

Proof. The first statement of the theorem is a direct corollary of the uniqueness of the
Baker-Akhiezer function. The projection Q = (w, z) ∈ Γ → w defines w = w(Q) as a
function on the curve. This function is holomorphic on Γ outside the puncture P+, where
in has the pole of order N , w = z−N (1 + O(z)). At the point P− it has zero of order N ,
w = Λ2NzN (1 +O(z)). Therefore, we have the equality

ψn+N (x, t, Q) = w(Q)ψn(x, t, Q), (2.16)

because the functions defined by its left- and right-hand sides have the same analytical
properties.

Let us consider the functions

Tα(z) = e2ζ(z)ωα−2ηαz, ηα = ζ(ωα). (2.17)
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They are double-periodic and holomorphic on Γ0 except at z = 0. Again, comparison of
analytical properties of the left- and right-hand sides proves the equality

ψn(x+ 2ωα, t, Q) = Tα(z)ψn(x, t, Q), Q = (w, z). (2.18)

The function eϕn is defined as a ratio of the leading coefficients of an expansions of ψn on two
sheets of Γ. Therefore, it does not change under the shifts x→ x+2ωα, and consequently, it
is an elliptic function of the variable x. From (2.11) it follows that if we denote roots of the
equation θ(nU +xV + tW +Z) = 0 in the fundamental domain of Γ0 by x

j
n(t), j = 1, . . . , D,

then

eϕn(x,t) = eαn(t)
D∏

j=1

σ(x− xjn+1(t))

σ(x− xjn(t))
. (2.19)

Our next step is to show that eϕn has only two poles and zeros in Γ0.

Lemma 2.1 The function θ(xV + ξ) corresponding to a smooth algebraic curve Γ defined
by (1.6), as a function of the variable x is an elliptic theta-function of weight 2, i.e. it can
be represented in the form

θ(xV + ξ) = r(ξ)σ(x− x1(ξ))σ(x− x2(ξ)). (2.20)

Proof. Let us find the coefficients of expansion (2.12). The branching points z±i of Γ over
Γ0 are roots of the equations P el

N (z) = ±ΛN . In a generic case, when they are distinct, the
curve Γ is smooth. The Riemann-Hurwitz formula 2g − 2 = ν which connects genus g of
branching cover of an elliptic curve with a number ν of branching points, implies that Γ has
genus N + 1. We choose ai, bi cycles on it as follows:

ai, i = 1, . . . , N − 1, are cycles around cuts between branching points z+i , z
−
i and aN and

aN+1 are two preimages of a-cycle on Γ0. (We assume that a and b-cycles on Γ0 correspond
to the periods 2ω and 2ω′, respectively.)

From the definition of the differential dΩ(x) it follows that

dΩ(x) = d
(
ζ(z)−

η

ω
z
)
. (2.21)

Therefore, the coordinates of the vector V defined by (2.8) are equal to

Vi = 0, i = 1, . . . , N − 1, VN = VN+1 =
1

πi

(
η′ −

η

ω
ω′

)
= −

1

2ω
. (2.22)

Comparing the vector of b-periods of dΩ(x) with the vector (0, . . . , 0, 2ω′, 2ω′) of b-periods of
the differential dz, considered as a differential on Γ, we get

∮

bi
dΩ(x) = −

πi

2ωω′

∮

bi
dz, i = 1, . . . , N + 1. (2.23)

The a-periods of dz are equal (0, . . . , 0, 2ω, 2ω). Therefore,

dz = 2ω(dΩh
N + dΩh

N+1),
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where dΩh
i are normalized holomorphic differentials. From (2.23) we finally obtain that

2ω′V = −BN − BN+1, (2.24)

where Bi are the vector of b-periods of dΩ
h
i . The monodromy properties of θ-function imply

θ((x+ 2ω)V + Z) = θ(xV + Z), θ((x+ 2ω′)V + Z) = el(x)θ(xV + Z), (2.25)

where

l(x) = πi (2x(VN + VN+1) +BN+1,N+1 +BN,N − BN,N+1 − BN+1,N + 2ZN+1 + 2ZN)

Using (2.22) we obtain

dl(x) = −
2πi

ω
dx. (2.26)

The number D of zeros of the function θ(xV +ξ) in the fundamental domain can be found by
integrating of the logarithmic derivative of this function over the boundary of the domain.
From (2.25) and (2.26) it follows that

D =
1

2πi

∮

∂G0

d ln θ(xV + Z) = 2. (2.27)

The equality (2.20) is proved. It implies that the index j in (2.19) takes values j = 1, 2. The
sums of zeros and poles of an elliptic function are equal to each other (modulo periods of
Γ0). Hence, x

j
n(t) can be represented in the form

x1n = xn(t) + a(t), x2n(t) = −xn(t) + a(t). (2.28)

In order to complete a proof of (1.8) we need only to show that a(t) does not depend on t.

Let us substitute (2.19) into (1.7). A’priory the difference of the left- and right-hand sides
of (1.7) is an elliptic function of x with poles of degree 2 at the points xjn(t) and xjn+1(t).
Vanishing of the pole of degree 2 at xin implies that

(
ẋin
)2

− 1 = F i
n(x

i
n), (2.29)

where

F i
n(x) = rn

∏
j σ(x− xjn+1)σ(x− xjn−1)

∏
j 6=i σ

2(x− xjn)
, rn = −4eαn−αn−1 . (2.30)

Vanishing of the pole of degree 1 at xin implies

ẍin = ∂xF
i
n(x

i
n) = F i

n(x
i
n)
(
∂x lnF

i
n(x

i
n)
)
=

=
((
ẋin
)2

− 1
)

∑

j

ζ(xin − xjn+1) + ζ(xin − xjn−1)− 2
∑

j 6=i

ζ(xin − xjn)


 . (2.31)

Substitution of (2.28) in (2.30) shows that

F 1
n(x

1
n) = F 2

n(x
2
n) = rn(t)W (xn, xn+1)W (xn, xn−1).

Hence, we obtain the equality (ẋ1n)
2 = (ẋ2n)

2, which implies that ȧ = 0. Equalities (1.8) and
(2.14) are proved. At the same time substitution of (2.28) into (2.31) gives equations (1.1).
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3 Generating problem and Lax representation

In this section we construct the Lax representation for (1.1) following an approach proposed
in [40], and developed in [37, 41, 42] (see their summary in [39])). According to this approach
pole dynamics can be obtained simultaneously with its Lax representation from a specific
inverse problem for a linear operator with elliptic coefficients.

In the most general form this inverse problem is to find linear operators with elliptic
coefficients that have sufficiently enough double-Bloch solutions. A meromorphic function
f(x) is called double-Bloch if it has the following monodromy properties:

f(x+ 2ωα) = Bαf(x), α = 1, 2. (3.1)

The complex numbers Bα are called Bloch multipliers. (In other words, f is a meromorphic
section of a vector bundle over the elliptic curve.) It turns out that existence of the double-
Bloch solutions is so restrictive that only in exceptional cases such solutions do exist.

The basis in the space of double-Bloch functions can be written in terms of the funda-
mental function Φ(x, z) defined by the formula

Φ(x, z) =
σ(z − x)

σ(z)σ(x)
eζ(z)x. (3.2)

From the monodromy properties of the Weierstrass functions it follows that Φ, considered
as a function of z, is double-periodic: Φ(x, z + 2ωα) = Φ(x, z), though it is not elliptic in
the classical sense due to essential singularity at z = 0 for x 6= 0. As a function of x, the
function Φ(x, z) is double-Bloch function, i.e.

Φ(x+ 2ωα, z) = Tα(z)Φ(x, z),

where Tα(z) are given by (2.17). In the fundamental domain of the lattice defined by 2ωα

the function Φ(x, z) has a unique pole at the point x = 0:

Φ(x, z) = x−1 +O(x). (3.3)

Let f(x) be double-Bloch function with simple poles xi in the fundamental domain and with
Bloch multipliers Bα (such that at least one of them is not equal to 1). Then it can be
represented in the form:

f(x) =
N∑

i=1

ciΦ(x− xi, z)e
kx, (3.4)

where ci is the residue of f at xi and (z, k) are parameters such that Bα = Tα(z) exp(2ωαk).

Now we are in position to present the generating problem for (1.1).

Theorem 3.1 The equation

(∂t + ∂x)Ψn = 2Ψn+1 + vn(x, t)Ψn (3.5)
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with an elliptic coefficient of the form

vn(x, t) = γn(t) +
2∑

i=1

[
hin(t)ζ(x− xin(t))− hin+1(t)ζ(x− xin+1(t))

]
, (3.6)

where
x1n(t) = xn(t) + a, x2n(t) = −xn(t) + a, a = const, (3.7)

has two linear independent double-Bloch solutions with Bloch multipliers Tα(z) (for some z),
i.e. solutions of the form

Ψn(x, t) =
2∑

i=1

cinΦ(x− xin(t), z) (3.8)

if and only if the functions xn(t) satisfy equation (1.1).

If equation (3.5) has two linear independent solutions of the form (3.8) for some z, then
they exist for all values of z.

Proof. Let us substitute (3.8) into (3.5). The both sides of the equation are double-Bloch
functions with the same Bloch multipliers and with the pole of order 2 at xin, and the simple
pole at xin+1. They coincide iff the coefficients of their singular parts at these points are
equal to each other. The equality of the coefficients at (x− xin)

−2 implies

hin = ẋin − 1. (3.9)

The equality of residues at xin+1 is equivalent to the equation

cin+1 = 2−1hin+1

∑

j

Φ(xin+1 − xjn)c
j
n. (3.10)

The equality of residues at xin is equivalent to the equation

∂tc
i
n =M i

nc
i
n + hin

∑

j 6=i

Φ(xin+1 − xjn)c
j
n, (3.11)

where
M i

n = γn −
∑

j

hjn+1ζ(x
i
n − xjn+1) +

∑

j 6=i

hjnζ(x
i
n − xjn). (3.12)

Equations (3.10) and (3.11) are linear equations for cin. Their compatibility is just a system
of the equations:

∂t(lnh
i
n+1)Φ(x

i
n+1 − xjn) + (ẋin+1 − ẋjn)Φ

′(xin+1 − xjn) = (M i
n+1 −M j

n)Φ(x
i
n+1 − xjn)+

+
∑

k 6=i

Φ(xin+1 − xkn+1)h
k
n+1Φ(x

k
n+1 − xjn)−

∑

k 6=j

Φ(xin+1 − xkn)h
k
nΦ(x

k
n − xjn), (3.13)

which can be written in the matrix form:

∂tLn =Mn+1Ln − LnMn, (3.14)

where Ln andMn are matrices defined by the right-hand sides of (3.10) and (3.11). Equations
(3.14) are necessary and sufficient conditions for the existence of solutions of (3.5) which have
the form (3.8). Therefore, the following statement completes a proof of the theorem.
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Lemma 3.1 Let Ln = (Lij
n (t, z)) and Mn = (M ij

n (t, z)) be defined by the formulae

Lij
n = 2−1hin+1Φ(x

i
n+1 − xjn, z), M ii

n =M i
n, Mij = hinΦ(x

i
n − xjn, z), i 6= j, (3.15)

where x1n = xn, x
2
n = −xn, h

i
n = ẋin − 1, and M i

n is given by (3.12) with γn such that

γn − γn−1 = dt ln

(
(ẋ2n − 1)σ2(2xn)

σ(xn − xn+1)σ(xn + xn+1)σ(xn − xn−1)σ(xn + xn−1)

)
. (3.16)

Then they satisfy equation (3.14) if and only if the functions xn(t) solve equations (1.1).

Note, that (3.16) defines γn(t) up to a constant shift γn(t) → γn(t) + g(t), which corre-
sponds to the gauge transformation Ψn → egΨn of equation (3.5), and which does not effect
equations for xn.

Proof. The right- and left-hand sides of (3.13) are double-periodic functions of z that are
holomorphic except at z = 0, where they have the form O(z−2) exp((xin+1 − xjn)ζ(z)). Such
functions are equal if and only if the corresponding coefficients at z−2 and z−1 are equal.
The equality of the coefficients at z−2 gives

(ẋin+1 − ẋjn) = hin+1 − hjn +
∑

k

(hkn − hkn+1) = hin+1 − hjn, (3.17)

which is fulfilled due to (3.9) (the second equality in (3.17) holds because v(x, t) is an elliptic
function of x and, therefore, a sum of its residues is equal to zero).

The equality of the coefficients at z−1 in the expansion of (3.13) at z = 0 gives

∂t(lnh
i
n+1)− (ẋin+1 − ẋjn)ζ(x

i
n+1 − xjn) =M i

n+1 −M j
n+

+
∑

k 6=i

hkn+1

[
ζ(xin+1 − xkn+1) + ζ(xkn+1 − xjn)

]
−
∑

k 6=j

hkn
[
ζ(xin+1 − xkn) + ζ(xkn − xjn)

]
. (3.18)

The second line in (3.18) is equal up to the sign to the sum of residues at xkn, k 6= j, and at
xkn+1, k 6= i, of the elliptic function

ṽn(x, t) = vn(x, t)
[
ζ(xin+1 − x) + ζ(x− xjn)

]
.

Therefore, it equals to the sum of residues of this function at xin+1 and xjn. We have

resxi
n+1
ṽn(x, t) + resxj

n
ṽn(x, t) = (hjn − hin+1)ζ(x

i
n+1 − xjn) +M j

n−

− γn −
∑

k

hknζ(x
i
n+1 − xkn) +

∑

k 6=i

hkn+1ζ(x
i
n+1 − xkn+1) . (3.19)

Substitution of the right-hand side of the last equality into (3.18) implies (after the shift
n+ 1 → n)

ḣin
hin

= γn − γn−1 +
∑

k 6=i

2hknζ(x
i
n − xkn)−

∑

k

[
hkn+1ζ(x

i
n − xkn+1) + hkn−1ζ(x

i
n − xkn−1)

]
. (3.20)
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From (3.9) it follows, that (3.20) can be rewritten in the form

ẍin
ẋin − 1

= ∂xG
i
n(x

i
n) + ∂tG

i
n(x

i
n), (3.21)

where the function

Gi
n(x) = an + ln

(∏
k σ(x− xkn+1)σ(x− xkn−1)∏

k 6=i σ2(x− xkn)

)
, ∂tan = γn − γn−1, (3.22)

depends on t through the dependence on t of xim and an, only. By chain rule we have

dt
(
Gi

n(x
i
n)
)
= ẋin∂xG

i
n(x

i
n) + ∂tG

i
n(x

i
n), dt =

d

dt
. (3.23)

Therefore,
ẍin

ẋin − 1
= (1− ẋin)∂xG

i
n(x

i
n) + dt

(
Gi

n(x
i
n)
)
, (3.24)

From (3.7) it follows that

G1
n(x

1
n) = G2

n(x
2
n) = Gn(xn), ∂xG

1
n(x

1
n) = −∂xG

2
n(x

2
n) = ∂xGn(xn),

where

Gn(x) = an + ln

(
σ(x− xn+1)σ(x+ xn+1)σ(x− xn−1)σ(x+ xn−1)

σ2(x+ xn)

)
. (3.25)

Therefore, equations (3.24) for i = 1, 2, have the form

ẍn
ẋn − 1

= dt (Gn(xn))− (ẋn − 1)∂xGn(xn), (3.26)

ẍn
ẋn + 1

= dt (Gn(xn))− (ẋn + 1))∂xGn(xn). (3.27)

Equations (3.26) and (3.27) are equivalent to the equations:

ẍn = (ẋ2n − 1)∂xGn(xn), dt (Gn(xn)) = dt ln (ẋ
2
n − 1). (3.28)

The first among them, coincides with equations (1.1) for xn, and the second one (compare it
with (2.14)) is equivalent to the definition of γn by (3.16). Lemma and Theorem are proved.

4 Direct problem. Spectral curves.

In this section we consider periodic in n solutions of equations (1.1).
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Lemma 4.1 Let xn(t) = xn+N(t) be a solution of (1.1). Then

I =
N∏

n=1

(
σ(xn − xn+1)σ(xn + xn+1)σ(xn − xn−1)σ(xn + xn−1)

(ẋ2n − 1)σ2(2xn)

)
, (4.1)

is an integral of motion, I = const, and the monodromy matrix

T (t, z) =
N−1∏

n=0

Ln(t, z) (4.2)

satisfies the Lax equation
∂tT = [M0, T ]. (4.3)

Proof. If xn(t) is periodic in n, then the corresponding matrix functions Ln(t, z) andMn(t, z)
defined by (3.15) satisfy the relations

Ln+N = Ln, Mn+N =Mn − dt(ln I). (4.4)

Therefore, equation (3.14), ∂tLn =Mn+1Ln − LnMn, implies that

∂tT = −dt(ln I) T + [M0, T ]. (4.5)

Note, that if ∂tI = 0 then (4.5) coincides with (4.3), and therefore, the second statement of
the Lemma follows from the first one.

Equation (4.5) implies that the function

P (z) = I(t)(tr T (t, z)) (4.6)

is time-independent.

Matrix entries of Ln are double-periodic functions that are holomorphic on Γ0 except at
z = 0. Therefore, (tr T ) is also double-periodic and holomorphic on Γ0 outside z = 0. In
order to prove that this function is meromorphic on Γ0, it is enough to note that Ln has the
form

Ln(t, z) = gn+1L̃ng
−1
n , (4.7)

where

gn =

(
exnζ(z) 0

0 e−xnζ(z)

)
.

From (3.2) it follows that in the neighborhood of z = 0

L̃n = (z)−1L̃0
n + L̃1

n +O(z), (4.8)

where

L̃0
n =

1

2

(
1− ẋn+1 1− ẋn+1

1 + ẋn+1 1 + ẋn+1

)
(4.9)

and

L̃1
n =

1

2

(
1− ẋn+1 0

0 1 + ẋn+1

)(
−ζ(xn+1 − xn) −ζ(xn+1 + xn)
ζ(xn+1 + xn) ζ(xn+1 − xn)

)
. (4.10)
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Therefore,

tr T = tr

(
N−1∏

n=0

L̃n(t, z)

)
= z−N(1 + 0(z)). (4.11)

The last equality shows that (tr T ) is a monic elliptic polynomial P el
N (z). Therefore, at z = 0

we have P (z) = I(t)z−N(1 + 0(z)). Hence, I(t) is an integral of (1.1) because P (z) does not
depend on z. Lemma is proved.

Due to (4.3) the spectral curve Γ defined by the characteristic equation

R(w, z) ≡ det (w − T (t, z)) = w2 − (tr T )w + det T = 0 (4.12)

is time-independent.

Lemma 4.2 The characteristic equation (4.12) has the form (1.3) .

Proof. We have already proved that (tr T ) has the form (1.5). The relation Φ(x, z)Φ(−x, z) =
℘(z)−℘(x), which is equivalent to the addition formula for theWeierstrass σ-function, implies

detLn(t, z) = 2−2(ẋ2n+1 − 1) [℘(xn+1 − xn)− ℘(xn+1 + xn)] . (4.13)

Therefore, though Ln(t, z) depends on z, its determinant does not depend on z. Hence,
(det T ) is also z-independent. As it does not depend on t, we identify Λ2N in (1.6) with

Λ2N = det T (t, z) = 2−2N
N−1∏

n=0

(ẋ2n − 1) (℘(xn − xn−1)− ℘(xn + xn−1)) = 2−2NeH , (4.14)

where H is the Hamiltonian of system (1.1). Lemma is proved.

For a generic point Q of the spectral curve Γ, i.e. for a pair (w, z) that satisfies (4.12)
there exists a unique solution Cn = (cin(t, Q)) of the equations

Cn+1(t, Q) = Ln(t, z)Cn(t, Q), ∂tCn(t, Q) =Mn(t, z), (4.15)

such that
Cn+N(t, Q) = wCn(t, Q), (4.16)

and normalized by the condition

c10(0, Q)Φ(−x0(0), z) + c20(0, Q)Φ(x0(0), z) = 1. (4.17)

Remark. Normalization (4.17) corresponds to a usual normalization Ψ0(0, 0, Q) = 1 of the
solution Ψn(x, t, Q) of (3.5) defined by (3.8).

Theorem 4.1 The coordinates cin(t, Q) of the vector-valued function Cn(t, Q) are meromor-
phic functions on Γ except at the preimages P± of z = 0. Their poles γ1, . . . , γN+1 do not
depend on n and t. The projections z(γs) of these poles on Γ0 satisfy the constraint

N+1∑

s=1

z(γs) = 0. (4.18)
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In the neighborhoods of P± the coordinates of Cn(t, Q) have the form

c1n(t, Q) = z∓nχ1
n,±(t, z)e

(±t+xn(t))z−1

, (4.19)

c2n(t, Q) = z∓nχ2
n,±(t, z)e

(±t−xn(t))z−1

, (4.20)

where χi
n,±(t, z) are regular functions of z:

χi
n,+(t, z) = zχi

n,+(t) +O(z2), χi
n,−(t, z) = χi

n,−(t) + zχi,1
n,−(t) +O(z2), (4.21)

such that the leading coefficients of their expansions have the form:

χ1
n,+(t) = c(t)(1− ẋn), χ

2
n,+(t) = c(t)(1 + ẋn), c(0) = 1, (4.22)

χ1
n,−(t) = sn(t), χ

2
n,−(t) = −sn(t), (4.23)

where functions sn satisfy the relation

sn+1 = 2−2(ẋ2n+1 − 1) [℘(xn+1 − xn)− ℘(xn+1 + xn)] sn. (4.24)

Proof. Vector-columns S(1)
n and S(2)

n of the matrix-function

Sij
0 = δij , Sn(t, z) =

n−1∏

m=0

Lm(t, z), n > 0, (4.25)

are holomorphic functions on Γ0 except at z = 0. They satisfy the equation S
(i)
n+1 = LnS

(i)
n .

Therefore, the Bloch solution Cn of (4.15) has the form

Cn(t, Q) = h1(Q)S
(1)
n (t, z) + h2(Q)S

(2)
n (t, z), (4.26)

where hi(Q), Q = (w, z) ∈ Γ, are the coordinates of the normalized eigenvector of the
monodromy matrix T (z), corresponding to the eigenvalue w. They are equal to

h1(Q) =
1

r(Q)
T 12(z), h2(Q) =

1

r(Q)
(w − T 11(z)), (4.27)

where T ij(z) are entries of the monodromy matrix and the normalization constant r(Q)
equals

r(Q) = T 12(z)Φ(−x0(0), z) +
(
w − T 11(z)

)
Φ(x0(0), z). (4.28)

The function r(Q) has the pole of degree N + 1 at P+ and the pole of degree N at P−.
Therefore, it has 2N + 1 zeros.

Let us show that N of these zeros are situated over roots of the equation T 12(z) = 0 on
one of the sheets of Γ. Indeed, if T 12(z) = 0, then eigenvalues w(z) of the monodromy matrix
are equal to T 11(z) or T 12(z). Therefore, r = 0 at the points Q = (T 11(z), z). Equations
(4.27) imply that Cn has no poles at these points. The poles γs of Cn(t, Q) on Γ outside the
punctures P± are the other zeros of r(Q) and do not depend on n and t. Let us prove now
that they satisfy (4.18).
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The function r∗(z) = r(Q)r(Qσ) with σ : Q → Qσ as permutation of sheets of Γ, is a
well-defined function on Γ0 with the pole of degree 2N + 1 at z = 0. As it was shown above
it is divisible by T 12(z). Therefore, the ratio r∗(z)/T 12(z) is an elliptic function with the
pole of degree N + 1 at z = 0 and zeros at the points z(γs). Divisors of zeros and poles of
an elliptic function are equivalent. Therefore, (4.18) is proved.

From (4.7) it follows that the vector-function C̃n = g−1
n Cn is a Bloch solution of the

equation C̃n+1 = L̃nC̃n. Let us first consider the neighborhood of the puncture P+, which
corresponds to the branch w = z−N (1 +O(z)) of the eigenvalue of the monodromy matrix.

The vector-function Xn(t) with the coordinates given by (4.22) satisfies the equation
Xn+1 = L̃0

nXn, where L̃
0
n is defined in (4.8). That implies that in the neighborhood of P+

the vector-function Cn(t, Q) has the form stated in the theorem up to a time-dependent factor
f+(t, z). Substitution of (4.19,4.20) into the equation ∂tCn =MnCn shows that ∂tf = O(z).
Therefore, the analytical properties of Cn near P+ are established.

Now we are going to prove by induction that at P− equalities (4.19, 4.20), and (4.23)
hold. For n = 0 they are fulfilled by the normalization conditions. Let us prove first, that if
(4.19, 4.20), and (4.23) hold for n′ ≤ n, then

2κn = (ζ(xn+1 + xn)− ζ(xn+1 − xn)) sn + χ1,1
n,− + χ1,2

n,− = 0. (4.29)

Indeed, the equation Cn+1 = LnCn implies that C̃n+1 at P− has the form

C̃n+1 = zn
(

(1− ẋn+1)κn
(1 + ẋn+1)κn

)
+O(zn+1). (4.30)

Hence,

C̃N =




N−1∏

m=n+1

Lm



 C̃n+1 = z2n−N−1

(
(1− ẋ0)κn
(1 + ẋ0)κn

)
+O

(
z2n−N

)
. (4.31)

If κn 6= 0, then the last equality contradicts the monodromy property C̃N = wC̃0 = O(zN).
Therefore, κn = 0, and then (4.30) shows that C̃n+1 has zero of order n+1 at P−. Therefore,
a step of induction for equalities (4.19, 4.20) is proved. The same arguments show that if
(4.23) does not hold then the vector C̃N has zero of order (2n−N) which again contradicts
the relation C̃N = O(zN).

Equalities (4.19, 4.20) near P− are proved, possibly up to a time-dependent factor f−(t, z).
Their substitution into the equation ∂tCn =MnCn shows that ∂tf− = O(z) and completes a
proof of (4.19, 4.20), and (4.23).

Let Cn(z) be a matrix formed by the vectors Cn(t, Qi(z)), corresponding to two different
sheets Qi(z) = (wi(z), z) of Γ. This matrix is defined up to permutation of sheets. From
(4.19-4.23) it follows that in the neighborhood of z = 0

Cn(z) =

(
exnζ(z) 0

0 e−xnζ(z)

)[(
(1− ẋn)c sn
(1 + ẋn)c −sn

)
+O(z)

](
z−n+1etζ(z) 0

0 zne−tζ(z)

)

(4.32)
Therefore,

det Cn = −2csnz +O(z2), (4.33)
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and from the definition of Cn we have Cn+1 = LnCn. Hence,

sn+1 = sn detLn, (4.34)

which coincides with (4.24). Theorem is proved.

The correspondence which assigns to each solution xn(t) = xn+N(t) of (1.1) a set of
algebro-geometric data {Γ, D}, is a direct spectral transform. The following statement shows
that the results of Section 2, can be seen as the inverse spectral transform.

Corollary 4.1 The solution

Ψn(x, t, Q) = c1n(t, Q)Φ(x− xn(t), t) + c2n(t, Q)Φ(x+ xn(t), t) (4.35)

of equation (3.5) is equal to Ψn(x, t, Q) = c(t)ψn(x, t, Q), where ψn(x, t, Q) is the Baker-
Akhiezer function corresponding to Γ and the divisor D of the poles of Cn; the factor c(t) is
defined in (4.22).

All the solutions xn(t) of (1.1) have the form xn = 1
2
(x1n − x2n), where x

i
n(t) are roots of

the equation
θ(nU + xin(t)V +Wt+ Z) = 0. (4.36)

Here θ(z) is the Riemann theta-function corresponding to Γ; vectors U, V,W are defined by
(2.8, 2.9); vector Z corresponds to the divisor D via the Abel transform.

As follows from the Theorem 4.1, the function Ψn defined by (4.35) has the same analytical
properties on Γ as the function c(t)ψn. Therefore, they coincide. Equation (4.36) immedi-
ately follows from the formula (2.10) for ψn.

5 Action-angle variables

Until now we have not used the Hamiltonian structure of equations (1.1). Moreover, a’priory
it is not clear why a system that has arisen as a pole system of elliptic solutions of the 2D
Toda lattice is Hamiltonian. The general algebro-geometric approach which allows to derive
a Hamiltonian structure starting from the Lax representation was proposed and developed
in [16, 17, 39].

The main goal of this section is to construct action-angle variables for (1.1). First of all,
let us summarize necessary results of the previous sections. A point (pn, xn) of the phase
space M of the system defines a matrix function Ln(z) with the help of the formulae

Lij
n = 2−1hin+1Φ(x

i
n+1 − xjn, z), (5.1)

x1n = xn, x
2
n = −xn, h

1
n = hn − 1, h2n = −hn − 1, hn =

1 + epn

1− epn
. (5.2)

This function defines the spectral curve Γ (with the help of (4.12)), and the divisor D of
poles γ1, . . . , γN+1 of the Baker-Akhiezer function Cn(Q) = (c1n(Q), c

2
n(Q))

Cn+1(Q) = Ln(z)Cn(Q), CN(Q) = wC0(Q), Q = (w, z) ∈ Γ, (5.3)
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normalized by the condition

c10(0, Q)Φ(−x0, z) + c20(Q)Φ(x0, z) = 1. (5.4)

The divisor D satisfies (4.18), i.e. defines a point of an odd part of the Jacobian JPr(Γ) ∈
J(Γ), which is defined as a fiber of the projection

{γ1, . . . , γN+1} ∈ J(Γ) 7−→ 2ωφ+ =
∑

s=1

z(γs) ∈ Γ0, (5.5)

corresponding to φ+ = 0. All the fibers are equivalent and can be identified with the Prym
variety of Γ. Note, that a shift of φ+ corresponds to the shift x → x + a for the solution
(1.8) of 2D Toda lattice.

The correspondence
(pn, xn) ∈ M 7−→ {Γ, D ∈ JPr(Γ)} (5.6)

is an isomorphism. The coefficients (ui,Λ) of equation (1.6) are integrals of the Hamiltonian
system (1.1). Equations (1.1) on a fiber over Γ of the map (5.6) are linearized by the Abel
transform (2.6).

The main goal of this section is to construct the action variables that are canonically
conjugated to the coordinates φ1, . . . , φN−1, φ− :

φk =
N+1∑

s=1

Ak(γs), φ− = φN − φN+1, (5.7)

on the Prymmian JPr(Γ). Note, that φ+ = φN + φN+1.

Theorem 5.1 The transformation

(xn, pn) 7−→ (φ1, . . . , φN−1, φ−; I1, . . . IN) (5.8)

where Ik are a-periods of the differential dS = ln(Λ−Nw)dz:

Ik =
∮

ak

ln(Λ−Nw)dz, (5.9)

is a canonical transformation, i.e.

N∑

n=1

dpn ∧ dxn =
N−1∑

k=1

(δIk ∧ δφk) + δIN ∧ δφ−. (5.10)

Proof. First of all, following the approach proposed in [16], we define a symplectic structure
on M in terms of the Lax operator and its eigenfunctions. After that we will calculate it in
two different ways which immediately imply (5.10).

The external differential δLn(z) can be seen as an operator-valued one-form on M.
Canonically normalized eigenfunction Cn(Q) of Ln(z) is the vector-valued function on M.
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Hence, its differential is a vector-valued one-form. Let us define a two-form ω on M by the
formula

ω =
1

2

(
resP+

Ω + resP−
Ω
)
, (5.11)

where
Ω =< C∗

n+1(Q)δLn(z) ∧ δCn(Q) > dz. (5.12)

Here and below < · > stands for the sum over a period of a periodic in n function, i.e.

< fn >=
N−1∑

n=0

fn;

C∗
n(Q) is the dual Baker-Akhiezer function, which is defined as a co-vector (row-vector)

solution of the equation

C∗
n+1(Q)Ln(z) = C∗

n(Q), C∗
N(Q) = w−1C∗

0 (Q), (5.13)

normalized by the condition
C∗

0(Q)C0(Q) = 1. (5.14)

The form ω can be rewritten as

ω =
1

2
res0 Tr <

(
C−1
n+1(z)δLn(z) ∧ δCn(z)

)
> dz, (5.15)

where Cn(z) is a matrix with the columns Cn(Qj(z)), Qj(z) = (z, wj) corresponding to
different sheets of Γ.

Note, that C∗
n(Q) are rows of the matrix C−1

n (z). That implies that C∗
n(Q) as a function

on the spectral curve is: meromorphic outside the punctures; has poles at the branching
points of the spectral curve, and zeros at the poles γs of Cn(Q). These analytical properties
are used in the proof of the following lemma.

Lemma 5.1 The two-form ω equals

ω =
N+1∑

s=1

δz(γs) ∧ δ lnw(γs). (5.16)

The meaning of the right-hand side of this formula is as follows. The spectral curve by
definition arises with the meromorphic function w(Q) and multi-valued holomorphic function
z(Q). Their evaluations w(γs), z(γs) at the points γs define functions on M, and the wedge
product of their external differentials is a two-form on M.

Proof. The differential Ω, defined by (5.12) is a meromorphic differential on the spectral curve
(the essential singularities of the factors cancel each other at the punctures). Therefore, the
sum of its residues at the punctures is equal to the sum of other residues with negative sign.
There are poles of two types.

First of all, Ω has poles at the poles γs of Cn. Note, that δCn has the pole of the second
order at γs. Taking into account that C∗

n has zero at γs we obtain

resγsΩ =< C∗
n+1δLnCn > ∧δz(γs). (5.17)

19



From (5.3) and (5.13) it follows that

< C∗
n+1δLnCn >=< C∗

N




N−1∏

m=n+1

Lm


 δLn

(
n−1∏

m=0

Lm

)
C0 >= (C∗

NδTC0) , (5.18)

where T is the monodromy matrix. Using the standard formula for the variation of the
eigenvalue of an operator: δw = C∗

0δTC0, we obtain that

resγsΩ = δ lnw(γs) ∧ δz(γs). (5.19)

The second set of poles of Ω is a set of branching points qi of the cover. The pole of C∗
n

at qi cancels with the zero of the differential dz, dz(qi) = 0, considered as differential on
Γ. The vector-function Cn is holomorphic at qi. If we take an expansion of Cn in the
local coordinate (z − z(qi))

1/2 (in general position when the branching point is simple), and
consider its variation, we get that

δCn = −
dCn

dz
δz(qi) +O(1). (5.20)

Therefore, δCn has a simple pole at qi. In the similar way, we obtain

δw = −
dw

dz
δz(qi). (5.21)

Equalities (5.20) and (5.21) imply that

resqiΩ = resqi

[
< C∗

n+1δLndCn > ∧
δwdz

dw

]
. (5.22)

At qi we have dLn(qi) = 0. Therefore, in the way similar to (5.18), we get

resqiΩ = resqi

[
(C∗

NδTdC0) ∧
δwdz

dw

]
. (5.23)

Due to skew-symmetry of the wedge product we may replace δT in (5.23) by (δT − δw).
Then using identities C∗

N(δT −δw) = δC∗
N(w−T ) and (w−T )dC0 = (dT −dw)C0 we obtain

resqiΩ = −resqi (δC
∗
NC0) ∧ δwdz = resqi (C

∗
NδC0) ∧ δwdz. (5.24)

Note, that the dT does not contribute to the residue, because dT (qi) = 0.

Expansions (4.19, 4.20) near the punctures imply that

resP±
(C∗

NδC0) ∧ δwdz = 0. (5.25)

Therefore,

∑

qi

resqi (C
∗
NδC0) ∧ δwdz = −

N+1∑

s=1

resγs (C
∗
NδC0) ∧ δwdz =

N+1∑

s=1

δ lnw(γs) ∧ δz(γs). (5.26)

The sum of (5.19) and (5.26) gives (5.16), because

2ω = −
N+1∑

s=1

resγsΩ−
∑

qi

resqiΩ. (5.27)

Our next goal is to prove the following statement.
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Lemma 5.2 The symplectic form given by (5.11) coincides with the canonical symplectic
structure

ω =
N+1∑

n=0

δpn ∧ δxn. (5.28)

Proof. Using the gauge transformation (4.7)

Ln = gn+1L̃ng
−1
n , Cn = gnC̃, gn =

(
exnζ(z) 0

0 e−xnζ(z)

)
,

we obtain

ω =
1

2
res0 Tr < C̃−1

n+1(z)δL̃n(z) ∧ δC̃n(z) + C̃−1
n+1δL̃n ∧ δfnC̃n

− C̃−1
n+1

(
δfn+1 ∧ δL̃n + δfn+1 ∧ L̃nδfn

)
C̃n > dz, (5.29)

where δfn = δgng
−1
n . From (4.32), using the equality

(ζ(xn+1 + xn)− ζ(xn+1 − xn)) δsn + δ(χ1,1
n,− + χ1,2

n,−) = snδ (ζ(xn+1 − xn)− ζ(xn+1 + xn)) ,

which follows from (4.28), we obtain that the first term in (5.29)

J1 = res0 < Tr
(
C̃−1
n+1(z)δL̃n(z) ∧ δC̃n(z)

)
> dz

is equal to

J1 =<
sn

2sn+1

δhn+1 ∧ δ (ζ(xn − xn+1) + ζ(xn+1 + xn)) > .

Equation (4.34) implies

J1 =<
2δhn+1 ∧ δxn+1

h2n+1 − 1
−

2δhn+1 ∧ δxn
h2n+1 − 1

(
℘(xn − xn+1) + ℘(xn + xn+1)

℘(xn − xn+1)− ℘(xn + xn+1)

)
> . (5.30)

The second term in (5.29) equals

J2 =< res0 Tr
(
C̃−1
n+1δL̃n ∧ δfnC̃n

)
> dz =< res0 Tr

(
L̃−1
n δL̃n ∧ δfn

)
> dz

From definition (5.1) of Ln by direct calculations we obtain that

J2 =<
2δhn+1 ∧ δxn
h2n+1 − 1

(
℘(xn − xn+1) + ℘(xn + xn+1)

℘(xn − xn+1)− ℘(xn + xn+1)

)
> . (5.31)

At last, the third term in (5.29) is equal to

J3 = − < res0 Tr
(
C̃−1
n+1δfn+1 ∧ δL̃nC̃n

)
> dz =< res0 Tr

(
(δL̃n)L̃

−1
n ∧ δfn+1

)
> dz , (5.32)

because
J4 =< res0 Tr

(
C̃−1
n+1δfn+1 ∧ L̃nδfn

)
C̃n > dz = 0. (5.33)
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In order to prove (5.33), let us note that at z = 0

fn(z) = z−1f 0
n +O(z3), f 0

n =

(
xn 0
0 −xn

)
. (5.34)

Therefore,

J4 = < res0 Tr
(
C̃−1
n+1δf

0
n+1 ∧ L̃nδf

0
n

)
C̃n > ℘(z)dz

= < res0 Tr
(
C−1
n+1δf

0
n+1 ∧ Lnδf

0
n

)
Cn > ℘(z)dz. (5.35)

The last term in (5.35) is equal to the sum of residues at the punctures P± of the differential

< C∗
n+1δf

0
n+1 ∧ Lnδf

0
nCn > ℘(z)dz,

which is holomorphic on Γ outside the punctures. Hence J4 = 0.

From (5.32) by direct calculations we obtain, that

J3 =<
2δhn+1 ∧ δxn+1

h2n+1 − 1
> . (5.36)

Equations (5.30,5.31), and (5.36) imply (5.28). Lemma is proved.

Now we are ready to complete the proof of the Theorem. Equations (5.16) and (2.14)
imply that

ω = −δα, α =
N+1∑

s=1

∫ γs

P+

δ ln(Λ−Nw)dz. (5.37)

Indeed, we have

δα =
N+1∑

s=1

δ lnw(γs) ∧ δz(γs)−Nδ ln Λ ∧ δ
N+1∑

s=1

z(γs). (5.38)

The last term in (5.38) equals zero on the fibers φ+ = const of the map (5.5).

The differential dS = ln(Λ−Nw)dz is multi-valued on Γ but, following the arguments
of [16], one can show that its derivatives with respect to Ik, k = 1, . . . , N (which can be
considered as coordinates on a space of curves given by (1.6)), are holomorphic differentials.
dS is an odd differential with respect to the permutation of sheets of Γ. Therefore, IN+1 =
−IN and the definition of Ik implies that

∂

∂Ik
dS = dΩh

k, k = 1, . . . , N − 1,
∂

∂IN
dS = dΩh

N − dΩh
N+1. (5.39)

Equations (5.7) and (2.6) imply that

α =
N−1∑

k=1

(φkδIk) + φ−δIN , (5.40)

and using (5.37) we finally obtain (5.10). Theorem is proved.
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