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Abstract

We construct families of Hamiltonians extending the Calogero model and

such that a finite number of eigenvectors can be computed algebraically.

1 Introduction

The notion of quasi exactly solvable equations has many different meanings. Initially

[1, 2] it was invented to qualify operators (typically quantum Hamiltonian ones)

which, after suitable change of variables and(or) ”gauge rotation”, are equivalent to

an element of the envelopping algebra of some Lie algebra, represented by differen-

tial operators. In the following we refer to the above property as to algebraic QES

property. In opposition some operators can possess a series of values of the coupling

constants for which an explicit eigenvector is available without beeing related to any

representation of a Lie algebra. We will qualify this property as ”weak-QES”. In

the recent few years the Calogero model [3] (and several of its extensions [4]) have

received a considerable new impetus of interest. One of the new results was the

construction [5] of a set of variables (the so called τ -variables) in which the N-body

Calogero model can be written as an element of the enveloping algebra of sl(N). The

1

http://arxiv.org/abs/hep-th/9909225v1


complete integrability of the model was then directly related to the finite representa-

tions of a Lie algebra, following very closely one of the ideas underlying the notion of

quasi exact solvability [1]. Some algebraic QES generalisations of the Calogero mod-

els were proposed soon after the basic result of [5]. Unfortunately these extentions

are all based of an sl(2) algebra. Basically, only one of the coordinates, for instance

τ2, is involved into the additional piece of the potential. The purpose of this note is

to exhibit series of weak-QES hamiltonians, generalizing the Calogero hamiltonian,

some of them depending generically of all the τ ’s.

2 The Hamiltonian

We are interested in hamiltonians of the form

H = Hc + V (1)

Hc =
1

2
(−∆+ ω2r2) +

N∑

j<k=1

ν(ν − 1)

(xj − xk)2
(2)

with

∆ =
N∑

i=1

∂2

∂x2i
, r2 =

N∑

i=1

x2i (3)

and such that the eigenvalue equation

Hψ = Eψ (4)

admits eigenvectors of the form

ψ(x) = (β(x))νe−
ω

2
r2eP (x)p(x) , β(x) = Πj<k(xj − xk) , (5)

The function β(x) is the Vandermonde determinant of the matrix Mij = (xi)
j . More-

over we restrict ourselves to polynomial forms of V (x), P (x), p(x) in x ≡ (x1, x2, . . . , xN).

The operator acting on p(x) will be denoted H̃ :

H̃p = Ep (6)
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In the following we use the variables σ1, τ2, τ3, · · · , τN introduced in [5]. In these

variables, the laplacian (3) reads [5]

∆(τ) = N
∂2

∂σ2
1

+
N∑

j,k=2

Ajk

∂2

∂τj∂τk
+

N∑

j=2

Bj

∂

∂τj
(7)

Ajk =
(N − j + 1)(k − 1)

N
τj−1τk−1

+
∑

l≥max(1,k−j)

(k − j − 2l)τj+l−1τk−l−1 (8)

Bj = −(N − i+ 2)(N − i+ i)

N
τi−2 (9)

For the manipulation of a generic (translation-invariant) change of basis, the relevant

formula reads
∑

k

∂w

∂xk

∂

∂xk
=

N∑

j,k=2

Ajk

∂w

∂τj

∂

∂τk
(10)

The following identities are also useful :

β−ν(−1

2
∆(x)+

∑

j<k

ν(ν − 1)

(xj − xk)2
)βν = −1

2
∆(τ)+

ν

2

N∑

j=2

(N−j+2)(N−j+1)τj−2
∂

∂τj
(11)

e
ω

2
r2(−1

2
∆(x) +

ω2

2
r2)e−

ω

2
r2 = −1

2
∆(τ) + ω

N∑

j−2

jτj
∂

∂τj
+
N

2
ω ; (12)

they allow to handle respectively the repulsive and the harmonic parts of the potential

in (1).

We have attempted to construct the polynomial potentials V (τ2, τ3, · · · , τN) such
that the operator (1) is equivalent (after a change of basis and with the variables τ)

to an operator preserving one vector space of the form

P(N, n) = span{τn2

2 τn3

3 · · · τnN

N | n2 + n3 + · · ·+ nN ≤ n} (13)

Our calculations indicate that, for N = 2, 3, 4, 5, the Calogero hamiltonian (corre-

sponding to V = 0 in (1)) is the only one to possess such a property. After this

negative result, we investigate alternative possibilities of algebraic solutions by im-

posing weaker requirements. Four types of situation have been considered which

presented in the next section.
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3 Weak-QES Hamiltonians

3.1 Type 1

We set N = 3; as previously stated V, P, p are then polynomials in τ2, τ3. Use of the

identities of Sec. 2 leads to the operator H̃ acting on p(τ2, τ3) :

H̃ = τ2
∂2

∂τ 22
+ 3τ3

∂2

∂τ2∂τ3
− 1

3
τ 22

∂

∂τ 23
+

∂

∂τ2

+ (
∂P

∂τ2
)(2τ2

∂

∂τ2
+ 3τ3

∂

∂τ3
)

+ (
∂P

∂τ3
)(3τ3

∂

∂τ2
− 2

3
τ 22

∂

∂τ3
)

+ ω(2τ2
∂

∂τ2
+ 3τ3

∂

∂τ3
)

+ 3ν
∂

∂τ2
+ Veff (14)

where we define

Veff ≡ V − 1

2
e−P∆eP (15)

We have constructed the solutions of this equation for particular values of the degrees

of P and of p.

P is of degree four

We assume P (x) to be at most quartic in x, i.e.

P =
c

2
τ 22 + bτ2 + dτ3 (16)

Choosing for p a polynomial of global degree n in τ2, τ3, a careful power counting in

(6), (14), reveals that polynomial solutions can exist only if Veff is the form

Veff = v1τ2 + v0 (17)

(v0 accounts for the eigenvalue of H̃, i.e. v0 ≡ −E). Moreover there are generically

(n+2)(n+3)
2

−1 algebraic equations to be solved and (n+1)(n+2)
2

+1 parameters (including

the parameters of p and the two defining Veff). We solved explicitely these equations

for the first few values of n.
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Let n = 1, then

p = τ2 + c1τ3 + c0 (18)

Two types of solutions are found after some algebra.

Solution (a)

c1 = d = 0 , v1 = −2c

c0 =
2b+ 2ω + v0

2c

v0 = −b− w ±
√
ω2 − 2c− 6cν + 2bω + b2 (19)

This solution does not depend on τ3 and is therefore not generic. It depends only on

τ2 and it has two possible of eigenvalues of the energy (E ≡ −v0). It is a particular

case of the QES extension of the Calogero model constructed in [6]. The potential

depends on four parameters ω, ν, b, c. Such solutions can be constructed for any values

of n. The corresponding Hamiltonian is an element of the enveloping algebra of sl(2)

realized on the space of polynomials of degree at most n in τ2.

Solution (b)

c1 =
−3c

2d
, c0 =

2d2 − ωc− bc

3c2

v1 = −3c , v0 =
1

c
(2d2 − 3ωc− 3bc) (20)

which has to be supplemented by one condition on ω, ν, b, c, d:

3b2c2 + 6bc2ω − 8bcd2 + 9c3ν + 3c3 + 3c2ω2 − 8cd2ω + 4d4 = 0 (21)

Unlike the ”solution (a)”, this solution non trivially depends on τ2 and τ3. The

potential is parametrized by ω, ν, b, c, d constrained by (21). One can in principle solve

(21) with respect to one of the constants and obtain a finite number of potentials each

admitting one algebraic eingenvector. This result is similar in spirit to a QES-type

II equation [1].

Repeating the above calculation for n = 2, i.e.

p = τ 22 + c1τ2τ3 + c3τ
2
3 + c2τ2 + c4τ3 + c5 (22)
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As a counterpart of solution (b), we find the following expressions

v1 = −6c , v0 = 2
2d2 − 3b c− 3c ω

c
(23)

c1 = −3
c

d
, c2 =

32d4 − 16 b c d2 − 9c3 − 16c d2ω

24c2 d2
(24)

c3 =
9c2

4d2
, c4 =

b c+ c ω − 2d2

c d
(25)

c5 = (16b2 c2 d2 + 9b c4 + 32b c2 d2 ω − 48b c d4 + 9c4ω

+ 36c3d2 ν + 15c3 d2 + 16c2 d2ω2 − 48c d4ω + 32d6)/(36c4d2) (26)

which fix the parameters of p and Veff in terms of the coupling constant ω, ν, b, c, d.

Two supplementary relations, analog to (21), have to be imposed of these coupling

constants

0 = 24b2c2 + 48bc2ω − 64bcd2 + 72c3ν + 105c3 + 24c2ω2 − 64cd2ω + 32d4 (27)

0 = −192b3c3d2 − 108b2c5 − 576b2c3d2ω + 704b2c2d4

− 216bc5ω − 576bc4d2ν − 156bc4d2 − 576bc3d2ω2

+ 1408bc2d4ω − 768bcd6 − 81c6 ν − 27c6 − 108c5 ω2 − 576c4 d2 ω ν

− 156c4d2ω + 576c3 d4ν + 216c3 d4 − 192c3 d2ω3 + 704c2 d4ω2

− 768c d6ω + 256d8 (28)

So that we end up with a three-parameters family of weak-QES potentials.

P is of degree six

We also considered the case of a polynomial P of degree at most six in x, i.e.

P =
c

2
τ 22 + bτ3 + dτ2 +

c̃

3
τ 32 +

b̃

2
τ 23 + d̃τ2τ3 (29)
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and found that Veff has to be of the form

Veff = v0 + v1τ2 + v2τ3 + v3τ
2
2 (30)

i.e. at most quartic in the variables xi. Solving the equations (6) for n = 3, we

checked that a four-parameter family of weak-QES potentials exists. The form of the

constraints on the parameters rapidly becomes cumbersome when the degree of P

increases.

3.2 Type 2

When we demand the functions V, P, p in (1)-(5) to depend on the variable τ2 only,

the operator H̃ takes the form

H̃ = τ2
∂2

∂τ 22
+ (τ2P

′ + 2ωτ2 +
N − 1

2
(1 +Nν))

∂

∂τ2

+ (2ωτ2 +
N − 1

2
(1 +Nν))P ′ + τ2(P

′′ + (P ′)2) + V (τ2) (31)

where P ′ = dP
dτ2

, etc.

The case P = −a
2
τ 22 − bτ2 corresponds to the QES extension of [6]; the potential

V is then of third degree in τ2. However weak-QES potentials of higher degree can

be constructed. Let indeed V be of degree 2δ + 1, then a power counting reveals

that P has to be of degree δ + 1 and that the algebraic equation (6) can be fulfilled

with a polynomial p(τ2) provided a number of δ conditions among the 2δ+1 coupling

constants entering in the potential are satisfied. This results into families of weak-

QES potentials depending of δ + 1 parameters.

3.3 Type 3

We have reconsidered the QES Hamiltonian of [7] and tried to generalize it by fol-

lowing the approach presented in Sec.2. The hamiltonian has the form [7]

H = −∆+ V + g
N∑

i,j=1,i 6=j

(
1

(xi − xj)2
− 1

(xi + xj)2
) . (32)
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We look for the most general change of function eP and potential V such that

H̃ = ePHe−P |ξi , < qquadξi ≡ x2i (33)

is an element of the enveloping algebra of the Lie algebra sl(N) in the representation

given by Eq.(16) of [5]. After an algebra, we find a four parameters family of potentials

with

e−P = (ΠN
i,j=1,i<j(ξi − ξj))

α(ΠN
j=1ξj)

β exp{−a
4

N∑

j=1

ξ2j −
b

2

N∑

j=1

ξj} (34)

and

V =
N∑

i=1

{ g
′

4ξi
+ (b2 − a(4n+ 4α(N − 1) + 4β + 3))ξi + 2abξ2i + a2ξ3i } (35)

with g = α(α− 1), g′ = 2β(2β − 1). This is slightly more general than the potential

given in [7] since the coupling constants g and g′ are here independent.

3.4 Type 4

Finally we present a result which directly generalizes to N dimensions the famous

one-dimensional sextic QES potential [1, 2]. In this purpose we consider

H = −1

2
∆ + V6(x) (36)

and assume that the even function V6(x) contain powers of degree at most six in xj .

The most general change of function eP such that the operator

H̃ = ePHe−P |ti , ti = x2i (37)

is an element of the enveloping algebra of sl(N) (in the representation given by Eq.(16)

of [5]) is given by the 2N + 1-parameters function

P = αT 2 +
N∑

a=1

pata +
N∑

a=1

qa log ta , T =
N∑

i=1

ti (38)

where α, pa, qa are constants. Correspondingly the most general QES potential reads

V6 = 4
∑

i

ti(
∂P

∂ti
)2 + 4

∑

i

ti
∂2P

∂t2i
+ 2

∑

i

∂P

∂ti
− 16αnT (39)
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For N = 2, the 2-body polynomial potential of [2, 8] is then recovered as the special

case q1 = q2 = 0.

Summarizing, we have analyzed the rational Calogero model from the point of

view of the notion of quasi exact solvability. We found, at least for the small number

of particles, that it is unique in the following sense : it is exactly solvable but has

no exactly or quasi-exactly solvable translational-invariant extension except those

following from an sl(2) structure. By relaxing the notion of quasi-exact solvability

(weak QES) we were able to find a number of extensions of the Calogero model. They

are characterized by the existence of analytical expressions for some levels without

hidden symmetry behind.
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