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Abstract

Systems with singular higher order- Lagrangian are investigated by

using the extended form of the canonical method. Besides, the canoni-

cal path integral formulation is generalized using the Hamilton - Jacobi

formulation to investigate singular systems.

1 Introduction

In spite of the fact that most physical systems can be described by Lagrangians
that depend at most on the first derivatives of the dynamical variables [1-4]
there is a continuing interest in the so called generalized dynamics, that is, the
study of physical systems described by Lagrangians containing derivatives of
order higher than the first.

The generalization of Hamilton’s least action principle and of the Hamil-
tonian formulation to non degenerate Lagrangian depending on higher-order
derivatives was first achieved by Ostrogradisky. [5].

Recently a new method [6, 7] based on the Hamilton- Jacobi method [8-11]
has been developed to investigate singular systems. The aim of this paper is
to study the path integral quantization for singular systems with arbitrarily
higher order-Lagrangian. In fact this work is a continuation of previous papers
[6,7], where we have obtained the path integral for singular systems with first
order Lagrangians. Our desire is to construct the path integral quantization for
singular systems starting from the Hamilton -Jacobi Partial differential equa-
tions. HJPDE, which is the fundamental equation of classical mechanics. In
this method the equations of motion are obtained as total differential equations
in many variables which require the investigation of integrability conditions. If
the system is integrable, one can construct the canonical phase space and the
canonical action is obtained by this procedure. Hence, one can obtain the path
integral formulation as an integration over the canonical phase space coordinates
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2 The extended canonical path integral method

Now we will construct the canonical path integral by using the Hamilton- Jacobi
method [8-11]. The starting point of this procedure is to consider a system
described by a Lagrangian

L(q1, ..., q
(k)
i ), q

(l)
i =

dlqi

dtl
,

l = 0, 1, ..., k − 1, i = 1, ..., n, (1)

where the derivatives q
(s)
i (s = 0, 1, ..., k − 1) are treated as coordinates. In

Ostogrodoski’s formula the momenta conjugated respectively to q(k−1)i and
q(m−1)i(m = 1, ..., k − 1) are defined as

p(k−1)i =
∂L

∂q
(k)
i

, (2)

p(m−1)i =
∂L

∂q
(m)
i

− p(m)i, m = 1, 2, ..., k − 1, (3)

using these relations one can go over from the Lagrangian description to the
Hamiltonian description. The canonical Hamiltonian is defined as

H0 =

k−1∑
s=0

p(s)iq
(s+1)
i − L(q1, ..., q

(k)
i , q

(l)
i ). (4)

”Einstein’s summation rule for repeated indices is used throughout this pa-
per”.

Now the extended Hessian matrix is defined as

Aij =
∂2L

∂q
(k)
i ∂q

(k)
j

, (5)

For a regular system, the Hessian has rank n and the canonical coordinates are
independent. For singular Lagrangian case the Hessian has rankn− r, r < n. In
this case r of the momenta are dependent. The generalized coordinate q(k−1)i

are defined as

p(k−1)a =
∂L

∂q
(k)
a

, a = r + 1, ..., n, (6)

p(k−1)µ =
∂L

∂q
(k)
µ

, µ = 1, ..., r. (7)

Since the rank of the Hessian is (n−r) one may solve equation (6) for q(k−1)µ

as functions of t, q(s)i,p(k−1)band q
(k)
µ as follows

q(k)a = W(k)a(q(s)i, p(k−1)b, q
(k)
µ ), b = r + 1, ..., n. (8)
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Now substituting equation (8) in equation (7) one has

p(k−1)µ =
∂L

∂q
(k)
µ

|
q
(k)
a =W(k)a(q(s)i,p(k−1)b,q

(k)
µ )

, (9)

or

p(s)µ = −H(s)µ(t, q(u)j ; p(u)a =
∂S

∂q(u)a
),

u, s = 0, ..., k − 1, j = 1, ..., n. (10)

Relapling the coordinates t as t(s)0 ≡ q(s)0 (for any value ofs); the coordinates

q(s)µ will be called q(s)µ and defining p(s)0 = ∂S
∂t

, while H(s)0 = H0 for any value
of s. In this case the canonical Hamiltonian H0 may be written as

H0 =
k−2∑
u=0

p(u)aq
(u+1)
a + p(k−1)aW(k)a +

k−1∑
u=0

q(u+1)
µ p(u)µ|p(s)ν=H(s)ν

−L(q(s)i1, ..., q
(k)
µ , q(k)a = W(k)a),

µ, ν = 1, ..., r, a = r + 1, ..., n. (11)

Now the canonical method leads to obtain the set of Hamilton-Jacobi partial
differential equations as follows

H
′

0 = H
′

(s)0 = p(s)0 +H(s)0(t, t(u)µ; q(u)a, p(u)a =
∂S

∂q(u)a
) = 0, (12)

H
′

(s)µ = p(s)µ +H(s)µ(t(u)ν ; q(u)a, p(u)a =
∂S

∂q(u)a
) = 0,

u, s = 0, ..., k − 1, , µ, ν == 1, ..., r, (13)

or

H
′

(s)α = p(s)α +H(s)α(t(u)β ; q(u)a, p(u)a =
∂S

∂q(u)a
),

α, β = 0, 1, ..., r. (14)

The equations of motion are obtained as total differential equations in many
variables as follows:

dq(u)i =

k−1∑
s=0

∂H
′

(s)α

∂p(u)i
dt(s)α; (15)

i = 1, ..., n, α = 0, 1, ..., r, u, s = 0, 1, ..., k − 1.
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dp(u)c = −
k−1∑
s=0

∂H
′

(s)α

∂q(u)i
dt(s)α; (16)

c = 0, 1, ..., r, α = 0, 1, ..., r, u, s = 0, 1, ..., k − 1.

dZ =
k−1∑
d=0

[−H(d)β +
k−1∑
s=0

p(s)a
∂H

′

(d)β

∂p(s)a
]dt(d)β; (17)

s, d = 0, ..., k − 1, β = 0, 1, ..., r,

where Z = S(t(u)α; q(s)α). The set of equations (15-17) is integrable [8] if

dH
′

(s)α(t(u)ν ; q(u)a; p(u)ν =
∂S

∂(u)ν
; p(u)a =

∂S

∂q(u)a
) = 0, α = 0, 1, ..., r, (18)

conditions (18)considering equations (15-17), may vanish identically or give rise
to new constraints. In the case of new constraints one should consider their total
variations also. Repeating this procedure one may obtain a set of conditions such
that all the total variations vanish. Simultaneous solutions of canonical equa-
tions with all these constraints provide the solutions of a singular system.H

′

(s)α
can be interpreted as infinitesimal generators of canonical transformations given
by parameters t(s)α respectively. In this case as for the first-order systems, the
path integral may be written as

D(q′
(u)
i , t′(u)α; q

(u)
i , t(u)α) =

∫ q′
(u)
i

q
(u)
i

dq(u)a dp(u)a ×

exp i{

∫ t′(u)α

t(u)α

k−1∑
d=0

[−H(d)β +

k−1∑
s=0

p(s)a
∂H

′

(d)β

∂p(s)a
]dt(d)β},

u, s, d = 0, 1, ..., k − 1, α, β = 0, 1, ..., r,

a = r + 1, ..., n. (19)

The path integral expression (19) is an integration over the canonical phase
space coordinates(q(u)a, p(u)a).

3 Conclusion

We have obtained the canonical path integral formulation of singular higher-
order systems. In this formulation, the equations of motion are obtained as
total differential equations in many variables which require the investigation of
integrability conditions (18). If the system is integrable then each coordinate
q(s)α = t(s)α(α = 1, ..., r) is treated as a parameter that describes the system

evolution. The Hamiltonian H
′

(s)α will be the infinitesimal generators of canon-
ical transformations given by parameters t(s)αrespectively in the same way the
Hamiltonian H0 is the generator of time evolution. For k = 1 the result ob-
tained here (equation(19)) will reduce the case of the first order path integral
showed in references [6,7].
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