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We classify Lie–Poisson brackets that are formed from Lie algebra extensions. The

problem is relevant because many physical systems owe their Hamiltonian structure

to such brackets. A classification involves reducing all brackets to a set of normal

forms, independent under coordinate transformations, and is achieved with the tech-

niques of Lie algebra cohomology. For extensions of order less than five, we find that

the number of normal forms is small and they involve no free parameters. A special

extension, known as the Leibniz extension, is shown to be the unique “maximal”

extension.

We derive a general method of finding Casimir invariants of Lie–Poisson

bracket extensions. The Casimir invariants of all brackets of order less than five

are explicitly computed, using the concept of coextension. We obtain the Casimir in-

variants of Leibniz extensions of arbitrary order. We also offer some physical insight

into the nature of the Casimir invariants of compressible reduced magnetohydrody-

namics.

We make use of the methods developed to study the stability of extensions

for given classes of Hamiltonians. This helps to elucidate the distinction between
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semidirect extensions and those involving cocycles. For compressible reduced mag-

netohydrodynamics, we find the cocycle has a destabilizing effect on the steady-state

solutions.
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Chapter 1

Introduction

The topic of this thesis is the classification and analysis of the properties of Lie–

Poisson brackets obtained from extensions of Lie algebras. A large class of finite-

and infinite-dimensional dynamical equations admit a Hamiltonian formulation using

noncanonical brackets of the Lie–Poisson type. Finite-dimensional examples include

the Euler equations for the rigid body [9], the moment reduction of the Kida vor-

tex [65], and a low-order model of atmospheric dynamics [14]. Infinite-dimensional

examples include the Euler equation for the ideal fluid [52, 61, 67, 72, 78], the quasi-

geostrophic equations [39,94], and the Vlasov equation [60,66].

In mathematical terms, Lie–Poisson brackets naturally define a Poisson struc-

ture (i.e., a symplectic structure [95]) on the dual of a Lie algebra. For the rigid

body, the Lie algebra is the one associated with the rotation group, SO(3), while

for the Kida vortex moment reduction the underlying group is SO(2, 1). For the

two-dimensional ideal fluid, the relevant Lie algebra corresponds to the group of

volume-preserving diffeomorphisms of the fluid domain.

Lie–Poisson structures often occur as a result of reduction [59]. Reduction

is, in essence, a method of taking advantage of the symmetries of a system to lower

its order. However in so doing one perhaps loses the canonical nature of the system:

there are no longer any well-defined conjugate positions and momenta. This does not

preclude the system from being Hamiltonian, that is these conjugate variables can

exist locally, up to some possible degeneracy in the system (the symplectic leaves).

The resulting Hamiltonian system (after reduction) is often of Lie–Poisson type. For
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example, the reduction of the rigid body in Euler angle coordinates (three angles and

three canonical momenta, for a total of six coordinates) gives Euler’s equations (in

terms of only the angular momenta, three coordinates), which have a Lie–Poisson

structure.

Why seek a bracket formulation of a system at all? If we care about whether

a system is Hamiltonian or not, then for noncanonical systems it is a simple way of

showing that the equations have such a structure. We are then free to use the power-

ful machinery of Hamiltonian mechanics. For example, we know that the eigenvalue

spectrum of the linearized system has to have four-fold symmetry in the complex

plane [6]. If we are concerned with the properties of the truncation of a hydrody-

namic system, then knowing the bracket formulation can serve as a guide for finding a

finite-dimensional representation of the system which retains the Hamiltonian struc-

ture [64, 97]. Also, there exists moment reductions—finite-dimensional subalgebras

of infinite-dimensional algebras—that provide exact closures [63–65,83].

We will classify low-order bracket extensions and find their Casimir invariants.

An extension is simply a new Lie bracket, derived from a base algebra (for example,

SO(3)), and defined on n-tuples of that algebra. We are ruling out extensions where

the individual brackets that appear are not of the same form as that of the base

algebra. We are thus omitting some brackets [70, 72, 77], but the brackets we are

considering are amenable to a general classification.

The method of extension yields interesting and physically relevant algebras.

Using this method we can describe finite-dimensional systems of several variables

and infinite-dimensional systems of several fields. For the finite-dimensional case, an

example is the two vector model of the heavy top [40], where the two vectors are the

angular momentum an the position of the center of mass. For infinite-dimensional

systems there are examples of models of two [12,64,73], three [32,51,73], and four [33,

70] fields. Knowing the bracket allows one to find the Casimir invariants of the

system [36, 50, 91]. These are quantities which commute with every functional on
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the Poisson manifold, and thus are conserved by the dynamics for any Hamiltonian.

They are useful for analyzing the constraints in the system [90] and for establishing

stability criteria [31,38,68,69,71].

1.1 Overview

The outline of the thesis is as follows. In Chapter 2, we review the general theory

behind Lie–Poisson brackets. We give some examples of physical systems of Lie–

Poisson type, both finite- and infinite-dimensional. We introduce the concept of Lie

algebra extensions and derive some of their basic properties. Chapter 3 is devoted

to the more abstract treatment of extensions through the theory of Lie algebra co-

homology [19, 21, 47]. We define some terminology and special extensions such as

the semidirect sum and the Leibniz extension. In Chapter 4, we use the cohomol-

ogy techniques to treat the specific type of extension with which we are concerned,

brackets over n-tuples. We give an explicit classification of low-order extensions. By

classifying, we mean reducing—through coordinate changes—all possible brackets to

independent normal forms. We find that the normal forms are relatively few and

that they involve no free parameters—at least for low-order extensions.

In Chapter 5, we turn to the problem of finding the Casimir invariants of the

brackets, those functionals that commute with every other functional in the algebra.

We derive some general techniques for doing this that apply to extensions of any

order. We treat explicitly some examples, including the Casimir invariants of a

particular model of magnetohydrodynamics (MHD), which are also given a physical

interpretation. A formula for the invariants of Leibniz extensions of any order is also

derived. Then in Section 5.6 we use the classification of Section 4.6 to derive the

Casimir invariants for low-order extensions.

We address general stability of Lie–Poisson systems in Chapter 6. We begin

by reviewing the concept of stability in Section 6.1, discussing the distinctions be-

tween spectral, linearized, formal, and nonlinear stability. We consider the difficulties
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that arise for infinite-dimensional systems. In Section 6.2 we present a review of the

energy-Casimir method for finding equilibria and establishing sufficient conditions

for stability. We use the method on compressible reduced MHD. In Section 6.3, we

turn to a more general method for stability analysis, that of dynamical accessibility.

The method uses variations that have been restricted to symplectic leaves. We then

treat several different classes of Hamiltonian and Lie–Poisson brackets and discuss

the role of cocycles in equilibria and their stability. Finally, in Chapter 7 we offer

some concluding remarks and discuss future directions for research.



Chapter 2

Lie–Poisson Brackets

Lie–Poisson brackets define a natural Poisson structure on duals of Lie algebras.

Physically, they often arise in the reduction of a system. For our purposes, a reduction

is a mapping of the dynamical variables of a system to a smaller set of variables,

such that the transformed Hamiltonian and bracket depend only on the smaller

set of variables. (For a more detailed mathematical treatment, see for example [1,

10, 28, 57–59].) The simplest example of a reduction is the case in which a cyclic

variable is eliminated, but more generally a reduction exists as a consequence of

an underlying symmetry of the system. For instance, the Lie–Poisson bracket for

the rigid body is obtained from a reduction of the canonical Euler angle description

using the rotational symmetry of the system [40]. The Euler equation for the two-

dimensional ideal fluid is obtained from a reduction of the Lagrangian description of

the fluid, which has a relabeling symmetry [16,69,76,80].

Here we shall take a more abstract viewpoint: we do not assume that the

Lie–Poisson bracket is obtained from a reduction, though it is always possible to do

so by the method of Clebsch variables [69]. Rather we proceed directly from a given

Lie algebra to build a Lie–Poisson bracket. The choice of algebra can be guided by

the symmetries of the system.

In Section 2.1, we give some definitions and review the basic theory behind

Lie–Poisson brackets. We then give examples in Section 2.2: the free rigid body,

reduced magnetohydrodynamics (RMHD), and compressible reduced magnetohydro-

dynamics (CRMHD). These last two cases are examples of Lie algebra extensions. We

5
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describe general Lie algebra extensions in Section 2.3. This introduces the problem,

and establishes the framework for the remainder of the thesis.

2.1 Lie–Poisson Brackets on Duals of Lie Algebras

Recall that a Lie algebra g is a vector space on which is defined a bilinear opera-

tion [ , ] : g× g → g, called the Lie bracket. The Lie bracket is antisymmetric,

[α , β ] = − [ β , α ] ,

and satisfies the Jacobi identity ,

[α , [ β , γ ] ] + [β , [ γ , α ] ] + [ γ , [α , β ] ] = 0,

for arbitrary elements α, β, γ in g. Lie algebras are differentiable manifolds.

A real-valued functional defined on a differentiable manifold M is simply a

map from M to R. (From now on, when we say functional it will be understood

that we mean a real-valued functional.) The vector space of all functionals on M is

denoted by F(M).

The dual g∗ of g is the set of all linear functionals on g. The elements of g∗

are denoted by

〈 ξ , · 〉 : g → R, 〈 ξ , · 〉 ∈ g∗,

where ξ identifies the elements of g∗. It is customary, however, to simply say ξ ∈ g∗

and express the pairing by 〈 , 〉 : g∗ × g → R. This simplifies the procedure of iden-

tifying g and g∗, especially for infinite-dimensional Lie algebras, where the pairing

is typically an integral. Note that functionals can be defined on g∗, since it is a dif-

ferentiable manifold. In finite dimensions, g and g∗ are isomorphic as vector spaces

(they have the same dimension). However, g∗ does not naturally inherit a Lie algebra

structure from g. In infinite dimensions, the two spaces need not be isomorphic.
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Let M be a differentiable manifold. A Poisson structure on F(M) is a Lie

algebra on F(M) with bracket { , } that satisfies the derivation property

{F ,GH} = {F ,G}H +G {F ,H} ,

where F , G, H ∈ F(M). (This property is also called the Leibniz rule.) The mani-

fold M with the bracket { , } is called a Poisson manifold.

For the remainder of the thesis, we will be interested in the case where M is

the dual g∗ of a Lie algebra g. The Lie–Poisson bracket provides a natural Poisson

structure on F(g∗), given the Lie bracket [ , ] in g. It is defined as

{F ,G}±(ξ) = ±
〈
ξ ,

[
δF

δξ
,
δG

δξ

]〉
, (2.1)

where F and G are real-valued functionals on g∗, that is, F, G : g∗ → R, and ξ ∈ g∗.

The functional derivative δF/δξ ∈ g is defined by

δF [ ξ; δξ ] :=
d

dǫ
F [ξ + ǫ δξ]

∣∣∣∣
ǫ=0

=:

〈
δξ ,

δF

δξ

〉
. (2.2)

We shall refer to the bracket [ , ] as the inner bracket and to the bracket { , } as

the Lie–Poisson bracket. The dual g∗ together with the Lie–Poisson bracket is a

Poisson manifold. The sign choice in (2.1) comes from whether we are considering

right invariant (+) or left invariant (−) functions on the cotangent bundle of the Lie

group [58,61], but for our purposes we simply choose the sign as needed.

For finite-dimensional algebras, the Lie–Poisson bracket (2.1) was first written

down by Lie [54] and was rediscovered by Berezin [13]; it is also closely related to

work of Arnold [5], Kirillov [46], Kostant [48], and Souriau [86].

Before we can describe the dynamics generated by Lie–Poisson brackets, we

need a few more definitions. The adjoint action of g on itself is the same as the

bracket in g,

adα β ≡ [α , β ] ,
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where α, β ∈ g. From this we define the coadjoint action ad†α of g on g∗ by1

〈
ad†α ξ , β

〉
:= 〈 ξ , adα β 〉 , (2.3)

where ξ ∈ g∗. We also define the coadjoint bracket [ , ]† : g× g∗ → g∗ to be

[α , ξ ]† := ad†α ξ , (2.4)

so that

〈
[α , ξ ]† , β

〉
:= 〈 ξ , [α , β ] 〉 ; (2.5)

the bracket [ , ]† satisfies the identity

〈
[α , ξ ]† , β

〉
= −

〈
[β , ξ ]† , α

〉
.

Since the inner bracket is Lie, it satisfies the Jacobi identity, and consequently

the form given by (2.1) for the Lie–Poisson bracket will automatically satisfy the

Jacobi identity [2, p. 614]. This is proved in Appendix A.

We are of course interested in generating dynamics from the Lie–Poisson

bracket. This is done in the usual manner, by inserting a Hamiltonian functional in

the bracket. For any Poisson structure, given a Hamiltonian functional H : M → R,

the equation of motion for ξ ∈ M is

ξ̇ = {ξ ,H} ,

where a dot denotes a time derivative. For a Lie–Poisson bracket, we have M = g∗,

and we use the definition (2.1) of { , } to write

ξ̇ =

〈
ξ ,

[
∆ ,

δH

δξ

]〉
,

1We are using the convention of Arnold [9, p. 321], but some authors define ad† with a minus
sign, so that the canonical bracket and its coadjoint bracket have the same sign in (2.12) when g

and g∗ are identified.
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where ∆ is a Kronecker or Dirac delta, or a combination of both for an infinite-

dimensional system of several fields (that is, ξ can be a vector of field variables). We

then use the definition of the coadjoint bracket (2.5),

ξ̇ = −
〈[ δH

δξ
, ξ

]†
, ∆
〉
,

and finally use the property of the delta function to identify ξ̇ with the left slot of

the pairing,

ξ̇ = −
[
δH

δξ
, ξ

]†
. (2.6)

Thus, for Lie–Poisson brackets the dynamical evolution of ξ is generated by the

coadjoint bracket.

We close this section by commenting on the nature of the dynamics generated

by Lie–Poisson brackets. The elements of a Lie algebra g are usually regarded as

infinitesimal generators of the elements of a Lie group G near the identity. (We also

say that the Lie algebra is the tangent space of the Lie group at the identity.) The

coadjoint orbit through ξ ∈ g∗ is defined as

Orb(ξ) :=
{
Ad†a ξ | a ∈ G

}
.

(We will not rigourously define it here, but simply think of Ad†a : g∗ → g∗ as a finite

version of the infinitesimal coadjoint action ad†ξ : g
∗ → g∗. See for example Arnold [9,

pp. 319–321].) The coadjoint orbits tell us what parts of g∗ can be reached from a

given element ξ∗ by acting with the group elements. For example, the coadjoint

orbits for the rotation group SO(3) are spheres [58, p. 400], so two elements of g∗

belong to the same coadjoint orbit if they lie on the same sphere (the elements can

be mapped onto each other by a rotation).

The infinitesimal generator at ξ of the coadjoint action is

ηg∗(ξ) := ad†η ξ (2.7)
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Comparing this to the equation of motion (2.6), and recalling the definition of the

coadjoint bracket (2.4), we see that ξ̇ lies along the direction of the infinitesimal

generator ad†δH/δξ at ξ.

What does this all mean? The time-evolved trajectory {ξ(t) | t ≥ 0} of ξ

must go through points in g∗ that can be reached by Ad†a ξ(0), where ξ(0) is an

initial condition, for some a ∈ G. To put it more succinctly,

{ξ(t) | t ≥ 0} ⊆ Orb(ξ(0)). (2.8)

For G = SO(3), since the coadjoint orbits are spheres then the only trajectories

allowed must lie on spheres. This makes SO(3) the natural group to describe the

motion of the rigid body, as we will see in Section 2.2.1. Note that equality in (2.8)

does not usually hold, since the trajectory is one-dimensional, whereas the coadjoint

orbits are usually of higher dimension.

2.2 Examples of Lie–Poisson Systems

We will say that a physical systems can be described by a given Lie–Poisson bracket

and Hamiltonian if its equations of motion can be written as (2.6) for some H;

the system is then said to be Hamiltonian of the Lie–Poisson type. We give four

examples: the first is finite-dimensional (the free rigid body, Section 2.2.1) and the

second infinite-dimensional (Euler’s equation for the ideal fluid, Section 2.2.2). The

third and fourth examples are also infinite-dimensional and serve to introduce the

concept of extension. They are low–beta reduced magnetohydrodynamics (MHD)

in Section 2.2.3 and compressible reduced MHD in Section 2.2.4. These last two

examples are meant to illustrate the physical relevance of Lie algebra extensions.

2.2.1 The Free Rigid Body

The classic example of a Lie–Poisson bracket is obtained by taking for g the Lie

algebra of the rotation group SO(3). If the ê(i) denote a basis of g = so(3), the Lie
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bracket is given by

[
ê(i) , ê(j)

]
= ckij ê(k) ,

where the ckij = εijk are the structure constants of the algebra, in this case the totally

antisymmetric symbol. Using as a pairing the usual contraction between upper and

lower indices, with (2.1) we are led to the Lie–Poisson bracket

{f , g} = −ckij ℓk
∂f

∂ℓi

∂g

∂ℓj
,

where the three-vector ℓ is in g∗, and we have chosen the minus sign in (2.1). The

coadjoint bracket is obtained using (2.3),

[β , ℓ ]†i = −ckij βj ℓk. (2.9)

If we use this coadjoint bracket and insert the Hamiltonian

H = 1
2(I
−1)

ij
ℓi ℓj (2.10)

in (2.6) we obtain

ℓ̇m = {ℓm , H} = ckmj (I
−1)

jp
ℓk ℓp .

Notice how the moment of inertia tensor I plays the role of a metric—it allows

us to build a quadratic form (the Hamiltonian) from two elements of g∗. If we

take I = diag(I1, I2, I3), we recover Euler’s equations for the motion of the free rigid

body

ℓ̇1 =

(
1

I2
− 1

I3

)
ℓ2 ℓ3,

and cyclic permutations of 1,2,3. The ℓi are the angular momenta about the axes

and the Ii are the principal moments of inertia. This result is naturally appealing

because we expect the rigid body equations to be invariant under the rotation group,

hence the choice of SO(3) for G.
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2.2.2 The Two-dimensional Ideal Fluid

Consider now an ideal fluid with the flow taking place over a two-dimensional do-

main Ω. Let g be the infinite-dimensional Lie algebra associated with the Lie group of

volume-preserving diffeomorphisms of Ω. In two spatial dimensions this is the same

as the group of canonical transformations on Ω. The bracket in g is the canonical

bracket

[ a , b ] =
∂a

∂x

∂b

∂y
− ∂b

∂x

∂a

∂y
. (2.11)

We formally identify g and g∗ by using as the pairing 〈 , 〉 the usual integral over the
fluid domain,

〈F ,G〉 =
∫

Ω
F (x)G(x) d2x,

where x := (x, y). For infinite-dimensional spaces, there are functional analytic issues

about whether we can make this identification, and take g∗∗ = g. We will assume here

that these relationships hold formally. See Marsden and Weinstein [57] for references

on this subject and Audin [10] for a treatment of the identification of g and g∗.

For simplicity, we assume that the boundary conditions are such that surface

terms vanish, and we get

[ , ]† = − [ , ] (2.12)

from (2.5). (Without this assumption the coadjoint bracket would involve extra

boundary terms.) We take the vorticity ω as the field variable ξ and write for the

Hamiltonian

H[ω] = −1
2

〈
ω ,∇−2 ω

〉
,

where

(∇−2 ω)(x) :=
∫

Ω
K(x|x′)ω(x′) d2x′,
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and K is Green’s function for the Laplacian. The Green’s function plays the role of

a metric since it maps an element of g∗ (the vorticity ω) into an element of g to be

used in the right slot of the pairing. This relationship is only weak: the mapping K

is not surjective, and thus the metric cannot formally inverted (it is called weakly

nondegenerate). When we have identified g and g∗ we shall often drop the comma

in the pairing and write

H[ω] = −1
2 〈ω φ〉 = 1

2

〈
|∇φ|2

〉
,

where ω = ∇2φ defines the streamfunction φ. We work out the evolution equation

for ω explicitly:

ω̇(x) = {ω ,H} =

∫

Ω
ω(x′)

[
δω(x)

δω(x′)
,
δH

δω(x′)

]
d2x′

=

∫

Ω
ω(x′)

[
δ(x − x′) ,−φ(x′)

]
d2x′

=

∫

Ω
δ(x − x′)

[
ω(x′) , φ(x′)

]
d2x′

= [ω(x) , φ(x) ] .

This is Euler’s equation for a two-dimensional ideal fluid. We could also have written

this result down directly from (2.6) using [ , ]† = −[ , ].

2.2.3 Low-beta Reduced MHD

This example will illustrate the concept of a Lie algebra extension, the central topic

of this thesis. Essentially, the idea is to use an algebra of n-tuples, which we call an

extension, to describe a physical system with more than one dynamical variable. As

in Section 2.2.2 we consider a flow taking place over a two-dimensional domain Ω.

The Lie algebra g is again taken to be that of volume preserving diffeomorphisms

on Ω, but now we consider also the vector space V of real-valued functions on Ω (an

Abelian Lie algebra under addition). The semidirect sum of g and V is a new Lie

algebra whose elements are two-tuples (α, v) with a bracket defined by

[ (α, v) , (β,w) ] := ([α , β ] , [α ,w ]− [ β , v ]) , (2.13)
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where α and β ∈ g, v and w ∈ V . This is a Lie algebra, so we can use the prescription

of Section 2.1 to build a Lie–Poisson bracket,

{F ,G} =

∫

Ω


ω
[
δF

δω
,
δG

δω

]
+ ψ

([
δF

δω
,
δG

δψ

]
−
[
δG

δω
,
δF

δψ

])
 d2x.

Let ω = ∇2φ be the (scalar) parallel vorticity, where φ is the electric potential, ψ

is the poloidal magnetic flux, and J = ∇2ψ is the poloidal current. (We use the

same symbol for the electric field as for the streamfunction in Section 2.2.2 since

they play a similar role.) The pairing used is a dot product of the vectors followed

by an integral over the fluid domain (again identifying g and g∗ as in Section 2.2.2).

The Hamiltonian

H[ω;ψ] =
1

2

∫

Ω


|∇φ|2 + |∇ψ|2


 d2x

with the above bracket leads to the equations of motion

ω̇ = [ω , φ ] + [ψ , J ] ,

ψ̇ = [ψ , φ ] .
(2.14)

This is a model for low-beta reduced MHD [73,87,98], obtained by an expansion in

the inverse aspect ratio ǫ of a tokamak, with ǫ small. With a strong toroidal magnetic

field, the dynamics are then approximately two-dimensional. The model is referred

to as low-beta because the electron beta (the ratio of electron pressure to magnetic

pressure, see (2.16)) is of order ǫ2.

For high-beta reduced MHD, the electron beta is taken to be of order ǫ.

There is then an additional advected pressure variable, which couples to the vorticity

equation, and the system still has a semidirect sum structure [35,88].

Benjamin [12] used a system with a similar Lie–Poisson structure, but for

waves in a density-stratified fluid. Semidirect sum structures are ubiquitous in ad-

vective systems: one variable (in this example, φ) “drags” the others along [90].
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2.2.4 Compressible Reduced MHD

In general there are other, more general ways to extend Lie algebras besides the

semidirect sum. The model derived by Hazeltine et al. [33–35] for two-dimensional

compressible reduced MHD (CRMHD) is an example. This model has four fields,

and as for the low-beta reduced MHD system in Section 2.2.3 it is obtained from an

expansion in the inverse aspect ratio of a tokamak. It includes compressibility and

finite ion Larmor radius effects. The Hamiltonian is

H[ω, v, p, ψ] =
1

2

∫

Ω


|∇φ|2 + v2 +

(p − 2βe x)
2

βe
+ |∇ψ|2


 d2x, (2.15)

where v is the ion parallel (toroidal) velocity, p is the electron pressure,2 βe is the

electron beta,

βe :=
2Te
vA2

, (2.16)

a parameter that measures compressibility, vA is the Alfvén speed, and Te is the

electron temperature. The other variables are as in Section 2.2.3. The coordinate x

points outward from the center of the tokamak in the horizontal plane and y is the

vertical coordinate. The motion is made two-dimensional by the strong toroidal

magnetic field. The bracket we will use is

{F ,G} =

∫

Ω


ω

[
δF

δω
,
δG

δω

]
+ v

([
δF

δω
,
δG

δv

]
+

[
δF

δv
,
δG

δω

])

+ p

([
δF

δω
,
δG

δp

]
+

[
δF

δp
,
δG

δω

])
+ ψ

([
δF

δω
,
δG

δψ

]
+

[
δF

δψ
,
δG

δω

])

− βe ψ

([
δF

δp
,
δG

δv

]
+

[
δF

δv
,
δG

δp

])
 d2x. (2.17)

2The variable p is actually a deviation of the pressure from a linear gradient. The total pressure
is p = p− 2βe x.
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Together this bracket and the Hamiltonian (2.15) lead to the equations

ω̇ = [ω , φ ] + [ψ , J ] + 2 [ p , x ]

v̇ = [ v , φ ] + [ψ , p ] + 2βe [x , ψ ]

ṗ = [ p , φ ] + βe [ψ , v ]

ψ̇ = [ψ , φ ] ,

which reduce to the example of Section 2.2.3 in the limit of v = p = βe = 0 (when

compressibility effects are unimportant). In the limit of βe = 0, the parallel velocity

decouples from the other equations, and we recover the three equations of high-beta

reduced MHD for ω, ψ, and p [35].

It is far from clear that the Jacobi identity is satisfied for (2.17). A direct

verification is straightforward (if tedious), but we shall see in Section 2.3 that there

is an easier way.

2.3 General Lie Algebra Extensions

We wish to generalize the types of bracket used in Sections 2.2.3 and 2.2.4. We build

an algebra extension by forming an n-tuple of elements of a single Lie algebra g,

α := (α1, . . . , αn) , (2.18)

where αi ∈ g. The most general bracket on this n-tuple space obtained from a linear

combination of the one in g has components

[α , β ]λ =

n∑

µ,ν=1

Wλ
µν [αµ , βν ] , λ = 1, . . . , n, (2.19)

where the Wλ
µν are constants. (From now on we will assume that repeated indices

are summed unless otherwise noted.) Since the bracket in g is antisymmetric theW ’s

must be symmetric in their upper indices,

Wλ
µν =Wλ

νµ . (2.20)
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This bracket must also satisfy the Jacobi identity

[α , [β , γ ] ]λ + [ β , [ γ , α ] ]λ + [ γ , [α , β ] ]λ = 0, λ = 1, . . . , n.

The first term can be written

[α , [β , γ ] ]λ =Wλ
στ Wσ

µν [ατ , [βµ , γν ] ],

which when added to the other two gives

Wλ
στ Wσ

µν ([ατ , [βµ , γν ] ] + [βτ , [ γµ , αν ] ] + [ γτ , [αµ , βν ] ]) = 0.

We cannot yet make use of the Jacobi identity in g: the subscripts of α, β, and γ

are different in each term so they represent different elements of g. We first relabel

the sums and then make use of the Jacobi identity in g to obtain

(Wλ
στ Wσ

µν −Wλ
σν Wσ

τµ) [ατ , [βµ , γν ] ]

+ (Wλ
σµWσ

ντ −Wλ
σν Wσ

τµ) [ βµ , [ γν , ατ ] ] = 0 .

This identity is satisfied if and only if

Wλ
στ Wσ

µν =Wλ
σν Wσ

τµ , (2.21)

which together with (2.20) implies that the quantity Wλ
στ Wσ

µν is symmetric in all

three free upper indices. If we write the W ’s as n matrices W (ν) with rows labeled

by λ and columns by µ,

[
W (ν)

]
λ

µ
:=Wλ

µν , (2.22)

then (2.21) says that those matrices pairwise commute:

W (ν)W (σ) =W (σ)W (ν). (2.23)

Equations (2.20) and (2.23) form a necessary and sufficient condition: a set of n

commuting matrices of size n × n satisfying the symmetry given by (2.20) can be
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used to make a good Lie algebra bracket. From this Lie bracket we can build a

Lie–Poisson bracket using the prescription of (2.1) to obtain

{F ,G}±(ξ) = ±
n∑

λ,µ,ν=1

Wλ
µν

〈
ξλ ,

[
δF

δξµ
,
δG

δξν

]〉
.

We now return to the two extension examples of Sections 2.2.3 and 2.2.4 and

examine them in light of the general extension concept introduced here.

2.3.1 Low-beta Reduced MHD

For this example we have (ξ0, ξ1) = (ω,ψ), with

W (0) =

(
1 0
0 1

)
, W (1) =

(
0 0
1 0

)
.

The reason why we start labeling at 0 will become clearer in Section 4.4. The

two W (µ) must commute since W (0) = I, the identity. The tensor W also satisfies

the symmetry property (2.20). Hence, the bracket is a good Lie algebra bracket.

2.3.2 Compressible Reduced MHD

We have n = 4 and take (ξ0, ξ1, ξ2, ξ3) = (ω, v, p, ψ), so the tensor W is given by

W (0) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , W (1) =




0 0 0 0
1 0 0 0
0 0 0 0
0 0 −βe 0


 ,

W (2) =




0 0 0 0
0 0 0 0
1 0 0 0
0 −βe 0 0


 , W (3) =




0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0


 . (2.24)

It is easy to verify that these matrices commute and that the tensor W satisfies

the symmetry property, so that the Lie–Poisson bracket given by (2.17) satisfies the

Jacobi identity. (See Section 4.4 for an explanation of why the labeling is chosen to

begin at zero.)
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Figure 2.1: Schematic representation of the 3-tensor W for compressible reduced
MHD. The blue cubes represent unit entries, the red cubes are equal to −βe, and
all other entries vanish. The vertical axis is the lower index λ of Wλ

µν , and the
two horizontal axes are the symmetric upper indices µ and ν. The origin is at the
top-rear.

The 3-tensorW can be represented as a cubical array of numbers, in the same

way a matrix is a square array. In Figure 2.1 we show a schematic representation

of W for CRMHD. The blocks represent nonzero elements.



Chapter 3

Extension of a Lie Algebra

In this chapter we review the theory of Lie algebra cohomology and its application

to extensions. This is useful for shedding light on the methods used in Chapter 4

for classifying the extensions. However, the mathematical details presented in this

chapter can be skipped without seriously compromising the flavor of the classification

scheme of Chapter 4. Most necessary mathematical concepts will be defined as

needed, but the reader wishing more extensive definitions may want to consult books

such as Azcárraga and Izquierdo [21] or Choquet-Bruhat and DeWitt-Morette [20].

3.1 Cohomology of Lie Algebras

We now introduce the abstract formalism of Lie algebra cohomology. Historically

there were two different reasons for the development of this theory. One, known as

the Chevalley–Eilenberg formulation [19], was developed from de Rham cohomology.

de Rham cohomology concerns the relationship between exact and closed differential

forms, which is determined by the global properties (topology) of a differentiable

manifold. A Lie group is a differentiable manifold and so has an associated de Rham

cohomology. If invariant differential forms are used in the computation, one is led

to the cohomology of Lie algebras presented in this section [20, 21, 47]. The second

motivation is the one that concerns us: we will show in Section 3.2 that the extension

problem—the problem of enumerating extensions of a Lie algebra—can be related to

the cohomology of Lie algebras.

Let g be a Lie algebra, and let the vector space V over the field K (which we

20
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take to be the real numbers later) be a left g-module,1 that is, there is an operator ρ :

g× V → V such that

ρα (v + v′) = ρα v + ρα v
′,

ρα+α′ v = ρα v + ρα′ v,

ρ[α ,α′ ]v = [ ρα , ρα′ ] v , (3.1)

for α,α′ ∈ g and v, v′ ∈ V . The operator ρ is known as a left action. A g-module gives

a representation of g on V . The action ρ defines a Lie algebra homomorphism from g

to the algebra of linear transformations on V . A Lie algebra homomorphism f : g → a

is a linear mapping between two Lie algebras g and a which preserves the Lie algebra

structure, that is

f([α , β ]g) = [ f(α) , f(β) ]a, α, β ∈ g.

An n-dimensional V -valued cochain ωn for g, or just n-cochain for short, is

a skew-symmetric n-linear mapping

ωn :
←−n−→

g× g× · · · × g −→ V.

Cochains are Lie algebra cohomology analogues of differential forms on a manifold.

Addition and scalar multiplication of n-cochains are defined in the obvious manner

by

(ωn + ω′n)(α1, . . . , αn) := ωn(α1, . . . , αn) + ω′n(α1, . . . , αn),

(aωn)(α1, . . . , αn) := aωn(α1, . . . , αn),

where α1, . . . , αn ∈ g and a ∈ K. The set of all n-cochains thus forms a vector space

over the field K and is denoted by Cn(g, V ). The 0-cochains are defined to be just

elements of V , so that C0(g, V ) = V .

1When V is a right g-module, we have ρ[α ,α′ ] = − [ ρα , ρα′ ]. The results of this section can be
adapted to a right action by changing the sign every time a commutator appears. This sign choice
is for similar reasons as that of (2.1).
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The coboundary operator is the map between cochains,

sn : Cn(g, V ) −→ Cn+1(g, V ),

defined by

(sn ωn)(α1, . . . , αn+1) :=
n+1∑

i=1

(−)i+1ραi
ωn(α1, . . . , α̂i, . . . , αn+1)

+

n+1∑

j,k=1
j<k

(−)j+kωn([αj , αk ] , α1, . . . , α̂j , . . . , α̂k, . . . , αn+1),

where the caret means an argument is omitted. We shall often drop the n subscript

on sn, deducing it from the dimension of the cochain on which s acts.

We shall make use mostly of the first few cases,

(s ω0)(α1) = ρα1 ω0, (3.2)

(s ω1)(α1, α2) = ρα1 ω1(α2)− ρα2 ω1(α1)− ω1([α1 , α2 ]), (3.3)

(s ω2)(α1, α2, α3) = ρα1 ω2(α2, α3) + ρα2 ω2(α3, α1) + ρα3 ω2(α1, α2)

− ω2([α1 , α2 ] , α3)− ω2([α2 , α3 ] , α1)− ω2([α3 , α1 ] , α2) . (3.4)

It is easy to verify that s ωn defines an (n + 1)-cochain, and it is straightforward

(if tedious) to show that sn+1sn = s2 = 0. For this to be true, the homomorphism

property (3.1) of ρ is crucial.

An n-cocycle is an element ωn of Cn(g, V ) such that sn ωn = 0. An n-

coboundary ωcob is an element of Cn(g, V ) for which there exists an element ωn−1

of Cn−1(g, V ) such that ωcob = sωn−1. Note that all coboundaries are cocycles, but

not vice-versa.

Let

Zn
ρ (g, V ) = ker sn

be the vector subspace of all n-cocycles, Zn
ρ (g, V ) ⊂ Cn(g, V ), and let

Bn
ρ (g, V ) = range sn−1
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be the vector subspace of all n-coboundaries, Bn
ρ (g, V ) ⊂ Cn(g, V ). The nth coho-

mology group of g with coefficients in V is defined to be the quotient vector space

Hn
ρ (g, V ) := Zn

ρ (g, V )/Bn
ρ (g, V ). (3.5)

Note that for n > dim g, we have Hn
ρ (g, V ) = Zn

ρ (g, V ) = Bn
ρ (g, V ) = 0. This is be-

cause one cannot build a nonvanishing antisymmetric quantity with more indices

than the dimension of the space (at least two of the indices would always be equal,

which implies that the quantity is zero).

3.2 Application of Cohomology to Extensions

In Section 2.3 we gave a definition of extension that is specific to our problem, in

terms of the tensors W . We will now define extensions in a more abstract manner.

We then show how the cohomology of Lie algebras of Section 3.1 is related to the

problem of classifying extensions. In Chapter 4 we will return to the more concrete

concept of extension, of the form given in Section 2.3.

Let fi : gi → gi+1 be a collection of Lie algebra homomorphisms,

. . . // gi
fi // gi+1

fi+1 // gi+2 // . . . .

By the homomorphism property of fi, we have

fi([α , β ]gi) = [ fi(α) , fi(β) ]gi+1
, α, β ∈ gi.

The subscript on the brackets denotes the algebra to which it belongs.

The sequence fi is called an exact sequence of Lie algebra homomorphisms if

range fi = ker fi+1 .

Let g, h, and a be Lie algebras. The algebra h is said to be an extension of g

by a if there is a short exact sequence of Lie algebra homomorphisms

0 // a
i // h

π
/ g

τo_ _ _ // 0 . (3.6)
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The homomorphism i is an insertion (injection), and π is a projection (surjection).

We shall distinguish brackets in the different algebras by appropriate subscripts.

We also define τ : g → h to be a linear mapping such that π ◦ τ = 1|g (the identity

mapping in g). Note that τ is not unique, since the kernel of π is not trivial. Let β ∈
h, η ∈ a; then

π[β , i η ]h = [π β , π i η ]g = 0,

using the homomorphism property of π and π ◦ i = 0, a consequence of the ex-

actness of the sequence. Thus [β , i η ]h ∈ ker π = range i, and i a is an ideal in h

since [ β , iη ] ∈ ia. Hence, we can form the quotient algebra h/a, with equivalence

classes denoted by β + a. By exactness π(β + a) = π β, so g is isomorphic to h/a and

we write g = h/a.

Though i a is a subalgebra of h, τ g is not necessarily a subalgebra of h, for

in general

[ τ α , τ β ]h 6= τ [α , β ]g,

for α, β ∈ g; that is, τ is not necessarily a homomorphism. The classification problem

essentially resides in the determination of how much τ differs from a homomorphism.

The cohomology machinery of Section 3.1 is the key to quantifying this difference,

and we proceed to show this.

To this end, we use the algebra a as the vector space V of Section 3.1, so

that a will be a left g-module. We define the left action as

ρα η := i−1[ τ α , i η ]h (3.7)

for α ∈ g and η ∈ a. For a to be a left g-module, we need ρ to be a homomorphism,

i.e., ρ must satisfy (3.1). Therefore consider

[ ρα , ρβ ] η = (ραρβ − ρβρα) η

= ρα i
−1[ τ β , i η ]h− ρβ i

−1[ τ α , i η ]h

= i−1
[
τ α , [ τ β , i η ]h

]
h
− i−1

[
τ β , [ τ α , i η ]h

]
h
,
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which upon using the Jacobi identity in h becomes

[ ρα , ρβ ] η = i−1
[
[ τ α , τ β ]h , i η

]
h

= i−1
[
τ [α , β ]g , i η

]
h
+ i−1

[ (
[ τ α , τ β ]h − τ [α , β ]g

)
, i η

]
h

= ρ[α , β ]g
η + i−1

[ (
[ τ α , τ β ]h− τ [α , β ]g

)
, i η

]
h
.

(3.8)

By applying π on the expression in parentheses of the last term of (3.8), we see that it

vanishes and so is in ker π, and by exactness it is also in i a. Thus the h commutator

above involves two elements of i a. We define ω : g× g → a by

ω(α, β) := i−1
(
[ τ α , τ β ]h − τ [α , β ]g

)
. (3.9)

The mapping i−1 is well defined on i a. Equation (3.8) becomes

[ ρα , ρβ ] η = ρ[α , β ]g
η + [ω(α, β) , η ]a. (3.10)

Therefore, ρ satisfies the homomorphism property if either of the following is true:

(i) a is Abelian,

(ii) τ is a homomorphism,

Condition (i) implies [ , ]a = 0, while condition (ii) means

[ τ α , τ β ]h = τ [α , β ]g,

which implies ω ≡ 0. If either of these conditions is satisfied, a with the action ρ

is a left g-module. We treat these two cases separately in Sections 3.3 and 3.4,

respectively.

3.3 Extension by an Abelian Lie Algebra

In this section we assume that the homomorphism condition (i) at the end of Sec-

tion 3.2 is met. Therefore a is a left g-module, and we can define a-valued cochains

on g. In particular, ω defined by (3.9) is a 2-cochain, ω ∈ C2(g, a), that measures
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the “failure” of τ to be a homomorphism. We now show, moreover, that ω is a

2-cocycle, ω ∈ Z2
ρ(g, a). By using (3.4),

(s ω)(α, β, γ) = ρα ω(β, γ) + ρβ ω(γ, α) + ργ ω(α, β)

− ω([α , β ]g, γ) − ω([ β , γ ]g, α) − ω([ γ , α ]g, β) ,

= i−1[ τ α , i ω(β, γ) ]h− ω([α , β ]g, γ) + cyc. perm.,

where we have written “cyc. perm.” to mean cyclic permutations of α, β, and γ.

Using the definition (3.9) of ω, we have

(s ω)(α, β, γ) = i−1
[
τ α , [ τ β , τ γ ]h− τ [ β , γ ]g

]
h

− i−1
([

τ [α , β ]g , τ γ
]
h
− τ

[
[α , β ]g , γ

]
g

)
+ cyc. perm.,

= i−1
([

τ α , [ τ β , τ γ ]h

]
h
+ cyc. perm.

)

+ i−1τ

([
[α , β ]g , γ

]
g
+ cyc. perm.

)
= 0.

The first parenthesis vanishes by the Jacobi identity in h, the second by the Jacobi

identity in g, and the other terms were canceled in pairs. Hence ω is a 2-cocycle.

Two extensions h and h′ are equivalent if there exists a Lie algebra isomor-

phism σ such that the diagram

h

π

��>
>>

>>
>>

>

σ

��

0 // a

i

@@��������

i′ ��>
>>

>>
>>

>
g // 0

h′
π′

@@��������

(3.11)

is commutative, that is if σ ◦ i = i′ and π = π′ ◦ σ.

There will be an injection τ associated with π and a τ ′ associated with π′,

such that π ◦ τ = 1|g = π′ ◦ τ ′. The linear map ν = σ−1τ ′ − τ must be from g to i a,
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so i−1ν ∈ C1(g, a). Consider ρ and ρ′ respectively defined using τ, i and τ ′, i′ by (3.7).

Then

(ρα − ρ′α) η = i−1[ τ α , i η ]h − i′
−1[

τ ′ α , i′ η
]
h′

= i−1[ τ α , i η ]h − i−1σ−1[σ(ν + τ)α , σi η ]h′

= i−1[ τ α , i η ]h − i−1[ (ν + τ)α , i η ]h

= −i−1[ ν α , i η ]h = 0,

(3.12)

since a is Abelian. Hence, τ and τ ′ define the same ρ. Now consider the 2-cocycles ω

and ω′ defined from τ and τ ′ by (3.9). We have

ω′(α, β) − ω(α, β) = i′
−1
([
τ ′ α , τ ′ β

]
h′
− τ ′ [α , β ]g

)

− i−1
(
[ τ α , τ β ]h− τ [α , β ]g

)

= i−1σ−1
(
[ σ(ν + τ)α , σ(ν + τ)β ]h′ − σ(ν + τ) [α , β ]g

)

− i−1
(
[ τ α , τ β ]h− τ [α , β ]g

)

= i−1
(
[ (ν + τ)α , (ν + τ)β ]h − ν [α , β ]g − [ τ α , τ β ]h

)

= i−1
(
[ τ α , ν β ]h+ [ ν α , τ β ]h − ν [α , β ]g

)

= ρα (i
−1ν β)− ρβ (i

−1ν α)− i−1ν [α , β ]g.

Comparing this with (3.3), we see that

ω′ − ω = s (i−1ν), (3.13)

so ω and ω′ differ by a coboundary. Hence, they represent the same element inH2
ρ(g, a).

Equivalent extensions uniquely define an element of the second cohomology groupH2
ρ (g, a).

Note that this is true in particular for h = h′, σ = 1, so that the element of H2
ρ (g, a)

is independent of the choice of τ .equivalent

We are now ready to write down explicitly the bracket in h. We can represent

an element α ∈ h as a two-tuple: α = (α1, α2) where α1 ∈ g and α2 ∈ a (h = g⊕ a as a

vector space). The injection i is then i α2 = (0, α2), the projection π is π (α1, α2) = α1,

and since the extension is independent of the choice of τ we take τ α1 = (α1, 0). By
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linearity,

[α, β ]h = [ (α1, 0), (β1, 0) ]h+ [ (0, α2), (0, β2) ]h

+ [ (α1, 0), (0, β2) ]h+ [ (0, α2), (β1, 0) ]h.

We know that [ (0, α2), (0, β2) ]h = 0 since a is Abelian. By definition of the cocycle ω,

Eq. (3.9), we have

[ (α1, 0), (β1, 0) ]h = [ τ α1 , τ β1 ]h

= i ω(α1, β1) + τ [α1 , β1 ]g

= ([α1 , β1 ]g , ω(α1, β1)).

Finally, by the definition of ρ, Eq. (3.7),

[ (α1, 0), (0, β2) ]h = [ τ α1, i β2 ]h = ρα1 β2, (3.14)

and similarly for [ (0, α2), (β1, 0) ]h, with opposite sign. So the bracket is

[α, β ]h =
(
[α1 , β1 ]g , ρα1 β2 − ρβ1 α2 + ω(α1, β1)

)
. (3.15)

As a check we work out the Jacobi identity in h:

[
α , [ β , γ ]h

]
h
=
(
[α1 , [ β , γ ]1 ]g , ρα1 [β , γ ]2 − ρ[β , γ ]1

α2 + ω(α1, [ β , γ ]1)
)

=
([
α1 , [ β1 , γ1 ]g

]
g
, ρα1(ρβ1 γ2 − ργ1 β2 + ω(β1, γ1))

− ρ[β1 , γ1 ]g
α2 + ω(α1, [ β1 , γ1 ]g)

)
.

Upon adding permutations, the first component will vanish by the Jacobi identity

in g. We are left with

[
α , [ β , γ ]h

]
h
+ cyc. perm. =

(
0 ,
(
ρα1ρβ1 − ρβ1ρα1 − ρ[α1 , β1 ]g

)
γ2

+ ρα1 ω(β1, γ1)− ω([α1 , β1 ]g, γ1)
)
+ cyc. perm.,

which vanishes by the the homomorphism property of ρ and the fact that ω is a

2-cocycle, Eq. (3.4).
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Equation (3.15) is the most general form of the Lie bracket for extension

by an Abelian Lie algebra. It turns out that the theory of extension by a non-

Abelian algebra can be reduced to the study of extension by the center of a, which is

Abelian [21]. We will not need this fact here, as the only extensions by non-Abelian

algebras we will deal with are of the simpler type of Section 3.4.

We have thus shown that equivalent extensions are enumerated by the second

cohomology group H2
ρ(g, a). The coordinate transformation σ used in (3.11) to define

equivalence of extensions preserves the form of g and a as subsets of h. However,

we have the freedom to choose coordinate transformations which do transform these

subsets. All we require is that the isomorphism σ between h and h′ be a Lie algebra

homomorphism. We can represent this by the diagram

0 // a
i // h

π //

σ

��

g // 0

0 // a′
i // h′

π // g′ // 0.

(3.16)

The primed and the unprimed extensions are not equivalent, but they are isomor-

phic [96, p. 199]. Cohomology for us is not the whole story, since we are interested

in isomorphic extensions, but it will guide our classification scheme. We discuss this

point further in Section 4.3.

Diagrams (3.11) and (3.16) are related to the “Short Five Lemma,” which

states that if the diagram of Lie algebra homomorphisms

0 // a
i //

γ

��

h
π //

σ
��

g //

δ
��

0

0 // a′
i // h′

π // g′ // 0

is commutative, with the top and bottom rows exact, then

(i) γ, δ monomorphisms =⇒ σ monomorphism;

(ii) γ, δ epimorphisms =⇒ σ epimorphism;

(iii) γ, δ isomorphisms =⇒ σ isomorphism.
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A monomorphism is injective, an epimorphism is surjective, and an isomorphism is

bijective. The important point is that the converse of the Lemma is not true: if σ

is an isomorphism then it says nothing about the properties (or even the existence)

of γ and δ. Note that (iii) follows immediately from (i) and (ii). The proof can be

found in Mac Lane and Birkhoff [55] or Hungerford [42], for example.

3.4 Semidirect and Direct Extensions

Assume now that ω defined by (3.9) is a coboundary. By (3.13) there exists an

equivalent extension with ω ≡ 0. For that equivalent extension τ is a homomorphism

and condition (ii) at the end of Section 3.2 is satisfied. Thus the sequence

h gτoo 0oo (3.17)

is an exact sequence of Lie algebra homomorphisms, as well as the sequence given

by (3.6). We then say that the extension is a semidirect extension (or a semidirect

sum of algebras) by analogy with the group case. More generally, we say that h splits

if it is isomorphic to a semidirect sum, which corresponds to ω being a coboundary,

not necessarily zero. If a is not Abelian, then (3.12) is not satisfied and two equivalent

extensions (or two different choices of τ) do not necessarily lead to the same ρ.

Representing elements of h as 2-tuples, as in Section 3.3, we can derive the

bracket in h for a semidirect sum. The difference is that τ is a homomorphism so

that

[ (α1, 0), (β1, 0) ]h = [ τ α1 , τ β1 ]h = τ [α1 , β1 ]g = ([α1 , β1 ]g , 0),

and a is not assumed Abelian,

[ (0, α2), (0, β2) ]h = [ i α2 , i β2 ]h = i [α2 , β2 ]a = (0 , [α2 , β2 ]a),

which together with (3.14) gives

[α, β ]h =
(
[α1 , β1 ]g , ρα1 β2 − ρβ1 α2 + [α2 , β2 ]a

)
, (3.18)
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Verifying Jacobi for (3.18) we find the ρ must also satisfy

ρα1 [β2 , γ2 ]a = [ ρα1 β2 , γ2 ]a+ [ β2 , ρα1 γ2 ]a ,

which is trivially satisfied if a is Abelian, but in general this condition states that ρα

is a derivation on a.

Now consider the case where i−1 is a homomorphism and

ker i−1 = range τ.

Then the sequence

0 / ao

i
/ h

i−1
o

π
/ g

τo / 0
o

is exact in both directions and, hence, both i and π = τ−1 are bijections. The action

of g on a is

ρα η = i−1[ τ α , iη ]h =
[
i−1τ α , η

]
a
= 0

since by exactness i−1 ◦ τ = 0. This is called a direct sum. Note that in this case the

role of g and a is interchangeable and they are both ideals in h. The bracket in h is

easily obtained from (3.18) by letting ρ = 0,

[α, β ]h =
(
[α1 , β1 ]g , [α2 , β2 ]a

)
. (3.19)

Semidirect and direct extensions play an important role in physics. A simple example

of a semidirect sum structure is when g is the Lie algebra so(3) associated with

the rotation group SO(3) and a is R
3. Their semidirect sum is the algebra of the

six parameter Euclidean group of rotations and translations. This algebra can be

used in a Lie–Poisson bracket to describe the dynamics of the heavy top (see for

example [40,56,92]). We have already discussed the semidirect sum in Section 2.2.3.

The bracket (2.13) is a semidirect sum, with g the algebra of the group of volume-

preserving diffeomorphisms and a the Abelian Lie algebra of functions on R
2. The

action is just the adjoint action ρα v := [α , v ] obtained by identifying g and a.
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In general, semidirect Lie–Poisson structures appear in systems where the

field variables are in some sense “slaved” to the base variable (the one associated

with h) [57, 90]. Here, the advected quantities are forced to move on the coadjoint

orbits of the Lie group G. This is seen directly from the equations of motion (2.6),

since, for a semidirect sum,

ξ̇
µ
= −

[
δH

δξ0
, ξµ

]†
= −ad†

δH/δξ0
ξµ,

which is by definition the infinitesimal generator of the coadjoint orbits of the Lie

group [58] (see Section 2.1). For example, the coadjoint orbits of SO(3) are spheres,

so the semidirect product2 of SO(3) and R
3 leads to a physical system where the

dynamics are confined to spheres, which naturally describes rigid body motion. In

other words, the coadjoint orbits of the semidirect product ofG and R
3 are isomorphic

to the coadjoint orbits of G. We shall have more to say on this in Section 6.3.4.

A Lie–Poisson bracket built from a direct sum is just a sum of the separate

brackets. The dynamical interaction between the variables can only come from the

Hamiltonian or from constitutive equations. For example, in the baroclinic instability

model of two superimposed two fluid layers with different potential vorticities, the two

layers are coupled through the potential vorticity relation [64]. A very similar model

with a direct sum structure exists in MHD for studying magnetic reconnection [17].

3.4.1 Classification of Splitting Extensions

We now briefly mention the connection between the first cohomology group and split-

ting extensions. This will not be used directly in the classification scheme of Chap-

ter 4, but we include it for completeness. We assume in this section that a is Abelian.

In (3.17) we had chosen the canonical τ , τ(α) = (α, 0). Now suppose we use instead

τ ′(α) = (α , ν(α)) . (3.20)

2Semidirect product is the term used for groups, semidirect sum for algebras.
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Here ν is a linear map from g to a and is thus an element of C1(g, a), a 1-cochain.

If τ ′ is a Lie algebra homomorphism,

τ ′([α , β ]g) =
(
[α , β ]g , ν([α , β ]g)

)
(3.21)

must be equal to

[
τ ′(α) , τ ′(β)

]
h
=
(
[α , β ]g , ρα ν(β)− ρβ ν(α)

)
(3.22)

subtracting (3.21) and (3.22) gives

ρα ν(β)− ρβ ν(α)− ν([α , β ]g) = s ν(α, β) = 0, (3.23)

from (3.3). Hence ν is a cocycle, with coboundaries given by

ν(α) = ρα η0, η0 ∈ a, (3.24)

The first cohomology group H1
ρ (g, a) classifies splitting extensions of h by a modulo

those given in terms of the coboundaries (3.24).



Chapter 4

Classification of Extensions of a Lie Algebra

In this chapter we return to the main problem introduced in Section 2.3: the clas-

sification of algebra extensions built by forming n-tuples of elements of a single Lie

algebra g. The elements of this Lie algebra h are written as α := (α1, . . . , αn), αi ∈ g,

with a bracket defined by

[α , β ]λ =Wλ
µν [αµ , βν ] , (2.19)

where Wλ
µν are constants. We will call n the order of the extension. Recall (see

Section 2.3) that the W ’s are symmetric in their upper indices,

Wλ
µν =Wλ

νµ , (2.20)

and commute,

W (ν)W (σ) =W (σ)W (ν), (2.23)

where the n× n matrices W (ν) are defined by [W (ν)]λ
µ
:= Wλ

νµ. Since the W ’s are

3-tensors we can also represent their elements by matrices obtained by fixing the

lower index,

W(λ) :
[
W(λ)

]µν
:= Wλ

µν , (4.1)

which are symmetric but do not commute. Either collection of matrices, (2.22)

or (4.1), completely describes the Lie bracket, and which one we use will be under-

stood by whether the parenthesized index is up or down.

34
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What do we mean by a classification? A classification is achieved if we obtain

a set of normal forms for the extensions which are independent, that is not related

by linear transformations. We use linear transformations because they preserve the

Lie–Poisson structure—they amount to transformations of the W tensor. We thus

begin by assuming the most general W possible.

We first show in Section 4.1 how an extension can be broken down into a

direct sum of degenerate subblocks (degenerate in the sense that the eigenvalues

have multiplicity greater than unity). The classification scheme is thus reduced to

the study of a single degenerate subblock. In Section 4.2 we couch our particular

extension problem in terms of the Lie algebra cohomology language of Section 3.2

and apply the techniques therein. The limitations of this cohomology approach are

investigated in Section 4.3, and we look at other coordinate transformations that

do not necessarily preserve the extension structure of the algebra, as expressed in

diagram (3.16). In Section 4.5 we introduce a particular type of extension, called the

Leibniz extension, that is in a sense the “maximal” extension. Finally, in Section 4.6

we give an explicit classification of solvable extensions up to order four.

4.1 Direct Sum Structure

A set of commuting matrices can be put into simultaneous block-diagonal form by a

coordinate transformation, each block corresponding to a degenerate eigenvalue [89].

Let us denote the change of basis by a matrixMβ
ᾱ, with inverse

(
M−1

)
ᾱ

β
, such that

the matrix W̃ (ν), whose components are given by

W̃ β̄
ᾱν = (M−1)β̄

λ
Wλ

µν Mµ
ᾱ ,

is in block-diagonal form for all ν [89]. However, Wλ
µν is a 3-tensor and so the third

index is also subject to the coordinate change:

W β̄
ᾱγ̄ = W̃ β̄

ᾱνMν
γ̄ .
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Figure 4.1: Schematic representation of the 3-tensorW for a direct sum of extensions.
The cubes represent potentially nonzero elements.

This last step only adds linear combinations of the W̃ (ν)’s together, so the W̃ (ν)’s

and the W (γ̄)’s have the same block-diagonal structure. Note that the W β̄
ᾱγ̄ are

still symmetric in their upper indices, since this property is preserved by a change of

basis:

W β̄
ᾱγ̄ = (M−1)β̄

λ
Wλ

µν Mµ
ᾱMν

γ̄

= (M−1)β̄
λ
Wλ

νµMν
ᾱMµ

γ̄ (Relabeling µ and ν)

= (M−1)β̄
λ
Wλ

µν Mµ
γ̄ Mν

ᾱ

=W β̄
γ̄ᾱ .

So from now on we just assume that we are working in a basis where the W (ν)’s are

block-diagonal and symmetric in their upper indices; this symmetry means that if we

look at a W as a cube, then in the block-diagonal basis it consists of smaller cubes

along the main diagonal. This is the 3-tensor equivalent of a block-diagonal matrix,

as illustrated in Figure 4.1, a pictorial representation of a direct sum of extensions.
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4.1.1 Example: three-field model of MHD

We consider as an example of a direct sum structure a three-field model of MHD

due to Hazeltine [30, 32]. In addition to the vorticity ω and the magnetic flux ψ

(see Section 2.2.3), the model also includes a field χ which measures plasma density

perturbations. The model includes as limits the RMHD system of Section 2.2.3 and

the Charney–Hasegawa–Mima equation [41]. We thus have ξ = (ω,ψ, χ), with the

Hamiltonian

H = 1
2

〈
|∇φ|2 + |∇ψ|2 + αχ2

〉
, (4.2)

and bracket represented by the matrices

W (1) =



1 0 0
0 1 0
0 0 1


 , W (2) =



0 0 0
1 0 1
0 0 0


 , W (3) =



0 0 0
0 1 0
1 0 1


 .

The matrices commute and obey the symmetry (2.20), so they form a good bracket.

As in Section 2.2.3, the electric potential is denoted by φ and the electric current

by J . The equations of motion are given by

ω̇ = [ω , φ ] + [ψ , J ] ,

ψ̇ = [ψ , φ ] + α [χ , ψ ] ,

χ̇ = [χ , φ ] + [ψ , J ] .

(4.3)

TheW (µ)’s are not in block triangular form, and sinceW (3) has eigenvalues which are

not threefold degenerate we know the extension can be blocked-up further. Indeed,

the coordinate transformation ηµ̄ = ξν Mν
µ̄, with

M =



0 0 1
0 1 0
1 0 −1


 , (4.4)

will transform the extension to

W (1) =




1 0 0
0 1 0

0 0 0


 , W (2) =




0 0 0
1 0 0

0 0 0


 , W (3) =




0 0 0
0 0 0

0 0 1


 ,
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where we have explicitly indicated the blocks. The extension is also block-diagonal

in the alternate, lower-indexed representation,

W (1̄) =




1 0 0
0 0 0

0 0 0


 , W (2̄) =




0 1 0
1 0 0

0 0 0


 , W (3̄) =




0 0 0
0 0 0

0 0 1


 .

This is what was meant by “cubes” at the end of the previous section.

At the bracket level the variables η1̄ and η2̄ are decoupled from η3̄. But under

the transformation (4.4) the Hamiltonian (4.2) becomes

H̄ = 1
2

〈
|∇(η1̄ + η3̄)|2 + |∇η2̄|2 + α |η1̄|2

〉
.

The new equations of motion are thus

η̇1̄ =
[
η1̄ , φ̄

]
+
[
η2̄ , J̄

]
,

η̇2̄ =
[
η2̄ , φ̄− α η1̄

]
,

η̇3̄ =
[
η3̄ , φ̄

]
.

with ∇2φ̄ := η1̄ + η3̄ and J̄ := ∇2η2̄. The variable η3̄ is still coupled to the other

variables through the defining relation for φ̄.

4.1.2 Lower-triangular Structure

Block-diagonalization is the first step in the classification: each subblock of W is

associated with an ideal (hence, a subalgebra) in the full n-tuple algebra g. (A

subset a ⊆ h is an ideal in the Lie algebra h if [ h , a ] ⊆ a. Ideals are subalgebras.)

Hence, by the definition of Section 3.4, the algebra g is a direct sum of the algebra

denoted by each subblock. Each of these algebras can be studied independently,

that is we can focus our attention on a single subblock. So from now on we assume

that we have n commuting matrices, each with n-fold degenerate eigenvalues. The

eigenvalues can, however, be different for each matrix.

Such a set of commuting matrices can be put into lower-triangular form by

a coordinate change, and again the transformation of the third index preserves this
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structure (though it can change the eigenvalue of each matrix). The eigenvalue of

each matrix lies on the diagonal; we denote the eigenvalue of W (µ) by Λ(µ). We write

the quantity W1
µν as the matrix

W(1) =




Λ(1) 0 0 · · · 0

Λ(2) 0 0 · · · 0
...

...

Λ(n) 0 0 · · · 0


 ,

which consists of the first row of the lower-triangular matrices W (µ) as prescribed by

(4.1). Evidently, the symmetry of W(1) requires

Λ(ν) = θ δ1
ν ,

that is, all the matrices W (µ) are nilpotent (their eigenvalues vanish) except forW (1)

when θ 6= 0. If this first eigenvalue is nonzero then it can be scaled to θ = 1 by

the coordinate transformation Mν
ᾱ = θ−1 δν

ᾱ. We will use the symbol θ to mean a

variable which can take the value 0 or 1. Figure 4.2 shows the structure, with θ = 0, of

a degenerate extension, after lower-triangularity and symmetry of the upper indices

of W are taken into account.

4.2 Connection to Cohomology

We now bring together the abstract notions of Chapter 3 with the n-tuple extensions

of Section 2.3. It is shown in Section 4.2.1 that we need only classify the case

of θ = 0. This case will be seen to correspond to solvable extensions, which we

classify in Section 4.2.2.

4.2.1 Preliminary Splitting

Assume we are in the basis described at the end of Section 4.1 and, for now, sup-

pose θ = 1. To place the structure of W in the context of Lie algebras, we first give
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Figure 4.2: Schematic representation of the 3-tensor W for a solvable extension. The
cubes represent potentially nonzero elements. The vertical axis is the lower index λ
of Wλ

µν , and the two horizontal axes are the symmetric upper indices µ and ν.
The origin is at the top-rear. The pyramid-like structure is a consequence of the
symmetry of W and of its lower-triangular structure in this basis.
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some definitions. The derived series g(k) of g has terms

g(0) = g

g(1) = [ g , g ]

g(2) =
[
g(1) , g(1)

]

...

g(k) =
[
g(k−1) , g(k−1)

]
, (4.5)

where by [ g , g ] we mean the set obtained by taking all the possible Lie brackets of

elements of g. The lower central series gk has terms defined by

g0 = g

g1 = [ g , g ]

g2 =
[
g , g1

]

...

gk =
[
g , g(k−1)

]
. (4.6)

An algebra g is said to be solvable if its derived series terminates, g(k) = 0, for some k.

An algebra g is said to be nilpotent if its lower central series terminates, gk = 0, for

some k. Note that a nilpotent algebra is solvable, but not vice-versa [44].

The set of elements of the form β = (0, β2, . . . , βn) is a nilpotent ideal in h

that we denote by a (a is thus a solvable subalgebra). To see this, observe that (4.6)

involves nested brackets, so that the elements ak of the lower central series will

involve kth powers of the W (µ). But since the W (µ) with µ > 1 are lower-triangular

with zeros along the diagonal, we have (W (µ))n−1 = 0, and the lower central series

must eventually vanish.

Because a is an ideal, we can construct the algebra g = h/a, so that h is an

extension of g by a. If g is semisimple, then a is the radical of h (the maximal solvable

ideal). It is easy to see that the elements of g embedded in h are of the form α =



42

(α1, 0, . . . , 0). We will now show that h splits; that is, there exist coordinates in

which h is manifestly the semidirect sum of g and the (in general non-Abelian)

algebra a.

In Appendix B we give a lower-triangular coordinate transformation that

makesW (1) = I, the identity matrix. Assuming we have effected this transformation,

the mappings i, π, and τ of Section 3.2 are given by

i : a −→ h, i(α2, . . . , αn) = (0, α2, . . . , αn),

π : h −→ g, π(α1, α2, . . . , αn) = α1,

τ : g −→ h, τ(α1) = (α1, 0, . . . , 0),

and the cocycle of Eq. (3.9) is

i ω(α, β) = [ τ α , τ β ]h− τ [α , β ]g

= [ (α1, 0, . . . , 0) , (β1, 0, . . . , 0) ]h− ([α1 , β1 ] , 0, . . . , 0)

=
(
W1

11 [α1 , β1 ] , 0, . . . , 0
)
− ([α1 , β1 ] , 0, . . . , 0)

= 0,

since W1
11 = 1. Hence, the extension is a semidirect sum. The coordinate transfor-

mation that madeW (1) = I removed a coboundary, making the above cocycle vanish

identically. For the case where g is finite-dimensional and semisimple, we have an ex-

plicit demonstration of the Levi decomposition theorem: any finite-dimensional1 Lie

algebra h (of characteristic zero) with radical a is the semidirect sum of a semisimple

Lie algebra g and a [44].

4.2.2 Solvable Extensions

Above we assumed the eigenvalue θ of the first matrix was unity; however, if this

eigenvalue vanishes, then we have a solvable algebra of n-tuples to begin with. Since n

is arbitrary we can study these two solvable cases together.

1The inner bracket can be infinite dimensional, but the order of the extension is finite.
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Thus, we now suppose h is a solvable Lie algebra of n-tuples (we reuse the

symbols h, g, and a to parallel the notation of Section 3.1), where all of the theW (µ)’s

are lower-triangular with zeros along the diagonal. Note that W (n) = 0, so the set

of elements of the form α = (0, . . . , 0, αn) forms an Abelian subalgebra of h. In fact,

this subalgebra is an ideal. Now assume h contains an Abelian ideal of order n−m

(the order of this ideal is at least 1), which we denote by a. The elements of a can

always be cast in the form

α = (0, . . . , 0, αm+1, . . . , αn)

via a coordinate transformation that preserves the lower-triangular, nilpotent form

of the W (µ).

We also denote by g the algebra of m-tuples with bracket

[ (α1, . . . , αm) , (β1, . . . , βm) ]gλ =

m∑

µ,ν=1

Wλ
µν [αµ , βν ] , λ = 1, . . . ,m.

It is trivial to show that g = h/a, so that h is an extension of g by a. Since a

is Abelian we can use the formalism of Section 3.1 (the other case we used above

was for a non-Abelian but where the extension was semidirect). The injection and

projection maps are given by

i : a −→ h, i(αm+1, . . . , αn) = (0, . . . , 0, αm+1, . . . , αn),

π : h −→ g, π(α1, α2, . . . , αn) = (α1, . . . , αm),

τ : g −→ h, τ(α1, . . . , αm) = (α1, . . . , αm, 0, . . . , 0).

From the definition of the action, Eq. (3.7), we have for α ∈ g and η ∈ a,

i ρα η = [ τ α , i η ]h

= [ (α1, . . . , αm, 0, . . . , 0) , (0, . . . , 0, ηm+1, . . . , ηn) ]h

=
m∑

µ=1

n−1∑

ν=m+1

(0, . . . , 0,W µν
m+2[αµ , ην ], . . . ,Wn

µν [αµ , ην ]).

(4.7)
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In addition to the action, the solvable extension is also characterized by the cocycle

defined in Eq. (3.9),

i ω(α, β) = [ τ α , τ β ]h− τ [α , β ]g

= [ (α1, . . . , αm, 0, . . . , 0) , (β1, . . . , βm, 0, . . . , 0) ]h

− τ [ (α1, . . . , αm) , (β1, . . . , βm) ]g

=
m∑

µ,ν=1

(0, . . . , 0,Wµν
m+1[αµ , βν ], . . . ,Wn

µν [αµ , βν ]). (4.8)

We can illustrate which parts of the W ’s contribute to the action and which to the

cocycle by writing

W(λ) =

(
wλ rλ
rTλ 0

)
, λ = m+ 1, . . . , n, (4.9)

where the wλ’s are m×m symmetric matrices that determine the cocycle ω and

the rλ’s are m× (n−m) matrices that determine the action ρ. The zero matrix of

size (n−m)× (n−m) on the bottom right of the W(λ)’s appears as a consequence

of a being Abelian.

The algebra g is completely characterized by the W(λ), λ = 1, . . . ,m. Hence,

we can look for the maximal Abelian ideal of g and repeat the procedure we used for

the full h. It is straightforward to show that although coordinate transformations

of g might change the cocycle ω and the action ρ, they will not alter the form of (4.9).

Recall that in Section 3.1 we defined 2-coboundaries as 2-cocycles obtained

from 1-cochains by the coboundary operator, s. The 2-coboundaries turned out to

be removable obstructions to a semidirect sum structure. Here the coboundaries are

associated with the parts of the W(λ) that can be removed by (a restricted class of)

coordinate transformations, as shown below.

Let us explore the connection between 1-cochains and coboundaries in the

present context. Since a 1-cochain is just a linear mapping from g to a, for α = (α1, . . . , αm) ∈ g
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we can write this as

ω(1)
µ (α) = −

m∑

λ=1

kµ
λ αλ , µ = m+ 1, . . . , n, (4.10)

where the kµ
λ are arbitrary constants. To find the form of a 2-coboundary we act on

the 1-cochain (4.10) with the coboundary operator; using (3.3) and (4.7) we obtain

ωcob
λ (α, β) = (s ω(1))(α, β)

= ραω
(1)(β) + ρβω

(1)(α) − ω(1)([α , β ]g)

=

m∑

µ=1

n∑

ν=m+1

Wλ
µν
[
αµ , ω

(1)
ν (β)

]
−

m∑

µ=1

n∑

ν=m+1

Wλ
µν
[
βµ , ω

(1)
ν (α)

]

+
m∑

µ,ν,σ=1

kλ
σWσ

µν [αµ , βν ] . (4.11)

After inserting (4.10) into (4.11) and relabeling, we obtain the general form of a

2-coboundary

ωcob
λ (α, β) =

m∑

µ,ν=1

Vλ
µν [αµ , βν ] , λ = m+ 1, . . . , n,

where

Vλ
µν :=

m∑

τ=1

kλ
τ Wτ

µν −
n∑

σ=m+1

(kσ
µWλ

νσ + kσ
ν Wλ

µσ) . (4.12)

To see how coboundaries are removed, consider the lower-triangular coordi-

nate transformation

[
Mσ

τ̄
]
=

(
I 0

k c I

)
,

where σ labels rows. This transformation subtracts V(λ) from W(λ) for λ > m and

leaves the firstm of theW(λ)’s unchanged. In other words, ifW is the transformedW ,

W (λ) =





W(λ) λ = 1, . . . ,m;
(
c−1 (wλ −Vλ) rλ

rTλ 0

)
λ = m+ 1, . . . , n.

(4.13)
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We have also included in this transformation an arbitrary scale factor c. Since by (4.8)

the block in the upper-left characterizes the cocycle, we see that the transformed co-

cycle is the cocycle characterized by wλ minus the coboundary characterized by Vλ.

The special case we will encounter most often is when the maximal Abelian

ideal of h simply consists of elements of the form (0, . . . , 0, αn). For this case m =

n−1, and the action vanishes sinceWn
µn = 0 (the extension is central). The cocycle ω

is entirely determined by W(n). The form of the coboundary is reduced to

Vn
µν =

n−1∑

τ=1

kn
τ Wτ

µν , (4.14)

that is, a linear combinations of the first (n − 1) matrices. Thus it is easy to see

at a glance which parts of the cocycle characterized W(n) can be removed by lower-

triangular coordinate transformations.

4.3 Further Coordinate Transformations

In the previous section we restricted ourselves to lower-triangular coordinate trans-

formations, which in general preserve the lower-triangular structure of theW (µ). But

when the W (µ) matrices are relatively sparse, there exist non-lower-triangular coor-

dinate transformations that nonetheless preserve the lower-triangular structure. As

alluded to in Section 3.3, these transformations are outside the scope of cohomology

theory, which is restricted to transformations that preserve the exact form of the

action and the algebras g and a, as shown by (4.13). In other words, cohomology

theory classifies extensions given g, a, and ρ. We need not obey this restriction. We

can allow non-lower-triangular coordinate transformations as long as they preserve

the lower-triangular structure of the W (µ)’s.

We now discuss a particular class of such transformations that will be useful

in Section 4.6. Consider the case where both the algebra of (n−1)-tuples g and that

of 1-tuples a are Abelian. Then the possible (solvable) extensions, in lower triangular

form, are characterized by W(λ) = 0, λ = 1, . . . , n − 1, with W(n) arbitrary (except
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for Wn
µn = 0). Let us apply a coordinate change of the form

M =

(
m 0

0 c

)
,

where m is an (n − 1) × (n − 1) nonsingular matrix and c is again a nonzero scale

factor. Denoting by W the transformed W , we have

W (λ) =





0 λ = 1, . . . , n− 1;
(
c−1 mT wλm 0

0 0

)
λ = n.

(4.15)

This transformation does not change the lower-triangular form of the exten-

sion, even if m is not lower-triangular. The manner in which wn is transformed

by M is very similar to that of a (possibly singular) metric tensor: it can be diago-

nalized and rescaled such that all its eigenvalues are 0 or ±1. We can also change the

overall sign of the eigenvalues using c (something that cannot be done for a metric

tensor). Hence, we shall order the eigenvalues such that the +1’s come first, followed

by the −1’s, and finally by the 0’s. We will show in Section 4.6 how the negative

eigenvalues can be eliminated to harmonize the notation.

4.4 Appending a Semisimple Part

In Section 4.2 we showed that because of the Levi decomposition theorem we only

needed to classify the solvable part of the extension for a given degenerate block.

Most physical applications have a semisimple part (θ = 1); when this is so, we

shall label the matrices by W (0),W (1), . . . ,W (n), where they are now of size n+ 1

and W (0) is the identity.2 Thus the matrices labeled by W (1), . . . ,W (n) will always

form a solvable subalgebra. This explains the labeling in Sections 2.3.1 and 2.3.2.

If the extension has a semisimple part (θ = 1, or equivalently W (0) = I), we

shall refer to it as semidirect . This was the case treated in Section 4.2.1. A pic-

torial representation of an arbitrary semidirect extension with nonvanishing cocycle

2The term semisimple is not quite precise: if the base algebra is not semisimple then neither is
the extension. However we will use the term to distinguish the different cases.
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Figure 4.3: Front and rear views of a schematic representation of the 3-tensor W
for an arbitrary semidirect extension with cocycle. The solvable part is in red. The
semisimple part is in blue and consists of unit entries. The axes are as in Figure 4.2.
An extension with all these elements nonzero cannot actually occur.

is shown in Figure 4.3. If the extension is not semidirect, then it is solvable (and

contains n matrices instead of n+1). This is the extension represented in Figure 4.2.

Given a solvable algebra of n-tuples we can carry out in some sense the inverse

of the Levi decomposition and append a semisimple part to the extension. Effectively,

this means that the n× n matricesW (1), . . . ,W (n) are made n+ 1× n+ 1 by adding

a row and column of zeros. Then we simply append the matrix W (0) = I to the

extension. In this manner we construct a semisimple extension from a solvable one.

This is useful since we will be classifying solvable extensions, and afterwards we will

want to recover their semidirect counterpart.

The extension obtained by appending a semisimple part to the completely

Abelian algebra of n-tuples will be called pure semidirect . It is characterized byW (0) =

I, and Wλ
µν = 0 for µ, ν > 0. This is shown schematically in Figure 4.4.
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Figure 4.4: Schematic representation of the 3-tensor W for a pure semidirect exten-
sion. The axes are as in Figure 4.2.

4.5 Leibniz Extension

A particular extension that we shall consider is called the Leibniz extension [81]. For

the solvable case this extension has the form

W (1) =: N =




0
1 0

1 0
. . .

1 0




(4.16)

or Wλ
µ 1 = δλ−1

µ, λ > 1. The first matrix is an n× n Jordan block. In this case the

other matrices, in order to commute with W (1), must be in striped lower-triangular

form [89],

W (ν) =




0
a 0
b a 0
c b a 0
d c b a 0
...

. . .




. (4.17)
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Figure 4.5: Two views of the 3-tensor W for a solvable Leibniz extension, where each
cube denotes a 1. The axes are as in Figure 4.2. The Leibniz extension is “hollow.”

But by symmetry of the upper indices the first column of matrixW (ν) must beWλ
1(ν) = δλ

ν ,

so that

W (ν) = (N)ν , (4.18)

where on the right-hand side the ν denotes an exponent, not a superscript. An

equivalent way of characterizing the Leibniz extension is

Wλ
µν = δλ

µ+ν , µ, ν, λ = 1, . . . , n. (4.19)

The tensor δ is an ordinary Kronecker delta. Note that neither (4.18) nor (4.19)

are covariant expressions, reflecting the coordinate-dependent nature of the Leibniz

extension.

The Leibniz extension is in some sense a “maximal” extension: it is the only

extension that has W(λ) 6= 0 for all λ > 1 (up to coordinate transformations). Its

uniqueness will become clear in Section 4.6, and is proved in Section 4.7. We show

two schematic views of the extension in Figure 4.5. Fans of 1980’s arcade games

will understand why the author is suggesting the alternate name Q*Bert extension,3

3Q*BertTM is a trademark of the Sony Corporation.
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Figure 4.6: Screenshot of the Q*Bert game. Compare with Figure 4.5!

since Leibniz has no dearth of things named after him (see Figure 4.6).

To construct the semidirect Leibniz extension, we appendW (0) = I, a square

matrix of size n + 1, to the solvable Leibniz extension above, as described in Sec-

tion 4.4. The characterization given by Eq. (4.19) can be used for the semidirect

Leibniz extension by simply letting the indices run from 0 to n.

4.6 Low-order Extensions

We now classify algebra extensions of low order. As demonstrated in Section 4.2 we

only need to classify solvable algebras, which means that W (n) = 0 for all cases. We

will do the classification up to order n = 4. For each case we first write down the most

general set of lower-triangular matrices W (ν) (we have already used the fact that a

set of commuting matrices can be lower-triangularized) with the symmetry Wλ
µν =

Wλ
νµ built in. Then we look at what sort of restrictions the commutativity of the

matrices places on the elements. Finally, we eliminate coboundaries for each case by

the methods of Sections 4.2 and 4.3. This requires coordinate transformations, but

we usually will not bother using new symbols and just assume the transformation
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were effected.

Note that, due to the lower-triangular structure of the extensions, the clas-

sification found for an m-tuple algebra applies to the first m elements of an n-tuple

algebra, n > m. Thus, W(n) is the cocycle that contains all of the new information

not included in the previous m = n− 1 classification. These comments will become

clearer as we proceed.

There are three generic cases that we will encounter for any order:

1. The Leibniz extension, discussed in Section 4.5.

2. An extension with W(λ) ≡ 0, λ = 1, . . . , n− 1, and W(n) arbitrary (and sym-

metric). This extension automatically satisfies the commutativity requirement,

because the product of any two W (µ) vanishes. It can be further classified by

the methods of Section 4.3. Later we will refer to this case as having a vanishing

coextension (see Section 5.4 and Figure 6.3).

3. The Abelian extension, which vanishes identically:W(λ) ≡ 0, λ = 1, . . . , n. This

is a special case of 2, above. When appended to a semidirect part (as explained

in Section 4.4), the Abelian extension generates the pure semidirect extension.

We shall call an order n extension trivial if W(n) ≡ 0, so that the cocycle

appended to the order n− 1 extension contributes nothing to the bracket.

We now proceed with the classification for orders n = 1 to 4.

4.6.1 n=1

This case is Abelian, with the only possible element W1
11 = 0.

4.6.2 n=2

The most general lower-triangular form for the matrices is

W (1) =

(
0 0

W2
11 0

)
, W (2) =

(
0 0
0 0

)
.
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If W2
11 6= 0, then we can rescale it to unity. Hence, we let W2

11 := θ1, where θ1 = 0

or 1. The case θ1 = 0 is the Abelian case, while for θ = 1 we have the n = 2 Leibniz

extension (Section 4.5). Thus for n = 2 there are only two possible algebras. The

cocycle which we have added at this stage is characterized by θ1.

4.6.3 n=3

Using the result of Section 4.6.2, the most general lower-triangular form is

W (1) =




0 0 0
θ1 0 0
W3

11 W3
21 0


 , W (2) =




0 0 0
0 0 0

W3
21 W3

22 0


 ,

and W (3) = 0. These satisfy the symmetry condition (2.20), and the requirement

that the matrices commute leads to the condition

θ1W3
22 = 0.

The symmetric matrix representing the cocycle is

W(3) =



W3

11 W3
21 0

W3
21 W3

22 0
0 0 0


 . (4.20)

If θ1 = 1, then W3
22 must vanish. Then, by (4.14) we can remove from W(3) a

multiple of W(2), and therefore we may assume W3
11 vanishes. A suitable rescaling

allows us to write W3
21 = θ2, where θ2 = 0 or 1. The cocycle for the case θ1 = 1 is

thus

W(3) =




0 θ2 0
θ2 0 0
0 0 0


 .

For θ2 = 1 we have the Leibniz extension (Section 4.5).

If θ1 = 0, we have the case discussed in Section 4.3. For this case we can

diagonalize and rescale W(3) such that

W(3) =



λ1 0 0
0 λ2 0
0 0 0


 ,
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where (λ1, λ2) can be (1, 1), (1, 0), (0, 0), or (1,−1). This last case, as alluded to

at the end of Section 4.3, can be transformed so that it corresponds to θ1 = 0,

θ2 = 1. The choice (1, 0) can be transformed to the θ1 = 1, θ2 = 0 case. Finally

for (λ1, λ2) = (1, 1) we can use the complex transformation

ξ1 → 1√
2
(ξ1 + ξ2), ξ2 → − i√

2
(ξ1 − ξ2), ξ3 → ξ3,

to transform to the θ1 = 0, θ2 = 1 case.

We allow complex transformations in our classification because we are chiefly

interested in finding Casimir invariants for Lie–Poisson brackets. If we disallowed

complex transformations, the final classification would contain a few more members.

The use of complex transformations will be noted as we proceed.

There are thus four independent extensions for n = 3, corresponding to

(θ1 , θ2) ∈ {(0 , 0) , (0 , 1) , (1 , 0) , (1 , 1)} .

These will be referred to as Cases 1–4, respectively. Cases 1 and 3 have θ2 = 0, and

so are trivial (W(3) = 0). Case 2 is the solvable part of the compressible reduced

MHD bracket (Section 2.3.2). Case 4 is the solvable Leibniz extension.

4.6.4 n=4

Proceeding as before and using the result of Sections 4.6.2 and 4.6.3, we now know

that we need only write

W(4) =




W4
11 W4

21 W4
31 0

W4
21 W4

22 W4
32 0

W4
31 W4

32 W4
33 0

0 0 0 0


 . (4.21)

The matricesW(1),W(2), andW(3) are given by their n = 3 analogues padded with an

extra row and column of zeros (owing to the lower-triangular form of the matrices).
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The requirement that the matrices W (1) . . . W (4) commute leads to the conditions

θ2W4
33 = 0,

θ2W4
31 = θ1W4

22,

θ2W4
32 = 0,

θ1W4
32 = 0.

(4.22)

There are four cases to look at, corresponding to the possible values of θ1 and θ2.

Case 1 θ1 = 0, θ2 = 0.

This is the unconstrained case discussed in Section 4.3, that is, all the com-

mutation relations (4.22) are automatically satisfied. We can diagonalize to give

W(4) =




λ′1 0 0 0
0 λ′2 0 0
0 0 λ′3 0
0 0 0 0


 ,

where

(λ′1, λ
′
2, λ
′
3) ∈ {(1, 1, 1), (1, 1, 0), (1, 0, 0), (0, 0, 0), (1, 1,−1), (1,−1, 0)} ,

so there are six distinct cases. The exact form of the transformation is unimportant,

but the (1, 1, 0) extension can be mapped to Case 2 (the transformation is com-

plex), (1, 0, 0) can be mapped to Case 3a, and (1,−1, 0) can be mapped to Case 2.

Finally the (1, 1, 1) extension can be mapped to the (1, 1,−1) case by a complex

transformation.

After transforming that (1, 1,−1) case, we are left with

W(4) =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0


 .

These will be called Cases 1a and 1b.

Case 2 θ1 = 0, θ2 = 1.
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The commutation relations (4.22) reduce to W4
31 = W4

32 = W4
33 = 0, and

we have

W(4) =




W4
11 W4

21 0 0
W4

21 W4
22 0 0

0 0 0 0
0 0 0 0


 .

We can remove W4
21 because it is a coboundary (in this case a multiple of W(3)).

We can also rescale appropriately to obtain the four possible extensions

W(4) =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 ,




1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0


 .

Again, the form of the transformation is unimportant, but it turns out that the

second extension can be mapped to Case 3c, and the third and fourth to Case 3b.

This last transformation is complex. Thus there is only one independent possibility,

the trivial extension W(4) = 0.

Case 3 θ1 = 1, θ2 = 0.

We can remove W4
11 using a coordinate transformation. From the commu-

tation requirement (4.22) we obtain W4
22 = W4

32 = 0. We are left with W(3) = 0

and

W(4) =




0 W4
21 W4

31 0
W4

21 0 0 0
W4

31 0 W4
33 0

0 0 0 0


 .

Using the fact that elements of the form (0, α2, 0, α4) are an Abelian ideal of this

bracket, we find that W4
33W4

31 = 0. Using an upper-triangular transformation we

can also make W4
21W4

31 = 0. After suitable rescaling we find there are five cases:

the trivial extension W(4) = 0, and

W(4) =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 ,




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


 ,




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0


 ,




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 .
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However the last of these may be mapped to Case 4 (below) with θ3 = 0. We will

refer to the trivial extension as Case 3a and to the remaining three extensions as

Cases 3b–d, respectively.

Case 4 θ1 = 1, θ2 = 1.

The elements W4
11 and W4

21 are coboundaries that can be removed by a

coordinate transformation. From (4.22) we have W4
33 = W4

32 = 0,W4
22 = W4

31 =:

θ3, so that

W(4) =




0 0 θ3 0
0 θ3 0 0
θ3 0 0 0
0 0 0 0


 .

For θ3 = 1 we have the Leibniz extension. The two cases will be referred to as

Case 4a for θ3 = 0 and 4b for θ3 = 1.

Table 4.1 summarizes the results. There are are total of nine independent n =

4 extensions, four of which are trivial (W(4) = 0). As noted in Section 4.5 only the

Leibniz extension, Case 4b, has nonvanishing W(i) for all 1 < i ≤ n.

The surprising fact is that even to order four the normal forms of the ex-

tensions involve no free parameters: all entries in the coefficients of the bracket are

either zero or one. There is no obvious reason this should hold true if we try to

classify extensions of order n > 4. It would be interesting to find out, but the clas-

sification scheme used here becomes prohibitive at such high order. The problem is

that some of the transformations used to relate extensions cannot be systematically

derived and were obtained by educated guessing.

4.7 Leibniz as the Maximal Extension

We mentioned in Section 4.5 that the Leibniz extension is maximal: it is the only

extension that has W(λ) 6= 0 for all λ > 1. Having seen the classification process at
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Case W(2) W(3) W(4)

a b c d

1
(
0
) (

0 0
0 0

) 

0 0 0
0 0 0
0 0 0





0 0 1
0 1 0
1 0 0




2
(
0
) (

0 1
1 0

) 

0 0 0
0 0 0
0 0 0




3
(
1
) (

0 0
0 0

) 

0 0 0
0 0 0
0 0 0





0 0 0
0 0 0
0 0 1





0 0 1
0 0 0
1 0 0





0 1 0
1 0 0
0 0 1




4
(
1
) (

0 1
1 0

) 

0 0 0
0 0 0
0 0 0





0 0 1
0 1 0
1 0 0




Table 4.1: Enumeration of the independent extensions up to n = 4. We haveW(1) = 0
for all the cases, and we have left out a row and a column of zeros at the end of each
matrix.



59

work in Section 4.6, we are now in a position to show why the Leibniz extension has

this property. We will demonstrate that the only way to extend a Leibniz extension

nontrivially (i.e., with a nonvanishing cocycle) is to append a cocycle such that the

new extension is again Leibniz.

Consider a solvable Leibniz extension of order n − 1, denoted by the 3-

tensor W̃ . We increase the order of W̃ by one by appending the most general cocycle

possible (as was done in Section 4.6) to obtain an extension of order n denoted by

the tensor W . The form of the matrices W (µ) of the new extension is

W (µ) =

(
W̃ (µ)

Wn
(µ) 0

)
, µ = 1, . . . , n− 1, (4.23)

and W (n) ≡ 0. The quantity Wn
(µ) is a row vector defined in the obvious manner

as [Wn
(µ)]ν =Wn

µν .

In particular, the first matrix of the nth order extension is

W (1) =




0
1 0

1 0
· · · · · ·

1 0

Wn
11 Wn

12 · · · Wn
1,n−2 Wn

1,n−1 0




, (4.24)

where theWn
µν represent the appended cocycle, and we have explicitly delimited the

order n−1 Leibniz extension. It is not difficult to show that theWn
1ν , ν = 1, . . . , n− 2,

are coboundaries and so can be removed by a coordinate transformation. We thus

assume that Wn
1ν = 0, ν = 1, . . . , n − 2. The only potentially nonzero element of

that row is Wn
1,n−1.

Taking the commutator of two matrices of the form (4.23) gives the conditions

n−1∑

σ=1

Wn
µσ W̃σ

ντ =

n−1∑

σ=1

Wn
νσ W̃σ

µτ , µ, ν, τ = 1, . . . , n− 1.

Substituting the form of the Leibniz extension (4.19) for W̃ , this becomes

n−1∑

σ=1

Wn
µσ δσ

ν+τ =
n−1∑

σ=1

Wn
νσ δσ

µ+τ ,
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or

Wn
µ,ν+τ =

{
Wn

µ+τ,ν µ+ τ < n,

0 µ+ τ ≥ n,

where ν + τ < n. For τ = 1, this is

Wn
µ,ν+1 =

{
Wn

µ+1,ν µ < n− 1,

0 µ = n− 1,

for ν = 1, . . . , n− 2, which says that W(n) has a banded structure. Because we have

that Wn
1ν = 0, ν = 1, . . . , n − 2, it must be that

W(n) =




0 0 . . . 0 Wn
1,n−1 0

0 0 . . . Wn
1,n−1 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 Wn

1,n−1 . . . 0 0 0
Wn

1,n−1 0 . . . 0 0 0
0 0 . . . 0 0 0




So either Wn
1,n−1 = 0 (the extension is trivial), or Wn

1,n−1 can be rescaled to unity

(the extension is of the Leibniz type).

Thus, if one has a Leibniz extension of size n − 1 then the only way to

nontrivially extend it is to make it the Leibniz extension of size n. But since the

Leibniz extension is the only nontrivial extension of order 2 (see Section 4.6.2), we

have shown the uniqueness of the maximal extension, up to a change of coordinates.



Chapter 5

Casimir Invariants for Extensions

In this chapter we will use the bracket extensions of Chapter 4 to make Lie–Poisson

brackets, following the prescription of Chapter 2. In Section 5.1 we write down the

general form of the Casimir condition (the condition under which a functional is a

Casimir invariant) for a general class of inner brackets. Then in Section 5.2 we see how

the Casimirs separate for a direct sum of algebras, the case discussed in Section 4.1.

Section 5.3 discusses the particular properties of Casimirs of solvable extensions. In

Section 5.4 we give a general solution to the Casimir problem and introduce the

concept of coextension. Finally, in Section 5.5 we work out the Casimir invariants

for some specific examples, including CRMHD and the Leibniz extension.

5.1 Casimir Condition

A generalized Casimir invariant (or Casimir for short) is a function C : g∗ → R for

which

{F , C} ≡ 0,

for all F : g∗ → R. Using (2.1) and (2.5), we can write this as

〈
ξ ,

[
δF

δξ
,
δC

δξ

]〉
= −

〈[
δC

δξ
, ξ

]†
,
δF

δξ

〉
.

Since this vanishes for all F we conclude

[
δC

δξ
, ξ

]†
= 0. (5.1)
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To figure out the coadjoint bracket corresponding to (2.19), we write

〈 ξ , [α , β ] 〉 =
〈
ξλ , Wλ

µν [αµ , βν ]
〉
,

which after using the coadjoint bracket in g becomes

〈
[ β , ξ ]† , α

〉
=

〈
Wλ

µν
[
βν , ξ

λ
]†
, αµ

〉

so that

[β , ξ ]† ν =Wλ
µν
[
βµ , ξ

λ
]†
. (5.2)

We can now write the Casimir condition (5.1) for the bracket extension as

Wλ
µν

[
δC

δξµ
, ξλ

]†
= 0, ν = 0, . . . , n. (5.3)

We now specialize the bracket to the case of most interested to us, where

the inner bracket is of canonical form (2.11). (We will touch briefly on the finite-

dimensional case in Section 5.1.1, but the remainder of the thesis will deal with a

canonical inner bracket unless otherwise noted.) As we saw in Chapter 2, this is

the bracket for 2-D fluid flows. Further, we assume that the form of the Casimir

invariants is

C[ξ] =

∫

Ω
C(ξ(x)) d2x, (5.4)

and thus, since C does not contain derivatives of ξ, functional derivatives of C can

be written as ordinary partial derivatives of C. We can then rewrite (5.3) as

Wλ
µν ∂2C
∂ξµ∂ξσ

[
ξσ , ξλ

]
= 0, ν = 0, . . . , n. (5.5)

In the canonical case where the inner bracket is like (2.11) the
[
ξσ , ξλ

]
are indepen-

dent and antisymmetric in λ and σ. Thus a necessary and sufficient condition for

the Casimir condition to be satisfied is

Wλ
µν ∂2C
∂ξµ∂ξσ

=Wσ
µν ∂2C
∂ξµ∂ξλ

, (5.6)
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for λ, σ, ν = 0, . . . , n. Sometimes we shall abbreviate this as

Wλ
µνC,µσ =Wσ

µνC,µλ , (5.7)

that is, any subscript µ on C following a comma indicates differentiation with respect

to ξµ. Equation (5.7) is trivially satisfied when C is a linear function of the ξ’s. That

solution usually follows from special cases of more general solutions, and we shall

only mention it in Section 5.4.2 where it is the only solution.

An important result is immediate from (5.7) for a semidirect extension.

Whenever the extension is semidirect we shall label the variables ξ0, ξ1, . . . , ξn, be-

cause the subset ξ1, . . . , ξn then forms a solvable subalgebra (see Section 4.4 for

terminology). For a semidirect extension, W (0) is the identity matrix, and thus (5.7)

gives

δλ
µC,µσ = δσ

µC,µλ ,

C,λσ = C,σλ ,

which is satisfied because we can interchange the order of differentiation. Hence,

ν = 0 does not lead to any conditions on the Casimir. However, the variables µ, λ, σ

still take values from 0 to n in (5.7).

5.1.1 Finite-dimensional Casimirs

For completeness, we briefly outline the derivation of condition (5.7) for a finite-

dimensional algebra, though we shall be concerned with the canonical inner bracket

for the remainder of the thesis. The Lie–Poisson bracket can be written

{f , g} =Wλ
µν ckij ξ

λ
k

∂f

∂ξµi

∂g

∂ξνj
, (5.8)

where the ckij are the structure constants of the algebra g. The roman indices denote

the components of each ξµ, in the same manner as the rigid body example of Sec-

tion 2.2.1, and f and g are ordinary functions of the ξµi . The Casimir condition (5.3)
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is thus

Wλ
µν ckij

∂C

∂ξµi
ξλk = 0, (5.9)

where both ν and j are free indices. From the structure constants we can construct

the Cartan–Killing form [29, 44],

Kij := ctis c
s
jt. (5.10)

The Cartan–Killing form is symmetric, and is nondegenerate for a semisimple alge-

bra. We assume this is the case for g, and denote the inverse of Kij by Kij.

For definiteness we take a Casimir of the form

C = 1
2 K

ij Cµν ξµi ξνj , (5.11)

where Cµν is a symmetric tensor. Inserting this into (5.9), we get

Wλ
µν ckij K

is Cµσ ξσs ξλk = 0. (5.12)

The symbol cskj := Ksi ckij can be shown to be antisymmetric in its upper indices. (We

use the Cartan–Killing form as a metric to raise and lower indices.) We can then

define the bracket [ , ]∗ : g∗ × g∗ → g∗ by

[ ξ , η ]∗k := cijk ξi ηj , (5.13)

which is a Lie bracket on g∗ induced by the Cartan–Killing form K. The Casimir

condition (5.12) can be rewritten neatly in terms of the bracket [ , ]∗ as

Wλ
µν Cµσ

[
ξσ , ξλ

]∗
= 0. (5.14)

This should be compared with condition (5.5), for the infinite-dimensional case,

where the bracket [ , ]∗ is obtained from the identification of g and g∗. The Casimir (5.11)

is thus the finite-dimensional analogue of (5.4). Since condition (5.12) has to be true

for any value of the ξ, it follows that we must have

Wλ
µν Cµσ =Wσ

µν Cµλ, (5.15)
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the same condition as (5.7). We conclude that, even thought we shall be concerned

with the canonical bracket case, many of the subsequent results of this chapter apply

to finite-dimensional brackets.

5.2 Direct Sum

For the direct sum we found in Section 4.1 that if we look at the 3-tensorW as a cube,

then it “blocks out” into smaller cubes, or subblocks, along its main diagonal, each

subblock representing a subalgebra. We denote each subblock of Wλ
µν by Wiλ

µν ,

i = 1, . . . , r, where r is the number of subblocks. We can rewrite (2.1) as

{A ,B} =
r∑

i=1

〈
ξλi ,Wiλ

µν

[
δA

δξµi
,
δB

δξνi

]〉

=:
r∑

i=1

{A ,B}i ,

where i labels the different subblocks and the greek indices run over the size of the ith

subblock. Each of the subbrackets { , }i depends on different fields. In particular, if

the functional C is a Casimir, then, for any functional F

{F ,C} =
r∑

i=1

{F ,C}i = 0 =⇒ {F ,C}i = 0, i = 1, . . . , r .

The solution for this is

C[ξ] = C1[ξ1] + · · · +Cr[ξr] , where {F ,Ci}i = 0, i = 1, . . . , r ,

that is, the Casimir is just the sum of the Casimir for each subbracket. Hence, the

question of finding the Casimirs can be treated separately for each component of the

direct sum. We thus assume we are working on a single degenerate subblock, as we

did for the classification in Chapter 4, and henceforth we drop the subscript i.

There is a complication when a single (degenerate) subblock has more that

one simultaneous eigenvector. By this we mean k vectors u(a), a = 1, . . . , k, such

that

Wλ
µ(ν) u(a)µ = Λ(ν) u

(a)
λ .
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Note that lower-triangular matrices always have at least the eigenvector given by uµ = δµ
n.

Let η(a) := u
(a)
ρ ξρ, and consider a function C(η(1), . . . , η(k)). Then

Wλ
µ(ν) ∂2C

∂ξµ∂ξσ
=Wλ

µ(ν)
k∑

a,b=1

u(a)µ u(b)σ

∂2C
∂η(a)∂η(b)

,

= Λ(ν)
k∑

a,b=1

u
(a)
λ u(b)σ

∂2C
∂η(a)∂η(b)

.

Because the eigenvalue Λ(ν) does not depend on a (the block was assumed to have

degenerate eigenvalues), the above expression is symmetric in λ and σ. Hence, the

Casimir condition (5.6) is satisfied.

The reason this is introduced here is that if a degenerate block splits into

a direct sum, then it will have several simultaneous eigenvectors. The Casimir in-

variants C(a)(η(a)) and C(b)(η(b)) corresponding to each eigenvector, instead of adding

as C(a)(η(a)) + C(b)(η(b)), will combine into one function to give C(η(a), η(b)), a more

general functional dependence. However, these situations with more than one eigen-

vector are not limited to direct sums. For instance, they occur in semidirect sums.

In Section 5.6 we will see examples of both cases.

5.3 Local Casimirs for Solvable Extensions

In the solvable case, when all theW (µ)’s are lower-triangular with vanishing eigenval-

ues, a special situation occurs. If we consider the Casimir condition (5.5), we notice

that derivatives with respect to ξn do not occur at all, since W (n) = 0. Hence, the

functional

C[ξ] =

∫

Ω
ξn(x′) δ(x − x′) d2x′ = ξn(x)

is conserved. The variable ξn(x) is locally conserved. It cannot have any dynamics

associated with it. This holds true for any other simultaneous null eigenvectors

the extension happens to have, but for the solvable case ξn is always such a vector

(provided the matrices have been put in lower-triangular form, of course).
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Hence, there are at most n − 1 dynamical variables in an order n solvable

extension. An interesting special case occurs when the only nonvanishing W(µ) is

for µ = n. Then the Lie–Poisson bracket is

{F ,G} =

n−1∑

µ,ν=1

Wn
µν

∫

Ω
ξn(x)

[
δF

δξµ(x)
,

δG

δξν(x)

]
d2x,

where ξn(x) is some function of our choosing. This bracket is not what we would

normally call Lie–Poisson because ξn(x) is not dynamical. It gives equations of

motion of the form

ξ̇
ν
=Wn

νµ

[
δH

δξµ
, ξn

]
,

which can be used to model, for example, advection of scalars in a specified flow given

by ξn(x). This bracket occurs naturally when a Lie–Poisson bracket is linearized [58,

69].

5.4 Solution of the Casimir Problem

We now proceed to find the solution to (5.5). We assume that all the W (µ), µ =

0, . . . , n, are in lower-triangular form, and that the matrixW (0) is the identity matrix

(which we see saw can always be done). Though this is the semidirect form of the

extension, we will see that we can also recover the Casimir invariants of the solvable

part. We assume ν > 0 in (5.5), since ν = 0 does not lead to a condition on the

Casimir (Section 5.1). ThereforeWλ
nν = 0. Thus, we separate the Casimir condition

into a part involving indices ranging from 0, . . . , n−1 and a part that involves only n.

The condition

n∑

µ,σ,λ=0

Wλ
µνC,µσ

[
ξλ , ξσ

]
= 0, ν > 0,

becomes

n∑

λ=0




n−1∑

µ,σ=0

Wλ
µνC,µσ

[
ξλ , ξσ

]
+

n−1∑

µ=0

Wλ
µνC,µn

[
ξλ , ξn

]

 = 0,
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where we have used Wλ
nν = 0 to limit the sum on µ. Separating the sum in λ,

n−1∑

λ=0




n−1∑

µ,σ=0

Wλ
µνC,µσ

[
ξλ , ξσ

]
+

n−1∑

µ=0

Wλ
µνC,µn

[
ξλ , ξn

]



+

n−1∑

µ,σ=0

Wn
µνC,µσ [ ξn , ξσ ] +

n−1∑

µ=0

Wn
µνC,µn [ ξn , ξn ] = 0.

The last sum vanishes because [ ξn , ξn ] = 0. Now we separate the condition into

semisimple and solvable parts,

n−1∑

µ=1




n−1∑

λ,σ=0

Wλ
µνC,µσ

[
ξλ , ξσ

]
−

n−1∑

σ=0

Wσ
µνC,µn [ ξn , ξσ ]

+

n−1∑

σ=0

Wn
µνC,µσ [ ξn , ξσ ]


+

n−1∑

λ,σ=0

Wλ
0νC,0σ

[
ξλ , ξσ

]

−
n−1∑

σ=0

Wσ
0νC,0n [ ξn , ξσ ] +

n−1∑

σ=0

Wn
0νC,0σ [ ξn , ξσ ] = 0.

Using Wσ
0ν = δσ

ν , we can separate the conditions into a part for ν = n and one

for 0 < ν < n. For ν = n, the only term that survives is the last sum

n−1∑

σ=0

C,0σ [ ξn , ξσ ] = 0.

Since the commutators are independent, we have the conditions,

C,0σ = 0, σ = 0, . . . , n− 1. (5.16)

and for 0 < ν < n,

n−1∑

µ=1




n−1∑

λ,σ=1

Wλ
µνC,µσ

[
ξλ , ξσ

]
−

n−1∑

σ=1

Wσ
µνC,µn [ ξn , ξσ ]

+

n−1∑

σ=1

Wn
µνC,µσ [ ξn , ξσ ]


− C,0n [ ξn , ξν ] = 0,

where we have used (5.16). Using independence of the inner brackets gives

W̃λ
µνC,µσ = W̃σ

µνC,µλ, (5.17)

gνµC,µσ = W̃σ
νµC,µn + δνσ C,0n, (5.18)
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for 0 < σ, λ, ν, µ < n. From now on in this section repeated indices are summed, and

all greek indices run from 1 to n− 1 unless otherwise noted. We have written a tilde

over the W ’s to stress the fact that the indices run from 1 to n − 1, so that the W̃

represent a solvable order (n − 1) subextension of W . This subextension does not

include W(n). We have also made the definition

gµν :=Wn
µν . (5.19)

Equation (5.17) is a Casimir condition: it says that C is also a Casimir of W̃ . We

now proceed to solve (5.18) for the case where g is nonsingular. In Section 5.4.2

we will solve the singular g case. We will see that in both cases (5.17) follows from

(5.18).

5.4.1 Nonsingular g

The simplest case occurs when g has an inverse, which we will call ḡµν . Then

Eq. (5.18) has solution

C,τσ = Aµ
τσ C,µn + ḡτσ C,0n , (5.20)

where

Aµ
τσ := ḡτν W̃σ

νµ. (5.21)

We now verify that Aµ
τσ = Aµ

στ , as required by the symmetry of the left-hand side

of (5.20).

Aµ
τσ = ḡτν W̃κ

νµ δσ
κ

= ḡτν W̃κ
νµ gρκ ḡσρ

= ḡτν

( n∑

κ=1

W̃κ
νµWn

ρκ
)
ḡσρ,
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where we used the fact that Wn
ρn = 0 to extend the sum. Then we can use the

commutativity property (2.21) to interchange ρ and ν,

Aµ
τσ = ḡτν

( n∑

κ=1

W̃κ
ρµWn

νκ
)
ḡσρ

= ḡτν Wn
νκ ḡσρ W̃κ

ρµ

= δτ
κAµ

σκ

= Aµ
στ ,

which shows that A is symmetric in its lower indices.

In (5.20), it is clear that the nth variable is “special”; this suggests that we

try the following form for the Casimir:

C(ξ0, ξ1, . . . , ξn) =
∑

i≥0

D(i)(ξ0, ξ1, . . . , ξn−1) fi(ξ
n), (5.22)

where f is arbitrary and fi is the ith derivative of f with respect to its argument. One

immediate advantage of this form is that (5.17) follows from (5.18). Indeed, taking

a derivative of (5.18) with respect to ξλ, inserting (5.22), and equating derivatives

of f leads to

gνµ D(i)
,µσλ = W̃σ

νµD(i+1)
,µλ ,

where we have used (5.16). Since the left-hand side is symmetric in λ and σ then so

is the right-hand side, and (5.17) is satisfied.

Now, inserting the form of the Casimir (5.22) into the solution (5.20), we can

equate derivatives of f to obtain for τ, σ = 1, . . . , n− 1,

D(0)
,τσ = 0,

D(i)
,τσ = Aµ

τσ D(i−1)
,µ + ḡτσ D

(i−1)
,0 , i ≥ 1.

(5.23)

The first condition, together with (5.16), says that D(0) is linear in ξ0, . . . ξn−1. There

are no other conditions on D(0), so we can obtain n independent solutions by choosing

D(0)ν = ξν , ν = 0, . . . , n− 1. (5.24)
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The equation for D(1)ν is

D(1)ν
,τσ =

{
ḡτσ ν = 0,

Aν
τσ ν = 1, . . . , n− 1.

(5.25)

Thus D(1)ν is a quadratic polynomial (the arbitrary linear part does not yield an

independent Casimir, so we set it to zero). Note that D(1)ν does not depend on ξ0

since τ, σ = 1, . . . , n − 1. Hence, for i > 1 we can drop the D(i−1)
,0 term in (5.23).

Taking derivatives of (5.23), we obtain

D(i)ν
,τ1τ2...τ(i+1)

= Aµ1
τ1τ2 A

µ2
µ1τ3 · · ·A

µ(i−1)
µ(i−2)τi D(1)ν

,µ(i−1)τ(i+1)
. (5.26)

We know the series will terminate because the W̃ (µ), and hence the A(µ), are nilpo-

tent. The solution to (5.26) is

D(i)ν =
1

(i+ 1)!
D(i)ν

τ1τ2...τ(i+1)
ξτ1ξτ2 · · · ξτ(i+1) , i > 1, (5.27)

where the constants D are defined by

D(i)ν
τ1τ2...τ(i+1)

:= Aµ1
τ1τ2 A

µ2
µ1τ3 · · ·A

µ(i−1)
µ(i−2)τi D(1)ν

,µ(i−1)τ(i+1)
. (5.28)

In summary, the D(i)’s of (5.22) are given by (5.24), (5.25), and (5.27).

Because the left-hand side of (5.26) is symmetric in all its indices, we require

Aµ
τσ A

ν
µλ = Aµ

τλA
ν
µσ, i > 1. (5.29)

This is straightforward to show, using (2.21) and the symmetry of A:

Aµ
τσ A

ν
µλ = Aµ

στ A
ν
λµ

= (ḡσκ W̃τ
κµ) (ḡλρ W̃µ

ρν)

= ḡσκ ḡλρ W̃τ
κµ W̃µ

ρν

= ḡσκ ḡλρ W̃τ
ρµ W̃µ

κν

= Aµ
τλA

ν
µσ

If we compare this to (2.21), we see that A satisfies all the properties of an extension,

except with the dual indices. Thus we will call A the coextension of W̃ with respect
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to g. Essentially, g serves the role of a metric that allows us to raise and lower indices.

The formulation presented here is, however, not covariant. We have not been able to

find a covariant formulation of the coextension, which is especially problematic for

the singular g case (Section 5.4.2). Since the coextension depends strongly on the

lower-triangular form of the W (µ)’s, it may well be that a covariant formulation does

not exist.

For a solvable extension we simply restrict ν > 0 and the above treatment still

holds. We conclude that the Casimirs of the solvable part of a semidirect extension

are Casimirs of the full extension. We have also shown, for the case of nonsingular g,

that the number of independent Casimirs is equal to the order of the extension.

5.4.2 Singular g

In general, g is singular and thus has no inverse. However, it always has a (symmetric

and unique) pseudoinverse ḡµν such that

ḡµσ g
στ ḡτν = ḡµν , (5.30)

gµσ ḡστ g
τν = gµν . (5.31)

The pseudoinverse is also known as the strong generalized inverse or the Moore–

Penrose inverse [79]. It follows from (5.30) and (5.31) that the matrix operator

P ν
τ := gνκ ḡκτ

projects onto the range of g. The system (5.18) only has a solution if the following

solvability condition is satisfied:

P ν
τ (W̃σ

τµC,µn + δτ σ C,0n) = W̃σ
νµC,µn + δνσ C,0n; (5.32)

that is, the right-hand side of (5.18) must live in the range of g.

If C,0n 6= 0, the quantity W̃σ
νµ C,µn+δνσ C,0n has rank equal to n, because the

quantity W̃σ
νµ C,µn is lower-triangular (it is a linear combination of lower-triangular
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matrices). Thus, the projection operator must also have rank n. But then this

implies that g has rank n and so is nonsingular, which contradicts the hypothesis

of this section. Hence, C,0n = 0 for the singular g case, which together with (5.16)

means that a Casimir that depends on ξ0 can only be of the form C = f(ξ0). However,

since ξ0 is not an eigenvector of the W (µ)’s, the only possibility is C = ξ0, the trivial

linear case mentioned in Section 5.1.

The solvability condition (5.32) can thus be rewritten as

(P ν
τ W̃σ

τµ − W̃σ
νµ) C,µn = 0. (5.33)

An obvious choice would be to require P ν
τ W̃σ

τµ = W̃σ
νµ, but this is too strong. We

will derive a weaker requirement shortly.

By an argument similar to that of Section 5.4.1, we now assume C is of the

form

C(ξ1, . . . , ξn) =
∑

i≥0

D(i)(ξ1, . . . , ξn−1) fi(ξ
n), (5.34)

where again fi is the ith derivative of f with respect to its argument. As in Sec-

tion 5.4.1, we only need to show (5.18), and (5.17) will follow. The number of

independent solutions of (5.18) is equal of the rank of g. The choice

D(0)ν = P ν
ρ ξ

ρ, ν = 1, . . . , n− 1, (5.35)

provides the right number of solutions because the rank of P is equal to the rank

of g. It also properly specializes to (5.24) when g is nonsingular, for then P ν
ρ = δ νρ.

The solvability condition (5.33) with this form for the Casimir becomes

(P ν
τ W̃σ

τµ − W̃σ
νµ)D(i)ν

,µ = 0, i ≥ 0. (5.36)

For i = 0 the condition can be shown to simplify to

P ν
τ W̃σ

τµ = W̃σ
ντ Pµ

τ ,
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or to the equivalent matrix form

P W̃ (σ) = W̃ (σ) P, (5.37)

since P is symmetric [79].

Equation (5.18) becomes

gκµD(0)ν
,µσ = 0,

gκµD(i)ν
,µσ = W̃σ

κµD(i−1)ν
,µ , i > 0.

If (5.33) is satisfied, we know this has a solution given by

D(i)ν
,λσ = ḡλρ W̃σ

ρµD(i−1)ν
,µ +

(
δλ

µ − ḡλρ g
ρµ
)
E(i−1)ν
µσ , i > 0,

where E is arbitrary, and (δλ
µ − ḡλρ g

ρµ) projects onto the null space of g. The left-

hand side is symmetric in λ and σ, but not the right-hand side. We can symmetrize

the right-hand side by an appropriate choice of the null eigenvector,

E(i)ν
λσ := ḡσρ W̃λ

ρµD(i)ν
,µ , i ≥ 0,

in which case

D(i)ν
,λσ = Aµ

λσ D(i−1)ν
,µ , i > 0,

where

Aν
λσ := ḡσρ W̃λ

ρν + ḡλρ W̃σ
ρν − ḡλρ ḡσκ g

ρµ W̃µ
κν , (5.38)

which is symmetric in λ and σ. Equation (5.38) also reduces to (5.21) when g is

nonsingular, for then the null eigenvector vanishes. The full solution is thus given in

the same manner as (5.26) by

D(i)ν =
1

(i+ 1)!
D(i)ν

τ1τ2...τ(i+1)
ξτ1ξτ2 · · · ξτ(i+1) , i > 0, (5.39)

where the constants D are defined by

D(i)ν
τ1τ2...τ(i+1)

:= Aµ1
τ1τ2 A

µ2
µ1τ3 · · ·A

µ(i−1)
µ(i−2)τi A

µi
µ(i−1)τ(i+1)

P ν
µi
, (5.40)
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and D(0) is given by (5.35).

The A’s must still satisfy the coextension condition (5.29). Unlike the non-

singular case this condition does not follow directly and is an extra requirement in

addition to the solvability condition (5.36). Note that only the i = 0 case, Eq. (5.37),

needs to be satisfied, for then (5.36) follows. Both these conditions are coordinate-

dependent, and this is a drawback. Nevertheless, we have found in obtaining the

Casimir invariants for the low-order brackets that if these conditions are not satis-

fied, then the extension is a direct sum and the Casimirs can be found by the method

of Section 5.2. However, this has not been proved rigorously.

5.5 Examples

We now illustrate the methods developed for finding Casimirs with a few examples.

First we treat our prototypical case of CRMHD, and give a physical interpretation of

invariants. Then, we derive the Casimir invariants for Leibniz extensions of arbitrary

order. Finally, we give an example involving a singular g.

5.5.1 Compressible Reduced MHD

The W tensors representing the bracket for CRMHD (see Section 2.2.4) were given

in Section 2.3.2. We have n = 3, so from (5.19) we get

g =

(
0 −βe

−βe 0

)
, ḡ = g−1 =

(
0 −βe−1

−βe−1 0

)
. (5.41)

In this case, the coextension is trivial: all three matrices A(ν) defined by (5.21)

vanish. Using (5.22) and (5.24), with ν = 1 and 2, the Casimirs for the solvable part

are

C1 = ξ1 g(ξ3) = v g(ψ), C2 = ξ2 h(ξ3) = p h(ψ),

and the Casimir associated with the eigenvector ξ3 is

C3 = k(ξ3) = k(ψ).
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Since g is nonsingular we also get another Casimir from the semidirect sum part,

C0 = ξ0 f(ξ3)− 1

βe
ξ1 ξ2 f ′(ξ3) = ω f(ψ)− 1

βe
p v f ′(ψ).

The physical interpretation of the invariant C3 is given in Morrison [68] and

Thiffeault and Morrison [90]. This invariant implies the preservation of contours

of ψ, so that the value ψ0 on a contour labels that contour for all times. This is a

consequence of the lack of dissipation and the divergence-free nature of the velocity.

Substituting C3(ψ) = ψk we also see that all the moments of the magnetic flux are

conserved. By choosing C3(ψ) = Θ(ψ(x) − ψ0), a heavyside function, and inserting

into (5.4), it follows that the area inside of any ψ-contour is conserved.

To understand the Casimirs C1 and C2, we also let g(ψ) = Θ(ψ − ψ0) in C1.

In this case we have

C1[v ;ψ] =

∫

Ω
v g(ψ) d2x =

∫

Ψ0

v(x) d2x,

where Ψ0 represents the (not necessarily connected) region of Ω enclosed by the

contour ψ = ψ0 and ∂Ψ0 is its boundary. By the interpretation we gave of C3, the

contour ∂Ψ0 moves with the fluid. So the total value of v inside of a ψ-contour is

conserved by the flow. The same is true of the pressure p. (See Thiffeault and Mor-

rison [90] for an interpretation of these invariants in terms of relabeling symmetries,

and a comparison with the rigid body.)

The total pressure and parallel velocity inside of any ψ-contour are preserved.

To understand C4, we use the fact that ω = ∇2φ and integrate by parts to obtain

C4[ω, v, p, ψ] = −
∫

Ω

(
∇φ · ∇ψ +

v p

βe

)
f ′(ψ) d2x.

The quantity in parentheses is thus invariant inside of any ψ-contour. It can be

shown that this is a remnant of the conservation by the full MHD model of the cross

helicity,

V =

∫

Ω
v ·Bd2x ,
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at second order in the inverse aspect ratio, while the conservation of C1[v ;ψ] is a

consequence of preservation of this quantity at first order. Here B is the magnetic

field. The quantities C3[ψ] and C2[p ;ψ] they are, respectively, the first and second

order remnants of the preservation of helicity,

W =

∫

Ω
A ·Bd2x,

where A is the magnetic vector potential.

5.5.2 Leibniz Extension

We first treat the nilpotent case. The Leibniz extension of Section 4.5 can be char-

acterized by

Wλ
µν = δλ

µ+ν , µ, ν, λ = 1, . . . , n, (4.19)

where the tensor δ is an ordinary Kronecker delta. Upon restricting the indices to

run from 1 to n− 1 (the tilde notation of Section 5.4), we have

gµν = W̃n
µν = δn

µ+ν , µ, ν = 1, . . . , n− 1.

The matrix g is nonsingular with inverse equal to itself: ḡµν = δ n
µ+ν . The coextension

of W̃ is thus

Aµ
τσ =

n−1∑

ν=1

ḡτν W̃σ
νµ =

n−1∑

ν=1

δnτ+ν δσ
ν+µ = δµ+n

τ+σ .

Equation (5.28) becomes

D(i)ν
τ1τ2...τ(i+1)

= Aµ1
τ1τ2 A

µ2
µ1τ3 · · ·A

µ(i−1)
µ(i−2)τi A

ν
µ(i−1)τ(i+1)

= δµ1+n
τ1+τ2 δ

µ2+n
µ1+τ3 · · · δ

µ(i−1)+n

µ(i−2)+τi δ
ν+n
µ(i−1)+τ(i+1)

= δν+in
τ1+τ2+···+τ(i+1)

, ν = 1, . . . , n− 1,

which, as required, this is symmetric under interchange of the τi. Using (5.22), (5.24),

(5.25), and (5.27) we obtain the n− 1 Casimir invariants

Cν(ξ1, . . . , ξn) =
∑

i≥0

1

(i+ 1)!
δν+in
τ1+τ2+···+τ(i+1)

ξτ1 · · · ξτ(i+1) f νi (ξ
n), (5.42)
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for ν = 1, . . . , n − 1. The superscript ν on f indicates that the arbitrary function is

different for each Casimir, and recall the subscript i denotes the ith derivative with

respect to ξn. The nth invariant is simply Cν(ξn) = fn(ξn), corresponding to the

null eigenvector in the system. Thus there are n independent Casimirs, as stated in

Section 5.4.1.

For the Leibniz semidirect sum case, since g is nonsingular, there will be an

extra Casimir given by (5.42) with ν = 0, and the τi sums run from 0 to n− 1. This

is the same form as the ν = 1 Casimir of the order (n+ 1) nilpotent extension.

For the ith term in (5.42), the maximal value of any τj is achieved when all

but one (say, τ1) of the τj are equal to n− 1, their maximum value. In this case we

have

τ1 + τ2 + · · · + τi+1 = τ1 + i(n− 1) = ν + in,

so that τ1 = i+ ν. Hence, the ith term depends only on
(
ξν+i, . . . , ξn

)
, and the νth

Casimir depends on (ξν , . . . , ξn). Also,

max (τ1 + · · ·+ τi+1) = (i+ 1)(n − 1) = ν + in,

which leads to max i = n− ν − 1. Thus the sum (5.42) terminates, as claimed in

Section 5.4.1. We rewrite (5.42) in the more complete form

Cν(ξν , . . . , ξn) =

n−ν∑

k=1

1

k!
δ
ν+(k−1)n
τ1+τ2+···+τk

ξτ1 · · · ξτk f νk−1(ξn),

for ν = 0, . . . , n. Table 5.1 gives the ν = 1 Casimirs up to order n = 5.

5.5.3 Singular g

Now consider the n = 4 extension from Section 4.6.4, Case 3c. We have

W̃ (2) =



1 0 0
0 0 0
0 0 0


 , g =



0 0 1
0 0 0
1 0 0


 ,



79

n Invariant

1 f(ξ1)

2 ξ1f(ξ2)

3 ξ1f(ξ3) + 1
2 (ξ

2)2f ′(ξ3)

4 ξ1f(ξ4) + ξ2ξ3f ′(ξ4) + 1
3!(ξ

3)3f ′′(ξ4)

5 ξ1f(ξ5) +
(
ξ2ξ4 + 1

2(ξ
3)2
)
f ′(ξ5) + 1

2ξ
3(ξ4)2f ′′(ξ5) + 1

4!(ξ
4)4f ′′′(ξ5)

Table 5.1: Casimir invariants for Leibniz extensions up to order n = 5 (ν = 1). The
primes denote derivatives.

with W̃ (1) = W̃ (3) = 0. The pseudoinverse of g is ḡ = g and the projection operator

is

P ν
τ := gνκ ḡκτ =



1 0 0
0 0 0
0 0 1


 .

The solvability condition (5.37) is obviously satisfied. We build the coextension given

by (5.38), which in matrix form is

A(ν) = W̃ (ν) ḡ + (W̃ (ν) ḡ)T − ḡ g W̃ (ν) ḡ,

to obtain

A(1) =



0 0 0
0 0 1
0 1 0


 , A(2) = A(3) = 0.

These are symmetric and obviously satisfy (5.29), so we have a good coextension.

Using (5.34), (5.35), (5.39), and (5.40) we can write, for ν = 1 and 3,

C1 = ξ1f(ξ4) + ξ2 ξ3f ′(ξ4),

C3 = ξ3g(ξ4).

This extension has two null eigenvectors, so from Section 5.2 we also have the

Casimir h(ξ2, ξ4). The functions f , g, and h are arbitrary, and the prime denotes

differentiation with respect to argument.
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5.6 Casimir Invariants for Low-order Extensions

Using the techniques developed so far, we now find the Casimir invariants for the

low-order extensions classified in Section 4.6. We first find the Casimir invariants

for the solvable extensions, since these are also invariants for the semidirect sum

case. Then, we obtain the extra Casimir invariants for the semidirect case, when

they exist.

5.6.1 Solvable Extensions

Now we look for the Casimirs of solvable extensions. As mentioned in Section 5.3, the

Casimirs associated with null eigenvectors (the only kind of eigenvector for solvable

extensions) are actually conserved locally. We shall still write them in the form C =

f(ξn), where C is as in (5.4), so they have the correct form as invariants for the

semidirect case of Section 5.6.2 (for which they are no longer locally conserved).

n=1

Since the bracket is Abelian, any function C = C(ξ1) is a Casimir.

n=2

For the Abelian case we have C = C(ξ1, ξ2). The only other case is the Leibniz

extension,

C(ξ1, ξ2) = ξ1f(ξ2) + g(ξ2).

n=3

As shown in Section 4.6.3, there are four cases. Case 1 is the Abelian case, for which

any function C = C(ξ1, ξ2, ξ3) is a Casimir. Case 2 is essentially the solvable part of

the CRMHD bracket, which we treated in Section 5.5.1. Case 3 is a direct sum of

the Leibniz extension for n = 2, which has the bracket

[ (α1, α2) , (β1, β2) ] = (0, [α1 , β1 ]),



81

Case Invariant

1 C(ξ1, ξ2, ξ3)

2 ξ1f(ξ3) + ξ2g(ξ3) + h(ξ3)

3 ξ1f(ξ2) + g(ξ2, ξ3)

4 ξ1f(ξ3) + 1
2 (ξ

2)2f ′(ξ3) + ξ2g(ξ3) + h(ξ3)

Table 5.2: Casimir invariants for solvable extensions of order n = 3.

with the Abelian algebra [α3 , β3 ] = 0. Hence, the Casimir invariant is the same

as for the n = 2 Leibniz extension with the extra ξ3 dependence of the arbitrary

function (see Section 5.2). Finally, Case 4 is the Leibniz Casimir. These results are

summarized in Table 5.2.

Cases 1 and 3 are trivial extensions, that is, the cocycle appended to the

n = 2 case vanishes. The procedure of then adding ξn dependence to the arbitrary

function works in general.

n=4

As shown in Section 4.6.4, there are nine cases to consider. We shall proceed out of

order, to group together similar Casimir invariants.

Cases 1a, 2, 3a, and 4a are trivial extensions, and as mentioned in Sec-

tion 5.6.1 they involve only addition of ξ4 dependence to their n = 3 equivalents.

Case 3b is a direct sum of two n = 2 Leibniz extensions, so the Casimirs add.

Case 3c is the semidirect sum of the n = 2 Leibniz extension with an Abelian

algebra defined by [ (α3, α4) , (β3, β4) ] = (0, 0), with action given by

ρ(α1,α2)(β3, β4) = (0, [α1 , β3 ]).

The Casimir invariants for this extension were derived in Section 5.5.3.
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Case Invariant

1a C(ξ1, ξ2, ξ3, ξ4)

1b ξ1f(ξ4) + ξ2g(ξ4) + ξ3h(ξ4) + k(ξ4)

2 ξ1f(ξ3) + ξ2g(ξ3) + h(ξ3, ξ4)

3a ξ1f(ξ2) + g(ξ2, ξ3, ξ4)

3b ξ1f(ξ2) + ξ3g(ξ4) + h(ξ2, ξ4)

3c ξ1f(ξ4) + ξ2ξ3f ′(ξ4) + ξ3g(ξ4) + h(ξ2, ξ4)

3d ξ1f(ξ4) + 1
2(ξ

2)2f ′(ξ4) + ξ3g(ξ4) + ξ2h(ξ4) + k(ξ4)

4a ξ1f(ξ3) + 1
2(ξ

2)2f ′(ξ3) + ξ2g(ξ3) + h(ξ3, ξ4)

4b ξ1f(ξ4) + ξ2ξ3f ′(ξ4) + 1
3!(ξ

3)3f ′′(ξ4)

+ ξ2g(ξ4) + 1
2 (ξ

3)2g′(ξ4) + ξ3h(ξ4) + k(ξ4)

Table 5.3: Casimir invariants for solvable extensions of order n = 4.

Case 3d has a nonsingular g, so the techniques of Section 5.4.1 can be applied

directly.

Finally, Case 4b is the n = 4 Leibniz extension, the Casimir invariants of

which were derived in Section 5.5.2. The invariants are all summarized in Table 5.3.

5.6.2 Semidirect Extensions

Now that we have derived the Casimir invariants for solvable extensions, we look at

extensions involving the semidirect sum of an algebra with these solvable extensions.

We label the new variable (the one which acts on the solvable part) by ξ0. In

Section 5.4.1 we showed that the Casimirs of the solvable part were also Casimirs

of the full extension. We also concluded that a necessary condition for obtaining a

new Casimir (other than the linear case C(ξ0) = ξ0) from the semidirect sum was

that detW(n) 6= 0. We go through the solvable cases and determine the Casimirs
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associated with the semidirect extension, if any exist.

n=1

There is only one solvable extension, so upon appending a semidirect part we have

W(0) =

(
1 0
0 0

)
, W(1) =

(
0 1
1 0

)
.

Since detW(1) 6= 0, we expect another Casimir. In fact this extension is of the

semidirect Leibniz type and has the same Casimir form as the n = 2 solvable Leibniz

(Section 5.5.2) extension. Thus, the new Casimir is just ξ0f(ξ1).

n=2

Of the two possible extensions only the Leibniz one satisfies detW(2) 6= 0. The

Casimir is thus

Csd = ξ0f(ξ2) +
1

2
(ξ1)2f ′(ξ2).

n=3

Cases 2 and 4 have a nonsingular W(3). The Casimir for Case 2 is

Csd = ξ0f(ξ3) + ξ1ξ2f ′(ξ3),

and for Case 4 it is of the Leibniz form

Csd = ξ0f(ξ3) + ξ1ξ2f ′(ξ3) +
1

3!
(ξ2)3f ′′(ξ3).

n=4

Cases 1b, 3d, and 4b have a nonsingular W(4). The Casimirs are shown in Table 5.4.
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Case Invariant

1b ξ0f(ξ4) +
(
ξ1ξ3 + 1

2 (ξ
2)2
)
f ′(ξ4)

3d ξ0f(ξ4) +
(
ξ1ξ2 + 1

2 (ξ
3)2
)
f ′(ξ4) + 1

3!(ξ
2)3f ′′(ξ4)

4b ξ0f(ξ4) +
(
ξ1ξ3 + 1

2 (ξ
2)2
)
f ′(ξ4) + 1

2ξ
2(ξ3)2f ′′(ξ4) + 1

4!(ξ
3)4f ′′′(ξ4)

Table 5.4: Casimir invariants for semidirect extensions of order n = 5. These exten-
sions also possess the corresponding Casimir invariants in Table 5.3.



Chapter 6

Stability

In this chapter we discuss the general problem of stability of steady solutions of Lie–

Poisson systems, for different classes of Hamiltonians. We first define, in Section 6.1,

what we mean by a steady solution being stable. We review the different types

of stability and discuss how they are related. In Section 6.2 we discuss the energy-

Casimir method for finding sufficient conditions for stability, and demonstrate its use

by a few examples. The energy-Casimir method for fluids uses an infinite-dimensional

analogue of Lagrange multipliers to find constrained extrema of the Hamiltonian

(extrema of the free energy).

In Section 6.3 we turn to a different method of establishing stability, that of

dynamical accessibility. The technique involves restricting the variations of the en-

ergy to lie on the symplectic leaves of the system. It is more general that the energy-

Casimir method since it yields all equilibria of the equations of motion. The dynam-

ical accessibility method is closely related to the energy-Casimir method, which we

will see is reflected in the fact that the concept of coextension of Chapter 5 is used

in the solution.

For the different types of extensions, we derive as general a result as possible,

and then specialize to particular forms of the bracket and Hamiltonian, until usable

stability conditions are obtained. We will treat CRMHD in detail, using both the

energy-Casimir and dynamical accessibility methods.

85
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6.1 The Many Faces of Stability

A somewhat universally accepted definition of stability is as follows: Let ξe be an

equilibrium solution of the (not necessarily Hamiltonian) system

ξ̇ = F(ξ), (6.1)

i.e., F(ξe) = 0. The system is to said to be nonlinearly stable, or simply stable, if for

every neighborhood U of ξe there is a neighborhood V of ξe such that trajectories ξ(t)

initially in V never leave U (in finite time).

In terms of a norm ‖·‖, this definition is equivalent to demanding that for

every ǫ > 0, there is a δ > 0 such that if ‖ξ(0)− ξe‖ < δ, then ‖ξ(t)− ξe‖ < ǫ for

all t > 0.

We also consider the linearized system,

δξ̇ =

〈
δξ ,

δF
δξ

〉∣∣∣∣
ξ=ξe

, (6.2)

where δξ is an infinitesimal perturbation. From this we define the formally self-

adjoint linear operator F by

〈δη ,F δζ〉 :=
〈
δη ,

δ2F
δηδζ

δζ

〉∣∣∣∣
ξ=ξe

. (6.3)

From this definition we distinguish four basic types of stability:

• Spectral stability. The linearized system (6.2) is spectrally stable if the spectrum

of the linear operator F defined by (6.3) has no eigenvalue with a positive

real part. A special case is neutral stability, for which the spectrum is purely

imaginary. Hamiltonian systems are neutrally stable if they are spectrally

stable.

• Linear stability. If the linearized system (6.2) is stable according to the above

definition, then the system (6.1) is said to be linearly stable (or linearized

stable). This implies spectral stability.
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Spectral Stability

KS

Linearized Stabilityks

KS

Nonlinear Stability ks
finite-
dim

Formal Stability

Figure 6.1: Relationship between the different types of stability.

• Formal stability (Dirichlet criterion). The equilibrium is formally stable if we

can find a conserved quantity whose first variation vanishes when evaluated at

the equilibrium, and whose second variation is positive (or negative) definite

when evaluated at the same equilibrium. In finite dimensions, this implies

nonlinear stability. When the system is Hamiltonian and separable (i.e., it can

be written as a sum of kinetic and potential energy), this criterion becomes

Lagrange’s theorem.

• Nonlinear stability. This is just the nonlinear stability of the full system as

defined above. Note that this only implies that there exists a sufficiently

small neighborhood V such that trajectories never leave U . It does not im-

ply absence of finite-amplitude instability, called nonlinear instability by some

authors, which says that the system is unstable for large enough perturbations.

Figure 6.1 summarizes the relationships between the various types of stabil-

ity. See Siegel and Moser [85], Holm et al. [38], or Morrison [69] for examples and

counterexamples of these relationships.

We have stated that formal stability implies nonlinear stability for finite-

dimensional systems. Before discussing this point, we prove a stability theorem for
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finite-dimensional systems that has its origins with Lagrange. It was proved in a less

general form than presented here by Dirichlet [53], and was subsequently generalized

by Liapunov.

The theorem is as follows. If the system (6.1), in finite dimensions, has a

constant of the motion K that has a relative extremum in the strong sense [27, p. 13]

at the equilibrium point ξ = ξe, then the equilibrium solution is stable.1

We follow the proof of Siegel and Moser [85, p. 208]. See also Hirsch and

Smale for a thorough treatment [37]. Since K can be replaced by −K, we can assume

it has a minimum without loss of generality. By the strong minimum hypothesis,

there exists a ̺ > 0 such that

K(ξe) < K(ξ) whenever ‖ξ − ξe‖ < ̺, (6.4)

for some norm ‖·‖. Now, let

Mε := {ξ | ‖ξ − ξe‖ < ε} , 0 < ε < ̺,

be a ball of radius ε around the equilibrium point. Let µ(ε) be the minimum value

of K on the surface of the ball Mε,

µ(ε) := min
‖ξ−ξe‖=ε

K(ξ).

Using the strong minimum hypothesis, (6.4), we have

K(ξ) < µ(ε), for ξ ∈ Mε.

Now consider a trajectory with initial conditions ξ(0) in Mε. Then

K(ξ(t)) = K(ξ(0)) < µ(ε).

But by continuity this implies ξ(t) ∈ Mε since otherwise we would have had K(ξ(t)) ≥ µ(ε)

at some point in the trajectory. Thus, ξ(t) lies in Mε whenever ξ(0) does. We then

1In finite dimensions a strong minimum is just a minimum with respect to the usual Euclidean
norm, ‖ξ‖ = |ξ|.
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have stability, because Mε is a neighborhood of ξe and we can make ε as small as we

want.

In finite dimensions, positive or negative definiteness of the second variation

of K is sufficient for the strong minimum requirement (6.4). In infinite dimensions this

is not the case [8,11,23,27,38,62,84]. Further convexity arguments must be made, as

done for several physical systems in Holm et al. [38]. Another crucial requirement,

which is immediate in finite dimensions, is that the invariant K be continuous in the

norm ‖·‖. In general an infinite-dimensional minimum will not necessarily satisfy

this condition [27,38].

Ball and Marsden [11] give an example from elasticity theory of a system that

is formally stable but is nonlinearly unstable. Finn and Sun [23] discuss additional

requirements for nonlinear stability of an ideal fluid in a gravitational field (for an

exponential atmosphere), which is formally stable. One does not know how strin-

gent these requirements are—they could be far from the actual instability threshold.

We take the viewpoint here that establishing definiteness of the second variation—

showing formal stability—is a good indicator of stability. Indeed, formal stability is

often used to mean stability, as is the case with δW stability criteria in MHD, which

are actually second-order variations of the potential energy. For the Grad–Shafranov

equilibria of reduced MHD (no flow), the sufficient conditions for formal stability are

the same as for nonlinear stability [38, pp. 41–43].

It will be the topic of future work to try and make these general stability

conditions more rigorous by making more stringent convexity arguments. Certainly

formal stability implies linearized stability, since the second variation of the constant

of motion provides a norm (conserved by the linearized dynamics) that can be used

to establish stability of the linearized system.

Finally, note that Dirichlet’s theorem does not imply that if F does not

have an extremum at ξe, then the system is unstable. It gives a sufficient, but not

necessary, condition for stability of an equilibrium.
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6.2 The Energy-Casimir Method

The energy-Casimir method has a long history which dates back to Fjortoft [24],

Newcomb [93], Kruskal and Oberman [49], Fowler [25], and Gardner [26], but is

usually called “Arnold’s method” or “Arnold’s theorem” [3–5,7,8]. We illustrate the

method for a Lie–Poisson system. The equations of motion for the field variables ξ

in terms of a given Hamiltonian H are

ξ̇ = −
[
δH

δξ
, ξ

]†
. (2.6)

This can be rewritten

ξ̇ = −
[
δH

δξ
+
δC

δξ
, ξ

]†
,

where C is any function of the Casimirs. It follows that if

δ(H + C)[ξe] =: δF [ξe] = 0,

then ξe is an equilibrium of the system. We call F the free energy. The free energy F

is a constant of the motion whose first variation vanishes at an equilibrium point.

Therefore, if we can show it also has a strong extremum at that point then we have

proved stability, by the theorem of Dirichlet. Showing that δ2F is definite (that is,

showing formal stability) is almost sufficient to show stability, in the sense discussed

at the end of Section 6.1.

We now apply the energy-Casimir method to compressible reduced MHD. We

will give more examples in Section 6.3 when we introduce the method of dynamical

accessibility, which is more general and includes the energy-Casimir result as a special

case.

6.2.1 CRMHD Stability

The free energy functional F is built from the Hamiltonian (2.15) and the Casimir

invariants found in Section 5.5.1,

F [ω, v, p, ψ] := H + C,
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where

C =
〈
f(ψ) + v g(ψ) + p h(ψ) +

(
ω k(ψ) − βe

−1 p v k′(ψ)
)〉

is a combination of the Casimirs of the system. We use the same angle brackets as

for the pairing, without the comma, to denote an integral over the fluid domain (we

assume that we have identified g and g∗).

Equilibrium Solutions

We seek equilibria of the system that extremize the free energy. The first variation

of F yields

δF =

〈
(−φ+ k(ψ)) δω +


v + g(ψ) − βe

−1 p k′(ψ)

 δv

+

βe−1(p− 2βe x) + h(ψ) − βe

−1 v k′(ψ)

 δp

+

−J + f ′(ψ) + v g′(ψ) + p h′(ψ) +

(
ω k′(ψ)− βe

−1 p v k′′(ψ)
) δψ

〉
.

An equilibrium solution (ωe, ve, pe, ψe) for which δF = 0 must therefore satisfy

φe = Φ(ψe), (6.5)

ve = βe
−1 peΦ

′(ψe)− g(ψe), (6.6)

pe = veΦ
′(ψe) + βe(2x− h(ψe)), (6.7)

Je = f ′(ψe) + ve g
′(ψe) + pe h

′(ψe) + ωeΦ
′(ψe)− βe

−1 pe veΦ
′′(ψe), (6.8)

where we have defined Φ(ψ) := k(ψ).

Since φe = Φ(ψe), we have ∇φe = Φ′(ψe)∇ψe. Hence, ve⊥ = Φ′(ψe)Be⊥, so

the perpendicular (poloidal) velocity and magnetic field are collinear at an equilib-

rium.

We can use (6.6) and (6.7) to solve for ve and pe,

(
ve

pe

)
=

( |Φ′(ψe)|2
βe

− 1

)−1( g(ψe) + (h(ψe)− 2x)Φ′(ψe)

g(ψe)Φ
′(ψe) + βe (h(ψe)− 2x)

)
, (6.9)
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except where |Φ′(ψe)|2 = βe. This singularity represents a resonance in the system,

about which we will say more later. Equation (6.9) implies

(
∇ve − 2Φ′(ψe)

(
1− βe

−1|Φ′(ψe)|2
)−1

x̂
)
×∇ψe = 0,

(
∇pe − 2βe

(
1− βe

−1 |Φ′(ψe)|2
)−1

x̂
)
×∇ψe = 0.

An important class of equilibria are given by

Φ(ψe) = c−1 ψe(x, y),

where c is a constant. We call those Alfvénic solutions. (The true Alfvén solutions are

the particular case with c = ±1.) We then have ωeΦ
′(ψe) = Je/c

2, and so from (6.8)
(
1− 1

c2

)
Je = f ′(ψe) + ve g

′(ψe) + pe h
′(ψe). (6.10)

Note that, because of (6.9), the right-hand side of (6.10) depends explicitly on x,

unless we have

g′(ψe) = −βe c h′(ψe), (6.11)

in which case (6.10) simplifies to
(
1− 1

c2

)
Je(ψe) = f ′(ψe)− g(ψe) g

′(ψe). (6.12)

Such an equation, with no explicit independence on x, has an analogue in low-beta

reduced MHD, but cannot occur for a system like high-beta reduced MHD [35, p. 59]

without a vanishing pressure gradient. Here, with CRMHD, we can eliminate the x

dependence because we can set up an equilibrium gradient in the parallel velocity

which cancels the pressure gradient.

If in (6.10) we let

f ′(ψe)− g(ψe) g
′(ψe) =

(
1− 1

c2

)
exp(−2ψe),

then we have the particular solution

ψe(x, y) = ln(a cosh y +
√
a2 − 1 cos x). (6.13)

This solution, the Kelvin–Stuart cat’s eye formula [15,22,82], is plotted in Figure 6.2.
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Figure 6.2: Contour plot of the magnetic flux ψe(x, y) for the cat’s eye solution (6.13),
with a = 1.5.

Formal Stability

The second variation of F is given by

δ2F =

〈
−δω (∇2)−1δω + |δv|2 + 1

βe
|δp|2 − δψ (∇2)−1δψ + 2k′(ψ) δω δψ

+

f ′′(ψ) + v g′′(ψ) + p h′′(ψ) + ω k′′(ψ) − βe

−1 p v k′′′(ψ)

 |δψ|2

+ 2

g′(ψ)− βe

−1 p k′′(ψ)

 δψ δv + 2


h′(ψ) − βe

−1 v k′′(ψ)

 δψ δp

− 2βe
−1 k′(ψ) δv δp

〉
.

We want to determine when this is non-negative. Using δω = ∇2δφ, we can write

〈
|∇δφ|2 + |∇δψ|2 + 2k′(ψ) (∇2δφ) δψ

〉

=
〈
|∇δφ|2 + |∇δψ|2 − 2∇(k′(ψ) δψ) · ∇δφ

〉

=
〈
|∇δφ−∇(k′(ψ) δψ)|2 − |∇(k′(ψ) δψ)|2 + |∇(δψ)|2

〉
,
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which, after expanding the |∇(k′(ψ) δψ)|2 term, becomes

〈
|∇δφ|2 + |∇δψ|2 + 2k′(ψ) (∇2δφ) δψ

〉
=

〈
|∇δφ−∇(k′(ψ) δψ)|2 + (1− |k′(ψ)|2)|∇δψ|2

+ k′(ψ)∇2k′(ψ) |δψ|2
〉
, (6.14)

so that the second variation, evaluated at the equilibrium solution (6.5)–(6.8), is now

δ2Fe =

〈
|∇δφ−∇(Φ′(ψe) δψ)|2 + (1− |Φ′(ψe)|2)|∇δψ|2 + |δv|2 + 1

βe
|δp|2

+ 2

g′(ψe)− βe

−1 peΦ
′′(ψe)


 δψ δv + 2


h′(ψe)− βe

−1 veΦ
′′(ψe)


 δψ δp

+Θ(x, y) |δψ|2 − 2βe
−1 Φ′(ψe) δv δp

〉
, (6.15)

where

Θ(x, y) := f ′′(ψe) + ve g
′′(ψe) + pe h

′′(ψe)

+ ωeΦ
′′(ψe)− βe

−1 pe veΦ
′′′(ψe) + Φ′(ψe)∇2Φ′(ψe).

For positive-definiteness of (6.15), we require

|Φ′(ψe)| ≤ 1. (6.16)

If we have equality in (6.16), then we obtain a family of marginally stable equilibria,

the Alfvén solutions.

Assuming (6.16) is satisfied, a sufficient condition for stability is to show that

the (δv, δp, δψ) part of the second variation is non-negative. We thus demand the

quadratic form represented by the symmetric matrix




1 −βe−1Φ′(ψe) g′(ψe)− βe
−1 peΦ

′′(ψe)

−βe−1Φ′(ψe) βe
−1 h′(ψe)− βe

−1 veΦ
′′(ψe)

g′(ψe)− βe
−1 peΦ

′′(ψe) h′(ψe)− βe
−1 veΦ

′′(ψe) Θ(x, y)




be non-negative. A necessary and sufficient condition for this is that the principal

minors of the matrix be non-negative. The principal minors are simply the deter-

minants of the submatrices of increasing size along the diagonal. Thus, the first two
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principal minors are

µ1 = |1| > 0,

µ2 =

∣∣∣∣
1 −βe−1Φ′(ψe)

−βe−1 Φ′(ψe) βe
−1

∣∣∣∣ = βe
−1

(
1− |Φ′(ψe)|2

βe

)
≥ 0,

and the third is just the determinant of the matrix,

µ3 = µ2

(
Θ(x, y)−

[
g′(ψe)− βe

−1 peΦ
′′(ψe)

]2)

−
[
h′(ψe) + βe

−1 g′(ψe)Φ
′(ψe)− βe

−1(ve + βe
−1 peΦ

′(ψe))
]2 ≥ 0.

Combining (6.16) with the requirement µ2 ≥ 0, we have

|Φ′(ψe)|2 ≤ min(1, βe). (6.17)

According to this condition, for βe < 1 CRMHD is less stable than the RMHD case.

This is a direct manifestation of the nontrivial cocycle in the bracket: there is a new

resonance, associated with the acoustic resonance, so-named because at that point

the flow velocity equals the ion-acoustic speed (proportional to 2Te). We will see in

Section 6.3.6 that new resonances are a generic feature of Lie–Poisson systems with

cocycles.

The condition that µ3 be non-negative is of a more complicated form. For the

Alfvénic case, with Φ(ψe) = c−1 ψe(x, y), and assuming condition (6.11), so that Je =

Je(ψe), the condition µ3 ≥ 0 simplifies to

µ2

(
1− 1

c2

)
Je
′(ψe) ≥ 0.

Since µ2 ≥ 0 and, by (6.17), 1/c2 ≤ min(1, βe), we can simply write

Je
′(ψe) ≥ 0. (6.18)

Hence, for βe ≥ 1, Alfvénic solutions have the same stability characteristics as for

RMHD.
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6.3 Dynamical Accessibility

We turn now to a different method of finding equilibria and ascertaining their sta-

bility. Finding the solutions for which the first variation of the free energy vanishes

yields some, but not all of the equilibria of the equations of motion. For example, this

method fails to detect the static equilibrium of the heavy top [69]. For the 2-D Euler

system, the equilibria it yields are those for which the streamfunction is a monotonic

function of the vorticity, but there are equilibria which do not have this form. This

is tied to the rank-changing of the cosymplectic form: there are equilibria that arise

because the bracket itself vanishes [69]. The method of dynamical accessibility was

used by Morrison and Pfirsch to examine the stability of the Vlasov–Maxwell sys-

tem [74, 75]. Isichenko [43] made use of a similar method to study hydrodynamic

stability, based on ideas of Arnold [6].

We first explain the method of dynamically accessible variations, and then

apply it to extensions. We derive general results for pure semidirect extensions and

extensions with a nonsingular g. For both cases, we examine several different types

of Hamiltonians.

6.3.1 The Method

Consider a perturbation defined as

δξda := {G , ξ} , (6.19)

with the perturbation given in terms of the generating function χ by

G := 〈ξ , χ〉 .

The χ are arbitrary “constant” functions (i.e., they do not depend on ξ, but do

depend on x). We call (6.19) a dynamically accessible perturbation. The first-order

variation of the Casimir invariant of the bracket is given by

δCda =

〈
δξda ,

δC

δξ

〉
=

〈
{G , ξ} , δC

δξ

〉
. (6.20)
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If we now assume that the bracket { , } is of the Lie–Poisson type (Eq. (2.1)), we

have

δCda =

〈
[χ , ξ ]† ,

δC

δξ

〉
=

〈
ξ ,

[
χ ,

δC

δξ

]〉
= {G , C} = 0.

Hence, to first order, Casimirs are unchanged by a dynamically accessible perturba-

tion. The first-order variation of the Hamiltonian is

δHda = δFda =

〈
[χ , ξ ]† ,

δH

δξ

〉
= −

〈[
δH

δξ
, ξ

]†
, χ

〉
.

The variation of the Hamiltonian and of the free energy are the same because they

differ only by Casimirs. If we look for equilibrium solutions by requiring that δHda =

0 for all χ, we obtain
[
δH

δξ
(ξe) , ξe

]†
= 0,

which is equivalent to looking for steady solutions of the equation of motion (2.6).

Because we want to establish formal stability, we have to take second-order

dynamically accessible variations that preserve the Casimirs. If we denote the second-

order part of the dynamically accessible variation by δ2ξda, and the first and second

order generating functions by χ(1) and χ(2), we have

δ2Cda =
1
2

〈
δξda ,

δ2C

δξ δξ
δξda

〉
+

〈
δ2ξda ,

δC

δξ

〉

= 1
2

〈{
G(1) , ξ

}
,
δ2C

δξ δξ

{
G(1) , ξ

}〉
+

〈
δ2ξda ,

δC

δξ

〉

= 1
2

〈{
G(1) , ξ

}
,
δ

δξ

〈{
G(1) , ξ

}
,
δC

δξ

〉
−
[
χ(1),

δC

δξ

]〉
+

〈
δ2ξda ,

δC

δξ

〉

= −1
2

〈[
χ(1) ,

{
G(1) , ξ

}]†
,
δC

δξ

〉
+

〈
δ2ξda ,

δC

δξ

〉

=

〈
δ2ξda − 1

2

{
G(1) ,

{
G(1) , ξ

}}
,
δC

δξ

〉
.

We made use of the fact that (6.20) vanishes identically. In order for δ2Cda to be

zero, we can set

δ2ξda =
{
G(2) , ξ

}
+ 1

2

{
G(1) ,

{
G(1) , ξ

}}

=
[
χ(2) , ξ

]†
+ 1

2

[
χ(1) ,

[
χ(1) , ξ

]† ]†
.

(6.21)
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The second-order dynamically accessible variation of H is

δ2Hda =
1
2

〈
δξda ,

δ2H

δξ δξ
δξda

〉
+

〈
δ2ξda ,

δH

δξ

〉

= 1
2

〈{
G(1) , ξ

}
,
δ2H

δξ δξ

{
G(1) , ξ

}〉

+

〈{
G(2) , ξ

}
+ 1

2

{
G(1) ,

{
G(1) , ξ

}}
,
δH

δξ

〉
,

which upon using (6.21) becomes

δ2Hda =
1
2

〈[
χ(1) , ξ

]†
,
δ2H

δξ δξ

[
χ(1) , ξ

]†〉

+

〈[
χ(2) , ξ

]†
+ 1

2

[
χ(1) ,

[
χ(1) , ξ

]† ]†
,
δH

δξ

〉

The piece involving χ(2) can be written as

〈[
χ(2) , ξ

]†
,
δH

δξ

〉
= −

〈[
δH

δξ
, ξ

]†
, χ(2)

〉
,

which vanishes when evaluated at an equilibrium of the equations of motion (6.3.1).

Hence, for purposes of testing stability we may neglect the second-order generating

function entirely. We therefore drop the superscripts on G and χ, and write

δ2Hda =
1
2

〈
[χ , ξ ]† ,

δ2H

δξ δξ
[χ , ξ ]†

〉
+ 1

2

〈[
χ , [χ , ξ ]†

]†
,
δH

δξ

〉

= 1
2

〈
[χ , ξ ]† ,

δ2H

δξ δξ
[χ , ξ ]† +

[
χ ,

δH

δξ

]〉 (6.22)

To more easily determine sufficient stability conditions, we want to write (6.22) as

a function of δξda. (Then (6.22) will be a quadratic form in δξda.) We now show

that this is always possible. This is a generalization of a proof by Arnold [5] for 2-D

Euler.

Assume that we have a dynamically accessible variation given in terms of a

second generating function χ′,

δ′ξda =
[
χ′ , ξ

]†
, δ′

2
ξda =

1
2

[
χ′ ,
[
χ′ , ξ

]† ]†
,
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such that δξda = δ′ξda. Then the difference in the second order variation of the energy

is

2δ2Hda − 2δ′
2
Hda =

〈
[χ , ξ ]† ,

δ2H

δξ δξ
[χ , ξ ]† +

[
χ ,

δH

δξ

]〉

−
〈[

χ′ , ξ
]†
,
δ2H

δξ δξ

[
χ′ , ξ

]†
+

[
χ′ ,

δH

δξ

]〉

=

〈
[χ , ξ ]† ,

[
χ ,

δH

δξ

]〉
−
〈
[χ , ξ ]† ,

[
χ′ ,

δH

δξ

]〉
. (6.23)

Using (2.5) and the Jacobi identity in g, we have that for any α, β, γ ∈ g and ξ ∈ g∗,

〈
[α , ξ ]† , [β , γ ]

〉
= 〈ξ , [α , [β , γ ] ]〉
= −〈ξ , ([β , [ γ , α ] ] + [ γ , [α , β ] ])〉
=
〈
[β , ξ ]† , [α , γ ]

〉
−
〈
[ γ , ξ ]† , [α , β ]

〉
.

Making use of this identity in the last term of (6.23), we get

2δ2Hda − 2δ′
2
Hda =

〈
[χ , ξ ]† ,

[
χ ,

δH

δξ

]〉
−
〈[

χ′ , ξ
]†
,

[
χ ,

δH

δξ

]〉

+

〈[
δH

δξ
, ξ

]†
,
[
χ , χ′

]
〉
.

The first two terms cancel, and from (2.6) we are left with

2δ2Hda − 2δ′
2
Hda = −

〈
ξ̇ ,
[
χ , χ′

]〉
,

which vanishes at an equilibrium of the equations of motion, for any χ, χ′. We

conclude that δ2Hda depends on χ only through δξda. Thus, it is always possible to

rewrite δ2Hda in terms of only the dynamically accessible perturbations χ.

6.3.2 2-D Euler

An equilibrium of the equation of motion for 2-D Euler (see Section 2.2.2) satis-

fies [φe , ωe ] = 0. The most general equilibrium solution can thus be written

φe = Φ(u(x)); ωe = Ω(u(x)),



100

where u(x) is an arbitrary function. Contrary to the energy-Casimir result, neither

the function Φ or Ω need be invertible (i.e., monotonic in their argument).

We can then examine stability by taking the dynamically accessible second

variation of the energy. This is given by (6.22) with [χ , ξe ]
† = −[χ , ωe ],

δ2Hda[ωe] =
1
2

〈
[χ , ωe ]

† , (−∇−2) [χ , ωe ]
† − [χ , φe ]

〉

= 1
2

〈
[χ , ωe ] , (−∇−2) [χ , ωe ] + [χ , φe ]

〉

= 1
2

〈
|∇δφda|2 + [χ , ωe ][χ , φe ]

〉

= 1
2

〈
|∇δφda|2 +Φ′(u)Ω′(u)[χ , u ]2

〉
,

where ∇2δφda := δωda. A sufficient condition for δ2Hda[ωe] to be non-negative is

Φ′(u)Ω′(u) ≥ 0, (6.24)

that is, the derivatives of Φ and Ω must have opposite signs. The energy-Casimir

result is recovered by letting Φ(u) = u, for then we have ωe = Ω(φe) and the stability

condition is the usual Rayleigh criterion, Ω′(φe) ≥ 0. The stability result (6.24)

obtained using the dynamical accessibility method is more general.

6.3.3 Reduced MHD

The equations of motion and bracket for RMHD are described in Section 2.2.3. The

dynamical variables are (ξ0, ξ1) = (ω,ψ).

Equilibrium Solutions

Wemust first determine equilibrium solutions (ωe, ψe) of the equations of motion (2.14),

which must satisfy

[ωe, φe] + [ψe, Je] = 0,

[ψe, φe] = 0.

To satisfy the second of these conditions we must have φe = Φ(u), ψe = Ψ(u), with u =

u(x). Using the fact that, for any g(x) and f(u(x)),

[ g(x) , f(u) ] = f ′(u) [ g(x) , u ] =
[
f ′(u) g(x) , u

]
, (6.25)
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the first equilibrium condition can be written as

[
Φ′(u)ωe −Ψ′(u)Je , u

]
= 0.

This is solved by

Je =
Υ′(u) + Φ′(u)ωe

Ψ′(u)
, (6.26)

where Υ(u) is an arbitrary function. Note that this does not necessarily imply that ωe

or Je are functions of u only.

Formal Stability

Using the coadjoint bracket for extensions (5.2), the dynamically accessible pertur-

bations are given by

δωda = [χ0 , ω ]† + [χ1 , ψ ]† = −[χ0 , ω ]− [χ1 , ψ ],

δψda = [χ0 , ψ ]† = −[χ0 , ψ ].

The second-order variation of the Hamiltonian, (6.22), is

δ2Hda[ωe ;ψe] =
1
2

〈
δωda , (−∇−2) δωda − [χ0 , φe ]

〉

+ 1
2

〈
δψda , (−∇2) δψda − [χ0 , Je ]− [χ1 , φe ]

〉

= 1
2

〈
|∇δφda|2 + |∇δψda|2

〉

− 1
2 〈[χ0 , φe ] δωda + [χ0 , Je ] δψda + [χ1 , φe ] δψda〉

= 1
2

〈
|∇δφda|2 + |∇δψda|2 +

Φ′

Ψ′
δψda δωda

〉

− 1
2

〈
[χ0 , Je ] δψda +Φ′ [χ1 , u ] δψda

〉
, (6.27)

where we have defined ∇2δφda := δωda. Now we use

[χ1 , u ] =
1

Ψ′
(
Ψ′ [χ1 , u ] + [χ0 , ωe ]

)
− 1

Ψ′
[χ0 , ωe ]

= − 1

Ψ′
(δωda + [χ0 , ωe ]) ,
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to get

δ2Hda[ωe ;ψe] =
1
2

〈
|∇δφda|2 + |∇δψda|2 + 2

Φ′

Ψ′
δψda δωda

〉

+ 1
2

〈(
Φ′

Ψ′
[χ0 , ωe ]− [χ0 , Je ]

)
δψda

〉

= 1
2

〈
|∇δφda|2 + |∇δψda|2 + 2

Φ′

Ψ′
δψda δωda

〉

− 1
2

〈(
ωe

[
χ0 ,

Φ′

Ψ′

]
+

[
χ0 ,

Υ′

Ψ′

])
δψda

〉
,

where we substituted (6.26) to eliminate Je. To simplify the notation, we define the

differential operator D by

Df(u) :=
1

Ψ′(u)

d

du
f(u) , (6.28)

so that

δ2Hda[ωe ;ψe] =
1
2

〈
|∇δφda|2 + |∇δψda|2 + 2DΦ δψda ∇2δφda

〉

− 1
2 〈(ωe [χ0 ,DΦ ] + [χ0 ,DΥ ]) δψda〉 . (6.29)

Note that the first angle bracket in (6.29) is the same as (6.14), with k′ replaced

by DΦ. Hence, we can use identity (6.14) to obtain

δ2Hda =
1
2

〈
|∇δφda −∇(DΦ δψda)|2 +

(
1− |DΦ|2

)
|∇δψda|2

〉

+ 1
2

〈(
DΦ∇2(DΦ) + ωeD

2Φ+ D
2Υ
)
|δψda|2

〉
. (6.30)

Sufficient conditions for the perturbation energy (6.30) to be non-negative are [31]

|DΦ| ≤ 1, (6.31)

DΦ∇2(DΦ) +∇2ΦD
2Φ+ D

2Υ ≥ 0. (6.32)

In the second expression we have substituted ωe = ∇2Φ. The first condition says

that |Φ′(u)| ≤ |Ψ′(u)|, that is, the gradient of the magnetic flux is greater or equal to

the gradient of the electric potential. This is a similar condition to (6.16), and says

that the flow needs to be sub-Alfvénic to be formally stable [45]. This is due to the
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well-known fact that the magnetic field provides a restoring force for perturbations

of the flow, so that a large enough magnetic field can potentially stabilize the system

(but not necessarily so, because the magnetic field can also have a destabilizing

effect [18]). Indeed, condition (6.31) is actually necessary for positive-definiteness

of δ2Hda. If we choose δφda = DΦ δψda in (6.30), then the first term vanishes. We can

then pick a variation of δψda with as steep a gradient as we want, while maintaining

the value of δψda bounded [27, p. 103]. This means that the |∇δψda|2 term can

always be made to dominate, so that we require |DΦ| ≤ 1 for positive-definiteness

of δ2Hda.

This places a limitation on the method of dynamical accessibility: if we

want to satisfy |DΦ| = Φ′/Ψ′ ≤ 1 everywhere, then on their domain of definition

the zeros of Ψ must also be zeros of Φ with equal or higher multiplicity. (However,

the function Φ could potentially have more zeros than Ψ.)

The simplest case is when Ψ has no zeros, but then Ψ(u) is invertible, and

we can recover the energy-Casimir result by solving for u = u(Ψ). In practice, this

inversion may be difficult, and using the dynamical accessibility method is often

easier.

As an example, we will derive equilibria for magnetic islands with flow . Con-

sider the RMHD equilibrium relation (6.26), multiplied by Ψ′(u),

Ψ′(u)Je − Φ′(u)ωe = Υ′(u). (6.33)

where Je = ∇2Ψ(u). Using the fact that

ωe = ∇2Φ(u) = Φ′(u)∇2u+Φ′′(u) |∇u|2, (6.34)

and the analogous relation for Je, we can rewrite (6.33) as

(
(Ψ′)2 − (Φ′)2

)
∇2u+

(
Ψ′Ψ′′ − Φ′Φ′′

)
|∇u|2 = Υ′(u),

or equivalently

(
(Ψ′)2 − (Φ′)2

)
∇2u+ 1

2

(
(Ψ′)2 − (Φ′)2

)′ |∇u|2 = Υ′(u). (6.35)
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We can get rid of the |∇u|2 term, and make the equation easier to solve, by choosing

(Ψ′)2 − (Φ′)2 = κ2.

(Choosing a different sign for the right-hand side would lead to solutions with DΦ > 1.)

An obvious solution is

Ψ′(u) = κ cosh(νu), (6.36)

Φ′(u) = κ sinh(νu). (6.37)

These satisfy |DΦ| = | tanh(νu)| < 1, condition (6.31).

Equation (6.35) becomes

∇2u = κ−2 Υ′(u), (6.38)

to be solved for u(x). This equation has the same form as (6.12), which was an

equation for ψe(x), so it has the same Kelvin–Stuart cat’s eye solution,

u(x, y) = ln(a cosh y +
√
a2 − 1 cos x),

with Υ′(u) = κ2 exp(−2u). The difference is that now the physical variables are

given in terms of u by (6.36) and (6.37), so that the electric potential (and so the

flow velocity) does not necessarily vanish, as opposed to the usual magnetic island

solutions, which are recovered in the limit ν = 0. The stability of the islands with

flow could be very different, since now Φ′ 6= 0 in (6.29). However, as for the usual

magnetic islands, the sufficient condition (6.32) is not satisfied, so that stability must

be determined by test perturbations, or by direct numerical simulation [15,22,38,82].

6.3.4 Pure Semidirect Sum

We now treat the general stability of the pure semidirect sum structure, with no

cocycles (see Section 4.4). This structure is given simply by the n+ 1× n+ 1

matrices W (0) = I, and W̃ (µ) = 0, µ = 1, . . . , n. We denote the 0th field variable

by ξ0 = ̟, and the remaining n variables by ξ1, . . . , ξn.
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Equilibrium Solutions

An equilibrium (̟e, {ξµe }) of the equations of motion for a pure semidirect extension

satisfies

˙̟ e = −[H,0 ,̟e ]
† −

n∑

µ=1

[H,µ , ξ
µ
e ]† = 0, (6.39)

ξ̇
µ
e = −[H,0 , ξ

µ
e ]† = 0, µ = 1, . . . , n. (6.40)

To unclutter the notation, we assume that the first and second derivatives of the

Hamiltonian H are evaluated at the equilibrium (̟e, {ξµe }), unless otherwise noted.

We now specialize the bracket to the 2-D canonical one, Eq. (2.11), so

that [ , ]† = −[ , ]. To satisfy condition (6.40), we require

H,0 = −Φ(u), ξµe = Ξµ(u), µ = 1, . . . , n, (6.41)

for arbitrary functions Φ, Ξµ, and u = u(x). (The choice of the minus sign for the

definition of Φ is purely a convention to agree with the sign of the streamfunction in

2-D Euler, for which H,0 = δH/δω = −φ.) Condition (6.39) is then

− [ Φ(u) , ̟e ] +

n∑

µ=1

[H,µ ,Ξ
µ(u) ] = 0,

or, using (6.25),

[
u ,Φ′(u)̟e +

n∑

µ=1

H,µ Ξ
µ′(u)

]
= 0,

which has solution

Φ′(u)̟e +
n∑

µ=1

H,µ Ξ
µ′(u) = Υ′(u). (6.42)

Equation (6.42) should be compared with (6.26), the equivalent solution for reduced

MHD, for which n = 1 and H,1 = δH/δψ = −J .

Now that we have the equilibria, using (5.2) we write down the dynamically

accessible perturbations

δ̟da = [χ0 , ̟ ]† +

n∑

ν=1

[χν , ξ
ν ]†, (6.43)

δξµda = [χ0 , ξ
µ ]†, µ = 1, . . . , n, (6.44)
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and from (6.22) we get the second-order dynamically accessible variation of the

Hamiltonian,

δ2Hda =
1
2

〈
δ̟da , H,00 δ̟da +

n∑

µ=1

H,0µ δξ
µ
da + [χ0 ,H,0 ]

〉

+

n∑

µ=1

1
2

〈
δξµda ,

n∑

ν=1

H,µν δξ
ν
da +H,µ0 δ̟da + [χ0 ,H,µ ] + [χµ ,H,0 ]

〉
.

Because the second-order functional derivative is formally a self-adjoint operator, we

have the identity

〈
δ̟da , H,0µ δξ

µ
da

〉
=
〈
δξµda ,H,µ0 δ̟da

〉
,

which we use in δ2Hda to combine two terms and obtain

δ2Hda =
1
2

〈
δ̟da , H,00 δ̟da + 2

n∑

µ=1

H,0µ δξ
µ
da + [χ0 ,H,0 ]

〉

+
n∑

µ=1

1
2

〈
δξµda ,

n∑

ν=1

H,µν δξ
ν
da + [χ0 ,H,µ ] + [χµ , H,0 ]

〉
. (6.45)

Using the equilibrium solution (6.41), the dynamically accessible variations given

by (6.44) can be rewritten

δξµda = −Ξµ′(u) [χ0 , u ]

Observe that the perturbations of the ξµ are not independent: they all depend on a

single generating function, χ0. We choose to write all the variations in terms of δΞn
da.

We define

ψ(x) := ξn(x), Ψ(u) := Ξn(u),

to explicitly show the special role of ξn. Then we have

δξµda =
Ξµ′(u)

Ψ′(u)
δψda = DΞµ δψda, (6.46)

where we have used the previous definition of the operator D,

Df(u) :=
1

Ψ′(u)

d

du
f(u) . (6.28)
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Note that DΞn = DΨ = 1. We could have chosen any field instead of ξn, but in Sec-

tion 6.3.5 this particular choice will prove advantageous due to the lower-triangular

structure of our extensions.

The dynamically accessible variations must obey the constraints of the sys-

tem, that is they must lie on the coadjoint orbits. We have already discussed briefly

this property of the semidirect sum in Section 3.4.

To illustrate the situation we consider the equations of motion for a finite-

dimensional semidirect sum, specifically a semidirect sum of the rotation group SO(3)

(associated with our old friend the rigid body) with R
3 (see Section 2.2). We take ̟

to be ℓ, the angular momentum vector, with Hamiltonian H given by the usual

kinetic energy, Eq. (2.10). The variables ξµ are three-vectors, and their equations of

motion are given in terms of the bracket (2.9) by

ξ̇
µ
= −[H,0 , ξ

µ ]†

=
(
I−1ℓ

)
× ξµ .

(6.47)

Note the angular momentum ℓ is analogous to the vorticity ω, and I−1ℓ is analogous

to the streamfunction φ = ∇−2ω. Equation (6.47) says that the vector ξµ is rotating

with the rigid body, keeping its length constant (the length of ξµ is a Casimir).

Thus, each ξµ can be used to describe a point in the rigid body, such as the center of

gravity. Adding a coupling term to the Hamiltonian can provide us with, for instance,

a description of the heavy top in a gravitational field, but this would not change

the form of (6.47). The point is that the ξµ are constrained to rotate rigidly, and

the dynamically accessible perturbations must obey the same constraint—they must

depend on the perturbation applied to ℓ, but by themselves there are no dynamically

accessible perturbations that allow the ξµ to change length or rotate independently.

Physically, this makes sense, because we are not allowing the rigid body to have other

degrees of freedom than the rotational ones. If we did, we would have to rethink our

description, which would lead to different dynamically accessible perturbations; but

within the confines of rigidity those perturbations make sense.
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The situation in infinite dimensions is analogous to the rigid body. Here the

typical case is an ideal fluid with passive scalars: we take ̟ = ω(x), the vorticity, and

a Hamiltonian of the form H[ω] = −1
2 〈φ , ω〉. The equations of motion for the ξµ(x)

are given by

ξ̇
µ
= −[H,0 , ξ

µ ]† = −[φ , ξµ ] . (6.48)

Thus, the ξµ(x) are advected along by the fluid. The ξµ(x) can be used to describe

passive scalars, since they do not enter the Hamiltonian (they do not affect the flow

itself). An interaction term in H could describe, for example, the effect of tempera-

ture on the flow in the Boussinesq approximation, but this would not modify (6.48):

only the equation for ω̇ would change. Much like for the rigid body, the quantities ξµ

are constrained to move with the fluid, regardless of the form of the Hamiltonian.

This is also true for the dynamically accessible perturbations of the ξµ, which must

then be induced by the perturbation on ω.

Formal Stability

We now try to rewrite the second-order variation of the Hamiltonian (6.45) only in

terms of dynamically accessible variations. We have, from (6.41),

[χ0 , H,0 ] = −Φ′(u) [χ0 , u ]

= DΦ(u) δψda.

From the second line of (6.45), we can write

n∑

µ=1

〈
δξµda , [χµ , H,0 ]

〉
= −

n∑

µ=1

〈
δψda DΞµΦ′ [χµ , u ]

〉

= −
n∑

µ=1

〈
δψda DΦ [χµ ,Ξ

µ ]
〉

=
〈
DΦ (δ̟da + [χ0 , ̟e ]) δψda

〉
,

(6.49)
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where we have made use of (6.43) and (6.46). Finally, we have

n∑

µ=1

〈
δξµda , [χ0 ,H,µ ]

〉
=

n∑

µ=1

〈
δψda DΞµ [χ0 ,H,µ ]

〉

=

n∑

µ=1

〈
δψda [χ0 , H,µDΞµ ]− δψdaH,µ [χ0 ,DΞµ ]

〉
,

in which we make use of (6.42) to obtain

n∑

µ=1

〈
δξµda , [χ0 ,H,µ ]

〉
=
〈
δψda

(
[χ0 ,DΥ− DΦ̟e ]−

n∑

µ=1

H,µ(DΞµ)′ [χ0 , u ]
)〉

=
〈(

D
2Φ̟e +

n∑

µ=1

H,µD
2Ξµ − D

2Υ
)
|δψda|2

〉

−
〈
DΦ [χ0 ,̟e ] δψda

〉
,

(6.50)

The last term in (6.50) cancels part of (6.49), and we get

δ2Hda =
1
2

〈
δ̟daH,00 δ̟da + 2

n∑

µ=1

δ̟daH,0µ δξ
µ
da + 2DΦ δ̟da δψda

+
n∑

µ,ν=1

δξµdaH,µν δξ
µ
da +

(
D

2Φ̟e +
n∑

µ=1

H,µD
2Ξµ − D

2Υ
)
|δψda|2

〉
. (6.51)

Further progress cannot be made without assuming some particular form for the

second-order functional derivative operator of H.

Hamiltonian without operators

The simplest case we can study is when H contains no differential or integral oper-

ators. Then H,µν is just a symmetric matrix. Using (6.46), we can simplify (6.51)

to

δ2Hda =
1
2

〈
H,00 |δ̟da|2 + 2

( n∑

µ=1

H,0µDΞµ + DΦ
)
δ̟da δψda

+
( n∑

µ,ν=1

DΞµH,µν DΞν + D
2Φ̟e +

n∑

µ=1

H,µD
2Ξµ − D

2Υ
)
|δψda|2

〉
.
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This can be rewritten as a quadratic form,

δ2Hda =
1
2

(
δ̟da δψda

)
Q
(
δ̟da

δψda

)
,

where Q is the 2× 2 matrix

Q :=

(
H,00 H,0µDΞµ + DΦ

H,0µDΞµ + DΦ DΞµH,µν DΞν + D
2Φ̟e +H,µD

2Ξµ − D
2Υ

)
.

We assume repeated indices are summed from 1 to n. The matrix Q is non-negative

if and only if its principal minors are non-negative, i.e.,

H,00 ≥ 0, (6.52)

detQ ≥ 0. (6.53)

Hence, to have formal stability it is imperative to have that the energy associ-

ated with the perturbation of ̟ be non-negative. Also note that the contribu-

tion of (H,0µDΞµ + DΦ) is always destabilizing. For an equilibrium without flow

(DΦ ≡ 0) and with H,0ν = 0, condition (6.53) reduces to

DΞµH,µν DΞν +H,µD
2Ξµ − D

2Υ ≥ 0.

Advected Scalars

We now treat the problem of advection of scalars. We shall not restrict ourselves

to passive advection, and the form we choose for H is general enough to encompass

systems with generalized vorticities,2 such as the quasigeostrophic equations [39,94].

Let q denote the generalized vorticity, related to the stream function φ by

q = ∇2φ−F φ+ f, (6.54)

for some given functions F(x) and f(x). Taking ξ0 = ̟ = q, we consider a Hamil-

tonian

H =
〈
1
2

(
|∇φ|2 + F φ2

)
+ V(x, q, ξ1, . . . , ξn)

〉

=
〈
1
2(q − f)(F −∇2)−1(q − f) + V(x, q, ξ1, . . . , ξn)

〉
,

2Also called the potential vorticity.
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where V does not contain any operators. We have the first derivatives

H,0 = −φ+ V,0 , H,µ = V,µ ,

and the second derivative operators

H,00 = (F −∇2)−1 + V,00 ,

H,µν = V,µν ,

H,0ν = V,0ν .

Using identity (6.14), we can rewrite the first line of the second dynamically accessible

variation of the energy (6.51) as

1
2

〈
δqda ((F −∇2)−1 + V,00) δqda + 2 (V,0µDΞµ + DΦ) δqda δψda

〉

= 1
2

〈
δφda (F −∇2) δφda + V,00 |δqda|2 − 2K(u) δψda (F −∇2)δφda

〉

= 1
2

〈
|∇δφda −∇(K δψda)|2 −K2 |∇δψda|2 + V,00 |δqda|2

+ F |δφda −K δψda|2 +K
(
∇2K − F K

)
|δψda|2

〉
(6.55)

where

K(u) := V,0µDΞµ(u) + DΦ(u). (6.56)

The term proportional to |∇δψda|2 in (6.55) is negative definite unless we require an

equilibrium with K(u) ≡ 0, that is

V,0µDΞµ(u) + DΦ(u) = 0.

Using K ≡ 0 in (6.55) and writing out the rest of (6.51), we obtain

δ2Hda =
1
2

〈
|∇δφda|2 + F |δφda|2 + V,00 |δqda|2

+
(
D

2Φ qe + DΞµ V,µν DΞν + V,µD
2Ξµ − D

2Υ
)
|δψda|2

〉
.

For Hamiltonians with V,0µ = 0, the only equilibria for which we can demonstrate

formal stability are ones without flow. If we assume this is the case, then from (6.42)
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equilibria satisfy V,µDΞµ(u) = DΥ(u). Note that f in (6.54) enters the stability

expression through qe = ∇2Φ−F Φ+ f .

Combining (6.55) with the rest of (6.51) we have the the sufficient conditions

for stability

F ≥ 0,

V,00 ≥ 0,

DΞµ V,µν DΞν + V,µD
2Ξµ − D

2Υ ≥ 0,

where we have assumed DΦ ≡ 0 so that K(u) = V,0µDΞµ(u). This is the same

stability condition as for a Hamiltonian without operators, (6.3.4), because we have

chose a form of the Hamiltonian which decouples the operator part (kinetic energy)

and the potential, so we get a Lagrange-theorem-like condition on the potential.

RMHD-like System

Another case of interest, a generalization of the RMHD system of Sections 2.2.3

and 6.3.3, involves a Hamiltonian of the form

H = 1
2

〈(
|∇φ|2 + F φ2

)
+ 2V(x, q, ξ1, . . . , ξn−1, ψ) + |∇ψ|2

〉
. (6.57)

Here q, F , and φ are as in the previous section in (6.54). As before, we have labeled ξn

by ψ as a reminder of its distinguished role: it enters the Hamiltonian as a gradient.

(In this section greek indices run from 1 to n − 1.) The first derivatives of H are

given by

H,0 = −φ+ V,0 , H,µ = V,µ , H,n = −J + V,n , (6.58)

and the second derivative operators are

H,00 = (F −∇2)−1 + V,00 H,0n = V,0n

H,µν = V,µν H,µn = V,µn (6.59)

H,0ν = V,0ν H,nn = −∇2 + V,nn .
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The quantity J := ∇2ψ is analogous to the electric current in RMHD. As before,

we use Ξµ(u) to denote the equilibrium solution of ξµ for µ = 1, . . . , n, and the

equilibrium solution of ξn is written ξne = Ψ(u). Also as done previously, we use the

relation

δξµda = DΞµ δψda , (6.46)

where D is defined by (6.28). Adding the |∇δψda|2 contribution to (6.55), we obtain

1
2

〈
δqda ((F −∇2)−1 + V,00) δqda + 2K δqda δψda + |∇δψda|2

〉

= 1
2

〈
δφda (F −∇2) δφda + V,00 |δqda|2 − 2K δψda (F −∇2)δφda + |∇δψda|2

〉

= 1
2

〈
|∇δφda −∇(K δψda)|2 +

(
1−K2

)
|∇δψda|2 + V,00 |δqda|2

+ F |δφda −K δψda|2 +K
(
∇2K − F K

)
|δψda|2

〉
(6.60)

where K is defined by (6.56). The energy provided by the new |∇δψda|2 term in

the Hamiltonian (magnetic line-bending energy in MHD) allows us to have formally

stable equilibria provided K2 ≤ 1. Thus, in contrast to the system in the previous sec-

tion, there exist formally stable equilibria with flow even for a potential with V,0µ = 0.

6.3.5 Nonsingular g

Now that we have demonstrated the procedure for obtaining equilibria and determin-

ing their stability for brackets with no cocycles (Section 6.3.4), we are in a position

to deal with the more complicated case of an arbitrary semidirect-type extensions

with a nonsingular W(n) = g. We shall make heavy use of the concept of coextension

introduced in Section 5.4.1.
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Equilibrium Solutions

First we must look for equilibria of the equations of motion, which from (2.6) and (5.2)

are

˙̟ e = 0 = −[H,0 ,̟e ]
† − [H,µ , ξ

µ
e ]† − [H,n , ψe ]

†, (6.61)

ξ̇
µ
e = 0 = −[H,0 , ξ

µ
e ]† − W̃λ

µν
[
H,ν , ξ

λ
e

]†
− gµν [H,ν , ψe ]

†, (6.62)

ψ̇e = 0 = −[H,0 , ψe ]
†. (6.63)

Unless otherwise noted, in this section all greek indices take values from 1 to n− 1,

and repeated indices are summed. The tensors W̃ were defined in Section 5.4: they

are the subtensors of W with indices restricted from 1 to n−1. They form a solvable

extension. We have also made use of the definition gµν :=W(n)
µν . As in Section 6.3.4,

we have set the variable ξn apart and labeled it by ψ, but now it does actually

play a distinguished role in the solution of the problem, as it did in Section 5.4.

Also note that the derivatives of the Hamiltonian are implicitly evaluated at the

equilibrium (̟e, {ξµe }, ψe).

We now specialize the bracket to the 2-D canonical one, given by (2.12).

Equation (6.63) is satisfied if

H,0 = −Φ(u), ψe = Ψ(u), (6.64)

for functions Φ and Ψ, and some u = u(x). Equation (6.62) is quite a bit dicier to

solve. The trick is to use the lower-triangular form of the W̃ (µ) to solve for the H,ν .

We multiply (6.62) by ḡ := g−1, and use (6.64), to obtain

−
[
Φ(u) , ḡτµ ξ

µ
e

]
+ ḡτµ W̃λ

µν
[
H,ν , ξ

λ
e

]
+ ḡτµ g

µν [H,ν ,Ψ(u) ] = 0,

or, using the definition (5.21) of the coextension, Aν
τλ := W̃ τ

νµ ḡµλ,

[
H,τ Ψ

′(u) + Φ′(u) ḡτµ ξ
µ
e , u

]
+Aν

τλ

[
H,ν , ξ

λ
e

]
= 0. (6.65)
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Since the W̃ (µ)’s are lower-triangular, the A(ν)’s have the form

A(ν) =




0 0

0


 , ν = 1, . . . , n − 1,

where the box represents a square (n− ν − 1)-dimensional symmetric matrix of pos-

sibly nonzero elements. There are never any nonvanishing elements in the first row

of A(ν), so setting τ = 1 in (6.65) gives

[
H,1 Ψ

′(u) + Φ′(u) ḡ1µ ξ
µ
e , u

]
= 0. (6.66)

We write the solution as

H,1 = k1(u)− DΦ(u) ḡ1µ ξ
µ
e ,

where k1(u) is an arbitrary function and the operator D is defined by (6.28). Equa-

tion (6.65) with τ = 2 is

[
H,2Ψ

′(u) + Φ′(u) ḡ2µ ξ
µ
e , u

]
+A1

2λ

[
H,1 , ξ

λ
e

]
= 0.

If we then substitute in the solution for H,1, Eq. (6.66), we have

[
H,2Ψ

′(u) + Φ′(u) ḡ2µ ξ
µ
e , u

]
+A1

2λ

[
k1(u)−DΦ(u) ḡ1µ ξ

µ
e , ξ

λ
]
= 0. (6.67)

Note that A1
2λ ḡ1µ = Aν

2λ ḡνµ = ḡ2κWλ
κν ḡνµ = ḡ2κA

κ
λµ is symmetric in λ and µ.

Hence,

A1
2λ

[
DΦ(u) ḡ1µ ξ

µ
e , ξ

λ
e

]
= ḡ2κA

κ
λµ

[
DΦ(u) ξµe , ξ

λ
e

]

= DΦ(u) ḡ2κA
κ
λµ

[
ξµe , ξ

λ
e

]
+ ḡ2κA

κ
λµ ξ

µ
e

[
DΦ(u) , ξλe

]

= 1
2 DΦ′(u) ḡ2κA

κ
λµ

(
ξµe

[
u , ξλe

]
+ ξλe [ u , ξ

µ
e ]
)

= 1
2 DΦ′(u) ḡ2κA

κ
λµ

[
u , ξλe ξ

µ
e

]

We can now solve (6.67) for H,2, resulting in

H,2 = k2(u)− DΦ(u) ḡ2µ ξ
µ
e +Aκ

2λ Dkκ(u) ξ
λ
e − 1

2 D
2Φ(u) ḡ2κA

κ
λµ ξ

λ
e ξ

µ
e ,
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where k2(u) is another arbitrary function. The procedure carries on in the same

manner for τ > 2, and in general we have

H,τ = kτ (u) +
∑

m≥1

1

m!
Q

(m)
τλ1···λm

(u) ξλ1
e · · · ξλm

e , (6.68)

where

Q
(1)
τλ (u) := D

(
Aρ

τλ kρ(u)− ḡτλΦ(u)
)
, (6.69)

and

Q
(m)
τλ1···λm

(u) := Aτ1
τλ1

Aτ2
τ1λ2

· · ·Aτm−2

τm−3λm−2
A

τm−1

τm−2λm−1

× D
m
(
Aρ

τm−1λm
kρ(u)− ḡτm−1λm

Φ(u)
)
, (6.70)

for m ≥ 2. If we define k0(u) := −Φ(u), we can also write the Q(m) in terms of the D

tensors, defined by (5.28), as

Q
(m)
λ1···λmλm+1

(u) :=
n−1∑

ρ=0

D
(m)ρ
λ1···λmλm+1

D
mkρ(u).

The sum in m in (6.68) terminates since the A(µ) are nilpotent. The Q(m)(u) are

symmetric in all their lower indices.

Note that (6.68) is not a closed-form solution for the equilibria: depending on

the specific form of the Hamiltonian, the equation may be straightforward or difficult

to solve, or possibly not have any solutions at all. The situation is the same as for

Eqs. (6.6) and (6.7) (the energy-Casimir limit for CRMHD), which were solved for pe

and ve in (6.9).

The fact that the coextension, which we used to find Casimir invariants in

Chapter 5, appears in this calculation is not surprising, since the energy-Casimir

method result is recovered by letting Ψ(u) = u, which simply says that D is replaced

by d/du.
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We still have to satisfy (6.61) ( ˙̟ e = 0) to get an equilibrium. Substituting

in the results of (6.64) and (6.68), we get the condition

[
Ψ′(u)H,n +Φ′(u)̟e , u

]
+


 kµ(u) +

∑

m≥1

1

m!
Q

(m)
µλ1···λm

(u) ξλ1
e · · · ξλm

e , ξµe


 = 0.

This can be solved, using the same techniques as for H,0, . . . ,H,n−1 above, to give

H,n = kn − DΦ̟e + Dkµ ξ
µ
e +

∑

m≥1

DQ
(m)
λ1···λmλm+1

ξλ1
e · · · ξλm+1

e

(m+ 1)!
. (6.71)

We now have expressions for the equilibria of arbitrary nonsingular extensions, given

by (6.64), (6.68), and (6.71). We can proceed to determine their stability.

Formal Stability

The dynamically accessible variations are obtained from (5.2), and are just equations

(6.43) and (6.44) modified appropriately,

δ̟da = [χ0 ,̟ ]† + [χµ , ξ
µ ]† + [χn , ψ ]†, (6.72)

δξµda = [χ0 , ξ
µ ]† + W̃λ

µν
[
χν , ξ

λ
]†

+ gµν [χν , ψ ]†, (6.73)

δψda = [χ0 , ψ ]†. (6.74)

Notice that unlike the pure semidirect sum case given by (6.43) and (6.44), the

dynamically accessible variations for ξ1, . . . , ξn are now potentially independent.

We can use expression (6.45) for δ2Hda of the pure semidirect sum, modified

to admit a cocycle,

δ2Hda =
1
2

〈
δ̟da , H,00 δ̟da + 2H,0µ δξ

µ
da + 2H,0n δψda + [χ0 , H,0 ]

〉

+ 1
2

〈
δξµda ,H,µν δξ

ν
da + 2H,µn δψda + [χ0 ,H,µ ] + [χµ , H,0 ] +Wµ

στ [χσ ,H,τ ]
〉

+ 1
2

〈
δψda , H,nn δψda + [χ0 ,H,n ] + [χn , H,0 ] + gστ [χσ ,H,τ ]

〉
. (6.75)

As we did for the semidirect sum case, we want to express all the brackets in terms of

dynamically accessible variations. We know we must be able do this by the theorem

proved at the end of Section 6.3.1.
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The starting point is the [χn ,H,0 ] term, since it contains χn and thus can

only be expressed in terms of δ̟da, given by Eq. (6.72). We do not present the

calculation in detail here because it involves a great deal of algebra, none of which

is very illuminating. We have to make liberal use of the identity

Aσ
µτ DQ

(m)
σλ1···λm

= Q
(m+1)
µτλ1···λm

, for m ≥ 1,

easily verified from the definition of Q(m), Eq. (6.70).

The final form of the second variation of the Hamiltonian is

δ2Hda =
1
2

〈
δ̟daH,00 δ̟da + 2δ̟daH,0µ δξ

µ
da + 2δ̟da

(
H,0n + DΦ

)
δψda

〉

+ 1
2

〈
δξµda

(
H,µν −Q(1)

µν −
∑

m≥1

1

m!
Q

(m+1)
µνλ1···λm

ξλ1
e · · · ξλm

e

)
δξνda

〉

+
〈
δξµda

(
H,µn − Dkµ −

∑

m≥1

1

m!
DQ

(m)
µλ1···λm

ξλ1
e · · · ξλm

e

)
δψda

〉

+ 1
2

〈
δψda

(
H,nn −Dkn +D

2Φ̟e −D
2kµ ξ

µ
e −

∑

m≥2

1

m!
D

2Q
(m−1)
λ1···λm

ξλ1
e · · · ξλm

e

)
δψda

〉
.

(6.76)

This very general expression allows us to see exactly where the cocycles modify the

energy expression. Obtaining a useful result out of it is difficult, so we will do what

we usually do: we simplify the problem! The case we will treat in more detail is the

vanishing coextension case.

6.3.6 Vanishing Coextension

We consider the case where the coextension A ≡ 0 but g is nonsingular, as is the case

for CRMHD (see Section 5.5.1). A schematic representation of this type of extension

is shown in Figure 6.3. Then from (6.69) we have

Q
(1)
τλ (u) = −DΦ(u) ḡτλ,
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Figure 6.3: Schematic representation of the 3-tensor W for a semidirect extension
with vanishing coextension (A ≡ 0). The axes are as in Figure 4.2. The red cubes
represent the n− 1× n− 1 matrix gµν , assumed here nonsingular. Note that com-
pressible reduced MHD, in Figure 2.1, has this structure.

and from (6.70) we have Q(m)(u) ≡ 0 for m ≥ 2. We still have ψe = Ψ(u), and the

equilibrium relations (6.68) and (6.71) simplify to

H,τ = kτ − DΦ ḡτλ ξ
λ
e , (6.77)

H,n = kn − DΦ̟e + Dkµ ξ
µ
e − 1

2 D
2Φ ḡµλ ξ

µ
e ξ

λ
e , (6.78)

where as in Section 6.3.5 the greek indices run from 1 to n − 1. The second order

variation of the Hamiltonian, Eq. (6.76), “reduces” to

δ2Hda =
1
2

〈
δ̟daH,00 δ̟da + 2δ̟daH,0µ δξ

µ
da + 2δ̟da

(
H,0n + DΦ

)
δψda

〉

+ 1
2

〈
δξµda

(
H,µν + DΦ ḡµν

)
δξνda

〉
+
〈
δξµda

(
H,µn − Dkµ + D

2Φ ḡµλ ξ
λ
e

)
δψda

〉

+ 1
2

〈
δψda

(
H,nn − Dkn + D

2Φ̟e − D
2kµ ξ

µ
e + 1

2 D
3Φ ḡµν ξ

µ
e ξ

ν
e

)
δψda

〉
. (6.79)

Again, to make progress we must further specialize the form of the Hamiltonian.
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RMHD-like System

Let us take the RMHD-like Hamiltonian (6.57). We first need to find the equilibria,

which we accomplish by substituting (6.57) into the equilibrium conditions (6.64), (6.77)

and (6.78),

−φe + V,0 = −Φ(u), (6.80)

V,τ = kτ (u)− DΦ(u) ḡτλ ξ
λ
e , (6.81)

−Je + V,n = kn(u)− DΦ(u) qe + Dkµ(u) ξ
µ
e − 1

2 D
2Φ(u) ḡµλ ξ

µ
e ξ

λ
e , (6.82)

Since we have not specified the exact dependence of V on the ξµ, we cannot solve

these for the ξµe . For the pure semidirect sum case, we had ξµe = Ξ(u), regardless of

the form of the Hamiltonian. The presence of the nondegenerate cocycle leads to

potentially much richer equilibria.

For the perturbation energy, we can use the result (6.60) in (6.79) to obtain

δ2Hda =
1
2

〈
|∇δφda −∇(K δψda)|2 +

(
1−K2

)
|∇δψda|2 + V,00 |δqda|2

+ F |δφda −K δψda|2 + 2V,0µ δqda δξ
µ
da

+
(
V,µν +DΦ ḡµν

)
δξµda δξ

ν
da + 2

(
V,µn − Dkµ + D

2Φ ḡµλ ξ
λ
e

)
δξµda δψda

+

V,nn − Dkn + D

2Φ qe − D
2kµ ξ

µ
e + 1

2 D
3Φ ḡµν ξ

µ
e ξ

ν
e +K

(
∇2K − F K

)

× |δψda|2
〉
, (6.83)

where

K(u) := V,0n + DΦ(u).

Immediately we see that the stability conditions |K| ≤ 1, F ≥ 0, and V,00 ≥ 0 still

hold. However, until we have a closed form for the equilibria we cannot make definite

stability predictions. We now proceed to use a more restricted class of Hamiltonians

for which the equilibria can be found explicitly.
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Quadratic Potential

An important case we can do explicitly is when V is quadratic,

V = 1
2 ξ

µVµν(x) ξ
ν + vσ(x) ξ

σ,

where V is a symmetric matrix, in which case we have

V,τ = Vτν ξ
ν + vτ ,

and V,0 = V,n = 0. Inserting this into (6.81), we obtain

(Vτλ +DΦ ḡτλ) ξ
λ
e = kτ − vτ .

Assuming V is nondegenerate, the matrix

Wτλ := Vτλ + DΦ ḡτλ (6.84)

will be invertible except possibly at some points. We denote its inverse by Wτλ,

and (6.3.6) has solution

ξλe (x) = Wλτ (kτ (u)− vτ (x)). (6.85)

We emphasize how different this expression is to the pure semidirect sum result, ξλe (x) = Ξ(u).

In (6.85) the equilibrium solution ξλ can explicitly depend on x through the Hamil-

tonian. This can never occur for equilibria of the pure semidirect sum, regardless of

the form of the Hamiltonian.

The most interesting feature of the new equilibria (6.85) is the fact that

there are new resonances in the system—solutions for which Wλτ will blow up.

This is what occurred for CRMHD in Section 6.2, where we had a singularity in the

solution (6.9) of ve and pe, associated with the acoustic resonance. As the equilibrium

solution approaches this resonance, we can expect the system to become less stable.

We can use the solution (6.85) in (6.82) to obtain a closed-form result for Je,

Je = −kn + DΦ (∇2Φ−F Φ+ f)− DkµWµτ (kτ − vτ )

+ 1
2 D

2Φ (kτ − vτ )Wτµ ḡµλ Wλσ (kσ − vσ), (6.86)
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where Je = ∇2Ψ(u). Using Eq. (6.34) for ωe and the analogous relation for Je, we

have that (6.86) can be rewritten
(
(Ψ′)2 − (Φ′)2

)

Ψ′
∇2u+

(Ψ′Ψ′′ − Φ′Φ′′)

Ψ′
|∇u|2 =

−kn + DΦ (−F Φ+ f)− DkµWµτ (kτ − vτ )

+ 1
2 D

2Φ (kτ − vτ )Wτµ ḡµλ Wλσ (kσ − vσ). (6.87)

This is a nonlinear PDE to be solved for u(x) with arbitrary functions Φ(u), Ψ(u),

and kµ(u), and given functions Wτµ(x), vσ(x), F(x), and f(x). Needless to say,

solving (6.87) in general is extremely difficult. There are, however, classes of solution

that can be obtained analytically. We now examine one of these special cases.

A particularly simple case are the aforementioned Alfvén solutions, for which

Ψ′(u) = cΦ′(u), (6.88)

where c is a constant. We also obtain

DΦ(u) =
1

Ψ′(u)

dΦ

du
(u) =

1

cΦ′(u)
Φ′(u) = c−1,

so that D
mΦ = 0 for m > 1. Thus, assuming that Ψ′ and Φ′ are proportional for

the dynamical accessibility method is analogous to assuming that Φ(ψe) is linear for

the energy-Casimir method. From (6.88), we might be tempted to simply write Φ =

Φ(Ψ), and indeed this is true. However, this is not useful because in general we

still cannot rewrite u in terms of Ψ, since Ψ = Ψ(u) may not be invertible. If Ψ is

invertible, then we recover the energy-Casimir result completely.

Using (6.88) in the equilibrium condition (6.87) gives

(1− c−2)
(
Ψ′∇2u+Ψ′′ |∇u|2

)
= −kn − c−2 (Fu− cf)− k′µWµτ (kτ − vτ ), (6.89)

so that the quadratic term (proportional to D
2Φ) disappears.

Several systems have Wµτ independent of x. It may then also happen that

we can choose the kµ(u) such that

k′µWµτvτ = c−2 (Fu− cf), (6.90)
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After this is effected, Eq. (6.89) no longer depends explicitly on x, and has solutions

such as the Kelvin–Stuart cat’s eye. This procedure can be carried out for CRMHD,

for which F = f = 0. In that case, (6.90) becomes (6.11).

Stability for Quadratic Potential

Assuming that we still have the quadratic potential of the previous section, we now

show that the (acoustic) resonance which occurred for CRMHD is a generic feature

of Lie–Poisson systems with cocycles.

We take the energy expression (6.83), use the fact the V,0 = V,n = 0, and

obtain

δ2Hda =
1
2

〈
|∇δφda −∇(K δψda)|2 +

(
1−K2

)
|∇δψda|2

+ F |δφda −K δψda|2 +Wµν δξ
µ
da δξ

ν
da + 2

(
D

2Φ ḡµλ ξ
λ
e −Dkµ

)
δξµda δψda

+

D

2Φ qe − Dkn − D
2kµ ξ

µ
e + 1

2 D
3Φ ḡµν ξ

µ
e ξ

ν
e +K

(
∇2K − F K

) |δψda|2
〉
,

where we used the definition ofW, Eq. (6.84), and we have not made any assumptions

about the form of Φ and Ψ. The equilibrium solutions ξλe satisfy (6.85).

If we assume K ≤ 1 and F ≥ 0, then to obtain part of the sufficient conditions

for stability we require that W be positive-definite. But when W becomes singular

we cannot guarantee this. This was the case with CRMHD.

Note that detW = 0 does not imply that the system will be unstable beyond

the resonance. It is, however, a strong indication that it might be.
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Conclusions

Using the tools of Lie algebra cohomology, we have classified low-order extensions.

We found that there were only a few normal forms for the extensions, and that

they involved no free parameters. This is not expected to carry over to higher

orders (n > 4). The classification includes the Leibniz extension, which we have

shown is the maximal extension. One of the normal forms is the bracket appropriate

to compressible reduced MHD.

We then developed techniques for finding the Casimir invariants of Lie–

Poisson brackets formed from Lie algebra extensions. We introduced the concept of

coextension, which allowed us to explicitly write down the solution of the Casimirs.

The coextension for the Leibniz extension can be found for arbitrary order, so we

were able obtain the corresponding Casimirs in general.

By using the method of dynamical accessibility, we derived general condi-

tions for the formal stability of Lie–Poisson systems. In particular, for compressible

reduced MHD, we found the presence of a cocycle could only make a certain class of

solutions more unstable. In general, cocycles were shown to lead to resonances, such

as the acoustic resonance for CRMHD.

The dynamical accessibility approach also allowed us to get a clearer picture

of the role of cocycles: in a pure semidirect extension, the absence of a cocycle means

that the system necessarily describes an advective system, and the dynamically ac-

cessible variations are not independent. In contrast, for the nonsingular cocycle case
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all of the perturbations are independent. The form of the stability condition is thus

much more complex.

It would be interesting to generalize the classification scheme presented here

to a completely general form of extension bracket [72, 77]. Certainly the type of

coordinate transformations allowed would be more limited, and perhaps one cannot

go any further than cohomology theory allows.

Though we have gone a long way in this respect, the interpretation of the

Casimir invariants has yet to be fully explored, both in a mathematical and a physical

sense. Mathematically, we could give a precise geometrical relation between cocycles

and the form of the Casimirs. The cocycle and Casimirs should yield information

about the holonomy of the system. For this one must study extensions in the frame-

work of their principal bundle description [21]. Physically, we would like to attach a

more precise physical meaning to these conserved quantities. The invariants associ-

ated with simultaneous eigenvectors can be regarded as constraining the associated

field variable to move with the fluid elements [68]. The field variable can also be

interpreted as partially labeling a fluid element. Some attempt has been made in

formulating the Casimir invariants of brackets in such a manner [52,90], but for the

more complicated invariants a general treatment is still not yet available.
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Appendix A

Proof of the Jabobi Identity

We want to show that the Lie–Poisson bracket

{F ,G}±(ξ) = ±
〈
ξ ,

[
δF

δξ
,
δG

δξ

]〉
, (2.1)

where ξ ∈ g∗, and F : g∗ → R and G : g∗ → R are functionals, satisfies the Jacobi

identity

{
{F ,G}± ,H

}
±
+
{
{G ,H}± , F

}
±
+
{
{H ,F}± , G

}
±
= 0.

The inner bracket [ , ] is the bracket of the Lie algebra g, so it satisfies the Jacobi

identity. The overall sign of the bracket is inconsequential, so we choose the +

bracket. We first compute the variation of {F ,G},

δ{F ,G} =

〈
δξ ,

[
δF

δξ
,
δG

δξ

]〉
+

〈
ξ ,

[
δ2F

δξδξ
δξ ,

δG

δξ

]〉
+

〈
ξ ,

[
δF

δξ
,
δ2G

δξδξ
δξ

]〉

=

〈
δξ ,

[
δF

δξ
,
δG

δξ

]〉
−
〈[

δG

δξ
, ξ

]†
,
δ2F

δξδξ
δξ

〉
+

〈[
δF

δξ
, ξ

]†
,
δ2G

δξδξ
δξ

〉

=

〈
δξ ,

[
δF

δξ
,
δG

δξ

]
− δ2F

δξδξ

[
δG

δξ
, ξ

]†
+
δ2G

δξδξ

[
δF

δξ
, ξ

]†〉
,

where we have used the definition of the coadjoint bracket (2.3) and the self-adjoint

property of the second derivative operator. Thus, we have

δ{F ,G}
δξ

=

[
δF

δξ
,
δG

δξ

]
− δ2F

δξδξ

[
δG

δξ
, ξ

]†
+
δ2G

δξδξ

[
δF

δξ
, ξ

]†
.
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We can now evaluate the first term of the Jacobi identity,

{{F ,G} ,H} =

〈
ξ ,

[
δ{F ,G}

δξ
,
δH

δξ

]〉

=

〈
ξ ,

[ [
δF

δξ
,
δG

δξ

]
− δ2F

δξδξ

[
δG

δξ
, ξ

]†
+
δ2G

δξδξ

[
δF

δξ
, ξ

]†
,
δH

δξ

]〉

=

〈
ξ ,

[ [
δF

δξ
,
δG

δξ

]
,
δH

δξ

]〉
+

〈[
δH

δξ
, ξ

]†
,
δ2F

δξδξ

[
δG

δξ
, ξ

]†〉

−
〈[

δH

δξ
, ξ

]†
,
δ2G

δξδξ

[
δF

δξ
, ξ

]†〉
.

Upon adding permutations of F , G, and H, the second-derivative terms cancel and

we are left with

〈
ξ ,

[ [
δF

δξ
,
δG

δξ

]
,
δH

δξ

]
+

[ [
δG

δξ
,
δH

δξ

]
,
δF

δξ

]
+

[ [
δH

δξ
,
δF

δξ

]
,
δG

δξ

]〉
,

which vanishes by the Jacobi identity in g.



Appendix B

Proof of W (1)
= I

Out goal is to demonstrate that through a series of lower-triangular coordinate trans-

formations we can make W (1) equal to the identity matrix, while preserving the

lower-triangular nilpotent form of W (2), . . . ,W (n).

We first show that we can always make a series of coordinate transforma-

tions to make Wλ
11 = δλ

1. First note that if the coordinate transformation M is

of the form M = I + L, where I is the identity and L is lower-triangular nilpotent,

then W̃ (1) =M−1W (1)M still has eigenvalue 1, and the matrices

W̃ (µ) =M−1W (µ)M, µ > 1

are still nilpotent.

For λ > 1 we have

Wλ
11 = W̃λ

11 + W̃λ
1ν Lν

1 = W̃λ
11 +

λ−1∑

ν=2

W̃λ
1ν Lν

1 + Lλ
1, (B.1)

where we used W̃λ
1λ = 1. Owing to the triangular structure of the set of equa-

tions (B.1) we can always solve for the Lλ
1 to make Wλ

11 vanish. This proves the

first part.

We now show by induction that if Wλ
11 = δλ

1, as proved above, then the

matrix W (1) is the identity. For λ = 1 the result is trivial. Assume that Wµ
1ν = δµ

ν ,

for µ < λ. Setting two of the free indices to one, Eq. (2.21) can be written

Wλ
µ1Wµ

1σ =Wλ
µσWµ

11

=Wλ
µσ δµ

1 =Wλ
1σ .
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Since W (1) is lower-triangular the index µ runs from 2 to λ (since we are assum-

ing λ > 1):

λ∑

µ=2

Wλ
µ1Wµ

1σ =Wλ
1σ ,

and this can be rewritten, for σ < λ,

λ−1∑

µ=2

Wλ
µ1Wµ

1σ = 0 .

Finally, we use the inductive hypothesis

λ−1∑

µ=2

Wλ
µ1 δµ

σ =Wλ
σ1 = 0 ,

which is valid for σ < λ. Hence, Wλ
σ1 = δλ

σ and we have proved the result. (Wλ
λ1

must be equal to one since it lies on the diagonal and we have already assumed

degeneracy of eigenvalues.)
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