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Topological terms and the global symplectic geometry of
the phase space in string theory

R. Cartas-Fuentevilla and A. Escalante

Instituto de F́ısica, Universidad Autónoma de Puebla, Apartado postal J-48 72570, Puebla Pue.,

México.

Using an imbedding supported background tensor approach for the differential geometry of an

imbedded surface in an arbitrary background, we show that the topological terms associated with

the inner and outer curvature scalars of the string worldsheet, have a dramatic effect on the global

symplectic geometry of the phase space of the theory. By identifying the global symplectic potential

of each Lagrangian term in the string action as the argument of the corresponding pure divergence

term in a variational principle, we show that those topological terms contribute explicitly to the

symplectic potential of any action describing strings, without modifying the string dynamics and

the phase space itself. The variation (the exterior derivative on the phase space) of the symplectic

potential generates the integral kernel of a covariant and gauge invariant symplectic structure for

the theory, changing thus the global symplectic geometry of the phase space. Similar results for

non-Abelian gauge theories and General Relativity are briefly discussed.

I. INTRODUCTION

As everyone knows, within the context of the variational principle in physics, any term that can

be written as a pure surface divergence does not have effects on the dynamics of the system under

study, and therefore it is common to ignore completely such terms, and to focus our attention on

the equations of motion and their consequences. For example, in the case of geometrical theories,

it is well known that the Hilbert-Einstein action for the metric leads to a term proportional to the

called Einstein tensor at the level of the field equations, plus the corresponding pure divergence
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term; such field equations correspond to the Einstein equations in a four-dimensional geometry,

but does not give dynamics to the metric in a two-dimension worldsheet swept out by a string,

since the symmetries of the curvature tensor imply that the Einstein tensor vanishes for such a

geometry. Therefore, the Einstein-Hilbert action depends, in string theory, only on the topology of

the worldsheet, contributing just with a pure divergence term, which is of course completely ignored

in a conventional dynamics analysis.

Thus, there is no apparently any physical motivation for including such a topological term in

any action describing strings, since the corresponding dynamics remains unaltered. For example, if

we attempt to construct a (conventional) canonical formulation to quantize the Dirac-Nambu-Goto

(DNG) strings from the corresponding classical dynamics, we shall obtain the same results whether

we include the topological term, which turns out to be weird, at least from our particular point of

view. On the other hand, it is very known also that the topological term has a global significance

in the path integral formulation of string theory, weighting the different topologies in the sum over

world surfaces. Thus, it is reasonable to think that a term that depends only on the global properties

of the worldsheet, plays a non trivial role in such a global description of the theory.

With these preliminaries, the purpose of this work is to show that in a global description of

the canonical formulation of string theory (as apposed to the local conventional description of the

canonical formalism in terms of p’s and q’s widely disseminated in the literature), a topological term

has effectively a global significance, such as it does in the path integral formulation of the theory.

Such a global contribution of the topological term comes from the argument of the corresponding

pure divergence term in a variational principle, which will be identified as a global 1-form on the

covariant phase space of the theory, whose direct exterior derivation generates the integral kernel

of a covariant and gauge invariant symplectic structure. As a by-product, it is shown that from

a spurious total divergence term in a variational principle, one can identify physically relevant

geometrical structures on the phase space.

In the next section, we summarize the basic aspects of the strongly covariant description of an

imbedding given by Carter in [1], which are essential for our present aims. In Section III, we outline

the definition of the covariant phase space and the exterior calculus associated with it. In Section

IV, we give some remarks on the covariant canonical formulation of the DNG branes, in order to
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prepare the background for the subsequent sections, where the topological terms are worked out.

Specifically in Section V, the inner curvature scalar for an imbedded surface of arbitrary dimension

is considered, and we show that in the particular case of a string world surface, it has not effectively

any contribution to the string dynamics, but we can identify a symplectic potential for it. In Section

VI, we considered again the inner curvature scalar, but now directly as a pure divergence term for a

two-dimensional geometry; we find a full agreement with the previous results of Section V. In Section

VII, the outer curvature scalar is considered as a Lagrangian term for string theory, and we identify

for such a topological term its corresponding symplectic potential. In Section VIII, we give some

concluding remarks, and we discuss some open questions for further research. In the Appendix A,

we discuss the cases of the Yang-Mills theory and General Relativity and their respective topologi-

cal terms. Finally in the Appendix B we summarize the basic formal aspects of symplectic geometry.

II. Basic differential geometry of an imbedded

In this Section we introduce the basic ideas of the imbedding supported background tensor

approach developed by Carter [1], which will be used in the present treatment. In the Carter scheme,

the emphasis is on the use of local coordinate patches on the background manifold for describing

an imbedded p (brane world) surface in such a higher-dimensional background. The great virtue

of this scheme is that avoids the (widely disseminated) use of excess mathematical baggage that

obscures the simplicity and generality of laws and results on the subject, which is also manifested

in the study of the symplectic geometry of the brane dynamics in [2, 3, 4].

Therefore, we outline the description given in [1] for the various kinds of curvature that are

associated with a spacelike or timelike p-surface imbedded in a n-dimensional space or spacetime

background with metric gµν . Specifically the internal curvature tensor of the imbedding can be

written as

Rκλ
µ
ν = 2nσ

µ nν
τ n[λ

π ∇κ] ρπ
σ
τ + 2ρ[κ

µπ ρλ]πν , (1)

where nµν is the (first) fundamental tensor of the p-surface, that together with the complementary
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orthogonal projection ⊥µν satisfy

nµ
ν +⊥µ

ν = gµν , nµ
ν ⊥ν

ρ = 0, (2)

and the tangential covariant differentiation operator is defined in terms of the fundamental tensor

as

∇µ = nρ
µ ∇ρ, (3)

where ∇ρ is the usual Riemannian covariant differentiation operator associated with gµν . Addi-

tionally, ρλ
µ
ν represents the internal frame rotation (pseudo-) tensor field, or more specifically the

background spacetime components of the internal frame components of the natural gauge connection

for the group of p-dimensional internal frame rotations. The frame gauge dependence of this field

will be crucial in order to establish our pretended results. It satisfies the properties

ρλµν = −ρλνµ, ⊥ρ
λ ρρµν = 0 = ⊥ρ

λ ρµρν , (4)

whereas the internal curvature tensor (1) satisfies the usual Riemann symmetry properties and the

Ricci contractions

Rµν = Rµσν
σ, R = Rσ

σ, (5)

with

⊥σ
β Rσλµν = 0, ⊥σ

β Rσµ = 0. (6)

From the fundamental tensor and the Ricci contractions (5) one can define the internal adjusted

Ricci tensor as

R̃µν ≡ Rµν − 1

2(p− 1)
R nµν , (7)

where p is the dimension of the imbedded p-surface. As pointed out in [1], for the special case

p = 2 of a two-dimensional imbedded surface (that applies to string theory, for which this work is

concerned), the adjusted Ricci tensor (7) vanishes identically:

R̃µν ≡ Rµν − 1

2
R nµν = 0. (8)

The identity (8) will imply, as we shall see below, that the inner curvature scalar given in (5) can

not give any effective contribution in a variational principle, as already it was mentioned in the

introduction.
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Similarly, we have the outer curvature tensor of the imbedded in terms of the external gauge

connection ωλ
µ
ν [1],

Ωκλ
µ
ν = 2⊥σ

µ ⊥ν
τ n[λ

π∇κ] ωπ
σ
τ + 2ω[κ

µπ ωλ]πν ,

with the restricted symmetries

Ωµνρσ = Ω[µν] [ρσ], Ωλν = Ωσλ
σ
ν = 0, Ω = Ωλ

λ = 0, (9)

and thus the outer curvature tensor is purely Weyl-like, since all its traces vanish. However, as we

shall see in Section VII, one can even construct a (pseudo-) scalar invariant Ω for dimensionally

restricted geometries [1], which will be related with a topological invariant, the outer analogue of

the well known Gauss-Bonnet invariant associated with the inner curvature scalar.

III. Covariant phase space and the exterior calculus

In accordance with [5], in a given physical theory, the classical phase space is the space of solutions

of the classical equations of motion, which corresponds to a manifestly covariant definition. Based

on this definition, the idea of giving a covariant description of the canonical formalism consists in

describing Poisson brackets of the theory in terms of a symplectic structure on such a phase space

in a covariant way, instead of choosing p’s and q’s. Strictly speaking, a symplectic structure is a

(non degenerate) closed two-form on the phase space; hence, for working in this scheme an exterior

calculus associated with the phase space is fundamental. We summarize and adjust all these basic

ideas about the phase space formulation given in Ref. [5] for the case of branes treated here [2].

Let Z be the phase space; any (unperturbed) background quantity such as the background and

internal metrics, the projection tensors, connections, etc., will be associated with zero-forms on Z

(see Appendix B). The Lagrangian deformation δ acts as an exterior derivative on Z, taking k-forms

into (k + 1)-forms, and it should satisfy the nilpotency property,

δ2 = 0, (10)

and the Leibniz rule

δ(AB) = δAB + (−1)AA δB.
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A differential form A that satisfies δA = 0, is called closed. If the differential form A can be written

as the exterior derivative of another form B (of lower order) A = δB, is called exact. Thus, any exact

form is automatically closed, because of the nilpotency property (10). In general, the differential

forms satisfy the Grassman algebra: AB = (−1)AB BA.

In particular, the deformation in the coordinate field xµ of the background ξµ = δ xµ, is the

exterior derivative of the zero-form xµ, and corresponds to an one-form on Z, and thus is an anti-

commutating object: ξµ ξλ = −ξλ ξµ. In according to (10), ξµ will be closed, δ ξµ = δ2 xµ = 0,

which is evident from the explicit form of δ ξµ given in [6]:

δ ξµ = −Γµ
λν ξ

λ ξν = 0, (11)

which vanishes because of the symmetry of the background connection Γµ
λν in its indices λ and ν

and the anticommutativity of the ξλ on Z. In Appendix B, we summarize other formal aspects of

symplectic geometry, particularly that associated with an ordinary scalar field, with the idea of clar-

ifying the basic scheme in the simplest case. A more complete treatment of the symplectic geometry

for systems with support confined to a lower dimensional submanifold is given in [7]. However, for

our purposes, the results of this section are sufficient.

IV. Global structure of the phase space of DNG branes from a global symplectic

potential

In this section, before considering the topological terms, we shall give some remarks on the

covariant canonical formulation of the DNG action for an arbitrary brane developed in [2, 3], in

order to prepare the background and to clarify the panorama for the subsequent inclusion of the

topological terms. It is convenient to do the general treatment for branes of arbitrary dimension,

and then to consider the particular case of string theory, which will show the particularities of the

later with respect to the former.

The action for DNG branes in a curved embedding background is given by [6]

S0 = σ0

∫ √
−γ dS, (12)
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where σ0 is a fixed parameter, dS is the surface element induced on the world surface by the

background metric. The first order (Lagrangian) variation of S0 implies that [6]

σo

∫ √
−γ ∇µ(n

µ
ν ξ

ν)dS − σ0

∫ √
−γ ξν ∇µ(n

µ
ν)dS = 0, (13)

From Eq. (13) it follows that, modulo a total divergence, the equations of motion are

∇µ n
µν = Kν = 0, (14)

where Kν is the trace of the second fundamental tensor defined as Kµν
ρ = nλ

ν ∇µ nρ
λ, thus

Kν = Kµ
µ
ν .

From the equations (14) we can define the fundamental concept in the global description of

the canonical formulation of the theory: the covariant phase space of DNG branes is the space of

solutions of Eqs. (14), and we shall call it Z.

Following the spirit of the present work of that the pure divergence term in (13) be no ignored,

in [3] we have demonstrated that the argument of such a term plays the role of a global symplectic

potential on Z, in the sense that its exterior derivative on Z (identified with the deformation op-

erator δ, according to section III), generates the integral kernel (the symplectic current) of a (non

degenerate) closed two-form on Z, which represents the symplectic structure that contains all the

physical information on the Hamiltonian structure of the phase space, representing thus a start-

ing point for the study of the symmetry and quantization aspects of the theory. Specifically the

symplectic structure is given by

ω =

∫

Σ

δ(−
√
−γ nµ

α ξα)dΣµ =

∫

Σ

√
−γ J̃µ dΣµ, (15)

with
√−γ J̃µ = δ(−√−γ nµ

α ξα), Σ being a (spacelike) Cauchy surface for the configuration of

the brane, and dΣµ is the surface measure element of Σ, and is normal on Σ and tangent to the

world-surface; Eq. (15) shows that ω is an exact differential form (since comes from the exterior

derivative of an one-form), and in particular an identically closed two-form on Z. The closeness

is equivalent to the Jacobi identity that Poisson brackets satisfy, in an usual Hamiltonian scheme.

Moreover, in [3] it is proved that the symplectic current is (world surface) covariantly conserved

(∇µ J̃
µ = 0), which guarantees that ω in (15) is independent on the choice of Σ and, in particular,

is Poincaré invariant.
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In this manner, as a conclusion of this section, the argument of the pure divergence term in (13)

represents a fundamental (gauge) field on Z, generating the (strength) geometrical structure ω on

Z, which in turns represents a complete Hamiltonian description of the covariant phase space of the

theory.

V. Inner curvature scalar as a Lagrangian term

In this section, we shall consider a Hilbert term, proportional to the inner curvature scalar of

the imbedded p-surface

χ = σ1

∫ √
−γ R dΣ, (16)

where σ1 is a fixed parameter, and let us determine its contribution to the brane dynamics modulo

a pure divergence term in a variational principle.

Within the covariant scheme given by Carter [6] for the deformations dynamics, it is known that

δ
√
−γ =

1

2

√
−γ nµν δ gµν , (17)

where the variation of the background metric is given by its Lie derivative with respect to the

deformation vector field ξµ = δ xµ:

δ gµν = ∇µ ξν +∇ν ξµ.

In order to determine the variation of the scalar R, let us calculate first the variation of the internal

curvature tensor (1), and its contractions, exploiting the frame gauge dependence of ρλ
µ
ν , which

means that it can always be set equal to zero at any single chosen point by an appropriate choice of

the relevant frames [1]. Therefore, if we consider a variation of ρλ
µ
ν to a new connection

ρλ
µ
ν → ρλ

µ
ν + δ ρλ

µ
ν ,

then this variation leads to a variation in the internal curvature tensor given by

δ Rκλ
µ
ν = 2nσ

µ nν
τ n[λ

π ∇κ] δ ρπ
σ
τ , (18)
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and thus,

δ Rµν = 2nσ
κ nν

τ n[µ
π ∇κ] δ ρπ

σ
τ , (19)

and hence, we find that

nµν δ Rµν = ∇µ ψ
µ
top, (20)

where

ψ
µ
top = nαβ δ ρα

µ
β − nα

β nµτ δ ρα
β
τ . (21)

It is important to note that, although the connection ρα
β
τ can always be set equal to zero, its

variation δρα
β
τ , a tensor field, can no be in general gauged away.

The equations (18)–(20) may be the analogue of the very known Palatini equations in the context

of general relativity, where such equations are used in order to obtain the Einstein equations from

the Hilbert action.

Finally, using Eqs. (18) and (21), and considering that R = nµν Rµν , one can calculate the

variation of χ in (16):

δ χ = σ1

∫ √
−γ

(
1

2
R nµν −Rµν

)
δgµνdΣ + σ1

∫ √
−γ∇µ ψ

µ
topdΣ; (22)

Eq. (22) gives the universal contribution of the (inner) curvature scalar as a Lagrangian term on

the brane dynamics through the first term on the right hand side, and, as one can already guess

at this point, its universal contribution to the symplectic potential on the phase space of the brane

theory through ψµ
top, in the second term. In general, 1

2R nµν −Rµν does not vanish for a geometry

of arbitrary dimension, and therefore, in general, χ change simultaneously the brane dynamics, the

phase space, and the symplectic structure of the later (and hence this work may no make sense

in such a general situation). However, as discussed in Section II (see Eq. (8)), the adjusted Ricci

tensor vanishes identically for string theory, and χ does not give dynamics to such objects (and for

convenient boundary conditions, the surface term in (22) can be completely eliminated). Moreover,

by defining the covariant phase space as the space of solutions of the dynamics equations, the phase

space itself is unmodified by the inclusion of χ in string theory. However, considering our present

procedure for identifying the contribution of any Lagrangian term to the global symplectic potential

of the theory, χ in Eq. (22) has already modified the symplectic structure of the (unmodified) phase

space of the string theory by means of ψµ
top. For instance, if we consider the more general action
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S = S0 + χ for the particular case of string theory, where S0 and χ are given in Eqs. (12) and (16),

respectively, the equations of motion are, according to Eqs. (8), (13), and (22), the same equations

(14) obtained just for S0, and hence the phase space is again Z. However, the symplectic potential

on Z is no longer σ0 n
µ
ν ξ

ν , but σ0 n
µ
ν ξ

ν + σ1 ψ
µ
top, and the corresponding symplectic structure is

given by

ω =

∫

Σ

δ
[√

−γ (σ0 n
µ
ν ξ

ν + σ1 ψ
µ
top)

]
d Σµ, (23)

which will be evidently closed, and similarly for any action describing strings.

VI. The inner curvature scalar for a string worldsheet

In the previous section we have found the contribution of the Gauss-Bonnet topological term

to the Hamiltonian structure of string theory considering the more general case of a brane of arbi-

trary dimension, which shown the particularities of the string case as opposed to the other higher-

dimensional objects. However, we can determine the symplectic potential for string theory directly

from the expression for the inner curvature scalar for a two-dimensional worldsheet, which has the

well known property of being a pure surface divergence, avoiding the general brane geometry, and

exploiting the particularities of a two-dimensional geometry.

In the strong covariant scheme given in [1], it is shown that the inner curvature scalar can be

written as

R = ∇µ (Eµν ρν), (24)

where the frame independent antisymmetric unit surface element tensor Eµν is defined as

Eµν = 2 ι0
[µ ι1

ν]; (25)

ι
µ
0 is a timelike unit vector, and ιµ1 a spacelike one, which constitute an orthonormal tangent (to the

worldsheet) frame. The rotation (co)vector ρµ is defined in terms of the internal connection as

ρλ = ρλ
µ
ν Eν

µ, ρλ
µ
ν =

1

2
Eµ

ν ρλ. (26)

In accordance with Eqs. (26), the frame gauge dependence of ρλ
µ
ν induces the same gauge depen-

dence on ρµ (see paragraph after Eq. (17)); therefore a variation ρµ → ρµ+ δ ρµ leads to a variation
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in (frame gauge dependent) R given by

δ R = ∇µ (Eµν δ ρν). (27)

Hence, the variation of χ in Eq. (16) (with R given by (24) for a string) can be written simply as

δ χ = σ1

∫ √
−γ ∇µ (Eµν δ ρν) dΣ, (28)

and we identify (σ1)Eµνδρν as a symplectic potential for χ in string theory. Considering that from

Eqs. (26), δ ρλ
µ
ν = 1

2E
µ
ν δρλ, that n

µν = ι
µ
0 ι

0ν + ι
µ
1 ι

1ν [1], and Eq. (25), it is very easy to verify

that ψµ
top in Eq. (21) corresponds, for string theory, exactly to Eµνδρν . In this manner, there exists

a full agreement between both approaches for finding out the symplectic potential for χ. Note that

in this case, there is no restriction on the dimension of the background geometry.

VII. The outer curvature scalar for a string worldsheet

In the case of a world sheet embedded in a four-dimensional background spacetime, using the

standard fully antisymmetric four-volume measure tensor of the background ελµνρ, and the outer

curvature scalar given in Section II, one can determine a scalar magnitude Ω given by [1, see also 6,

and 8]

Ω =
1

2
Ωλµνρ ε

λµνρ,

and a twist convector ωµ (the outer analogue of ρµ), in the form

ων =
1

2
ων

µλ ελµρσ Eρσ, (29)

and therefore, we can rewrite Ω as a pure divergence as

Ω = ∇µ (Eµν ων), (30)

which is frame gauge dependent and is the (dimensionally restricted) outer analogue of R in Eq.

(24). Thus, the world surface integral of Ω gives a topological term expressed as

χ′ ≡ σ2

∫ √
−γ Ω dΣ = σ2

∫ √
−γ ∇µ (Eµν ων) dΣ, (31)
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where σ2 is a fixed parameter. Hence, χ′ gives no an effective contribution on the string dynamics.

Appealing to the frame gauge dependence of ων inherited from ων
µλ, the variation of χ′ is given by

δ χ′ = σ2

∫ √
−γ ∇µ (Eµν δ ων) dΣ, (32)

and we identify (σ2)Eµν δ ων as a symplectic potential for χ′ in string theory (in a four-dimensional

background). Note that although ων can be set equal to zero at any single point, δ ων can be no in

general gauged away.

VIII. Remarks and prospects

A. Topological terms and deformation dynamics

An important conclusion from the previous sections is that the topological terms do not need

modify the equations of motion of the theory for having an effective contribution on the symplectic

properties of the phase space. Furthermore, the procedure followed in the present work for determin-

ing the corresponding symplectic potential for any Lagrangian term, may seem only a prescription

without any solid basis (although there no either exists apparently some argument for ignoring such

contributions), with the final purpose that the variation of those potentials will give an effective

contribution on the integral kernel of the symplectic structure.

However, we have employed another approach for determining the contribution of any Lagrangian

term on the kernel integral of the symplectic structure of the theory under study, and it consists in

to construct the symplectic current from the corresponding deformation dynamics, using the con-

cept of adjoint operators. For example, in [9] the symplectic currents originally suggested in [5]

for Yang-Mills theory and General Relativity were found using the adjoint operators scheme. The

corresponding current for branes in a curved background was obtained also using such a scheme in

[2]; such a current corresponds exactly to that obtained using the procedure presented here, as we

have outlined in Section IV. All these results suggest clearly the following: the topological terms can

change drastically the deformation dynamics of the theory, without modifying the dynamics itself.

With this idea, in [10] it is proved that the variation of the Einstein tensor modifies the deformation

dynamics of string theory in a weakly (as opposed to the present strongly) covariant description
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of the theory; the symplectic current obtained from that modified deformation dynamics using the

adjoint operators scheme, corresponds exactly to that obtained by variations of the symplectic po-

tential obtained in [11] using the present procedure. Therefore, it remains a detailed study of the

contributions of the topological terms considered in the present work, on the deformation dynamics

of string theory. The importance of the study of a (modified) deformation dynamics goes beyond

the present interest in the symplectic geometry of the phase space, for example the stability aspects

of the solutions of the theory, among other.

B. Possible physical implications of ψ
µ
top

Once we have determined explicitly the contribution of the topological terms on the global phase

space formulation for string theory, it is important to discuss about the possible implications in a

more physical context. As discussed in the introduction, a symplectic structure on the phase space

is finally a Hamiltonian structure for the theory, and thus represents a starting point for the study

of the symmetry and quantization aspects. For example, in [4] the Poincaré charges, the closeness

of the Poincaré algebra, relevant commutation relations for DNG branes (which contains the string

case as a particular case) were studied using precisely the symplectic geometry of the phase space

established in [2, 3]. Does change the inclusion of the topological terms the results obtained in [4]

for DNG strings, leaving the dynamics unchanged?

C. A new type of topological strings?

The Lagrangian terms associated with the topological terms always have been considered as cor-

rective or additional terms of other Lagrangian terms, which whether give dynamics to the system.

Apparently the fact that the topological terms leave unchanged the dynamics does no permit that

one may consider only such terms “for making physics”. However, the results presented here may

suggest that, in spite of its null dynamics, the existence of ψµ
top for a Lagrangian involving only the

topological terms may imply that “the physics” for such (hypothetical) topological strings will be in

other domain, different to the classical one, since finally a symplectic structure (that obtained from

ψ
µ
top) governs the “transition” between the classical and quantum domains. However, it is important

to point out that we are only speculating. It is possible that finally the answer for this open question

turns out to be trivially simply.
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D. Final comments

The results presented here may extend the role played by the topological terms in the context

of string theory, and possibly other areas. Such results, although certainly limited, suggest a deeper

research with a perspective different to that usually given in the known literature.

As we have seen in this work, the differential geometry of an imbedded developed in [1] has been

crucial in order to establish our results, and various aspects considered in that reference had not

been completely treated even in the pure mathematical context, as pointed out by Carter himself [1].

In this sense, following the spirit of the mathematical physics, the present work can be considered

as an attempt for extracting physics from the Carter formalism.
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Appendix A: Symplectic potentials and topological terms for Yang-Mills theory

and General Relativity

A. Yang-Mills Theory

As we know, the Yang-Mills theory is a generalization of Maxwell’s electromagnetic theory, and

the action for this theory is

L = −1

2

∫
Tr(Fµν Fµν)d

4x, (A1)
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where Fµν is the Yang-Mills curvature given by

Fµν = ∂µ Aν − ∂ν Aµ + [Aµ, Aν ], (A2)

and Aν is the gauge connection. The variation of the curvature (A2) is

δ Fµν = ∂µ δ Aν − ∂ν δ Aµ + [δ Aµ, Aν ] + [Aµ, δ Aν ]. (A3)

In this manner, using the equation (A3) we can calculate the variation of the action (A1), as usual

in ordinary field theory, and to obtain

δ L = −
∫
Tr(Fµν δ Fµν)d

4x

= −2

∫
∂µTr[(δ Aν F

µν)]d4x+ 2

∫
Tr[(∂µ F

µν + [Aµ, F
µν ])δ Aν ]d

4x, (A4)

where we can find the equations of motion

∂µ F
µν + [Aµ, F

µν ] = 0, (A5)

and following the ideas of the present work, the argument of the pure divergence term in (A4)

(traditionally ignored in the literature),

Ψµ ≡ −Tr[δ Aν F
µν ], (A6)

that does not contribute to the dynamics of the system, works as a symplectic potential on phase

space.

If we take the variation of Ψµ in equation (A6), we obtain

δ Ψµ = Tr[δ Aν δ F
µν ], (A7)

where we have considered that δ is nilpotent and the Leibniz rule. We can see that the expression

(A7) is exactly the symplectic current suggested in [5] and obtained in [9] applying the method of

self-adjoint operators. Thus, δ Ψµ is a covariantly conserved because of the self-adjointness of the

linearized theory [9], and by equation (A7) is closed because of the nilpotency of δ. Therefore, the

two-form

ω =

∫

Σ

δ(Ψµ)dΣµ, (A8)
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where Σ is a Cauchy hypersurface, is a symplectic structure for Yang-Mills theory.

Furthermore, it is well known that one can construct a topological term for the Yang-Mills theory

given essentially by

ǫµνσρ Tr(Fµν Fσρ), (A9)

which is a total derivative and does not give dynamics to the gauge field, but as we already known,

will contribute explicitly to the symplectic potential Ψµ in Eq. (A6) (and to the linearized equa-

tions), without modifying the equations of motion (A5).

B. General Relativity

Let us consider the Einstein-Hilbert action

L =

∫ √
−g R d4x, (A10)

where g is the determinant of the metric tensor, and R is the scalar curvature. Considering that

δ
√
−g = 1

2

√
−g gµν δ gµν , (A11)

δ gµν = −gµα gγν δ gαγ , (A12)

δ Rµν = ∇γ δ Γµν
γ −∇ν δ Γµγ

γ , (A13)

we can calculate the variation of R using the equations (A12) and (A13), obtaining

δR = δ(gµν Rµν) = δ gµν Rµν + gµν δ Rµν

= −gµα gγν δ gαγ Rµν + gµν [∇γ δ Γµν
γ −∇νδ Γµγ

γ ]. (A14)

In this manner, the variation of L in equation (A10) is

δL =

∫
[δ
√
−g R+

√
−g δR]d4x

=

∫ √
−g(−Rµν +

1

2
gµν R)δ gµνd

4x+

∫ √
−g∇γ [g

µν δ Γνµ
γ − gµγ δ Γµα

α]d4x, (A15)

where we can identify the very known equations of motion

Rµν − 1

2
gµν R = 0, (A16)
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and we identify from the pure divergence term in equation (A15), the following

Ψγ =
√
−g[gµν δΓνµ

γ − gµγ δΓµα
α] (A17)

as a symplectic potential for General Relativity, that does not contribute to the dynamics of system

but will generate a symplectic structure on the phase space.

If we take the variation of (A17) we find

δ Ψγ = δ
√
−g[gµν δ Γνµ

γ − gµγ δ Γµν
ν ] +

√
−g δ[gµν δ Γνµ

γ − gµγ δ Γµν
ν ]

= −
√
−g jγ , (A18)

where jγ is given by

jγ = δ Γνµ
γ [δ gµν +

1

2
gµν δ lng]− δ Γµν

ν [δ gγµ +
1

2
gγµ δ lng], (A19)

that is the expression suggested in [5] and obtained in [9] applying the method of self-adjoint op-

erators. In this manner jγ is covariantly conserved because of the self-adjointness of the linearized

theory [9], and by equation (A18) is closed.

Therefore

ω =

∫

Σ

δ(Ψγ)dΣγ , (A20)

is a symplectic structure for General Relativity.

Similarly, in the case of General Relativity one can construct a topological term given, for specific

numbers A, B, and C, as

ǫµναβ Tr(Rµν Rαβ) =
√
−g

[
A R2

µναβ + B R2
αβ + C R2

]
, (A21)

which, for convenient boundary conditions does not change the equations (A16), but it will contribute

explicitly to the symplectic structure of the theory (A20).

It is well known the relevant role that the topological terms (A9), and (A21) play in the called

gauge and gravitational anomalies (respectively) in the Feynman path integral formulation of the

theories. Therefore, the results presented in this work may contribute to the study of the profound

relationship between pure divergence terms, and topological numbers, but now in the setting of a

canonical formulation of the theories, which is a subject practically unknown in the literature. We
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hope to extent all these subjects elsewhere.

Appendix B: Basic symplectic geometry

In this appendix we discuss briefly the basic elements of the symplectic geometry of a scalar field

theory on spacetime (M), with the purpose of clarifying our basic ideas of Section IV of the present

work. For more details about this little outline, see references [5].

If

∆φ− V ′(φ) = 0, (B1)

is the standard equation of motion for the scalar field φ on spacetime, the covariant phase space Z

corresponds in this case to the space of solutions of Eq. (B1). In this manner, if φ ∈ Z and x ∈ M

is a spacetime point, then we can define a function x̂ on Z by the mapping x̂ : Z → R, x̂(φ) = φ(x).

The elements of the tangent vector space to Z at φ (TφZ) correspond to solutions of the linearized

equation

∆δφ− V ′′(φ) δφ = 0, (B2)

where δφ is an infinitesimal displacement of φ. Furthermore, we can define an one-form x∗ (an

element of the dual space T ∗

φZ to TφZ), by the mapping TφZ → R, x∗(δφ) = δφ(x). In this manner

δ associates to the zero-form x̂ : Z → R, the one-form δx̂ ≡ x∗ : TZ → R, according to the rule

δ(φ(x)) = δ(x̂(φ)) ≡ δx̂(δφ) = x∗(δφ) = δφ(x). (B3)

Therefore, misusing this definitions, we can denote the function x̂(φ) as φ(x), and the one-form

δx̂(δφ) as δφ(x).

A general n-form can be written as

A =

∫
dx1...dxnαx1...xn

(φ)δφ(x1)...δφ(xn), (B4)
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where αx1...xn
(φ) is an arbitrary function for each n-tuple of the spacetime points x1, ..., xn. The

action of δ on this n-form is defined as

δA =

∫
dx0dx1...dxn

δαx1...xn

δφ(x0)
δφ(x0)δφ(x1)...δφ(xn), (B5)

where δα
δφ

denotes the variational derivative of α with respect to φ(x). From this equation, it is easy

to see that

δ2A =

∫
dx′0dx0dx1...dxn

δ2αx1...xn

δφ(x′0)δφ(x0)
δφ(x′0)δφ(x0)δφ(x1)...δφ(xn) = 0, (B6)

which vanishes identically since the variational derivative in (B6) is symmetric respect to the in-

terchange of φ(x′0) and φ(x0), and the fact that δφ(x′0) and δφ(x0) are anticommutating objects

(correspond, as seen above, to one-forms). Thus, we can establish that, in general,

δ2 = 0. (B7)
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