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Hidden topological structure in the continuous Heisenberg spin chain
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In order to study the spin configurations of the classical one-dimensional Heisenberg model, we
map the normalized unit vector, representing the spin, to a space curve. We show that the total
chirality of the configuration is a conserved quantity. When the space curve forms a knot, this
defines a new class of topological spin configurations for the Heisenberg model.

PACS numbers: 75.10.Pq, 75.10.Hk, 02.40.Hw, 02.10.Kn

It is well known that the two-dimensional continuous
Heisenberg model has very nice topological properties
(Belavin and Polyakov 1975) [1]. The order parameter
is a normalized vector field n

2 = 1 (therefore the order
parameter manifold is S2). If we impose homogenous
boundary conditions on the vector field n(r)

r→∞
= n0

( constant vector field ), we can compactify the plane
R2 into S2 and therefore the possible field configurations
are classified by π2(S

2) = Z. The energy in each class
is bounded from below H ≥ nJ , where n is the number
of times S2 is wrapped around S2, and J is the coupling
constant in the Heisenberg spin hamiltonian. Unfortu-
nately the one dimensional Heisenberg model does not
have this nice topological property. Under homogeneous
boundary conditions the line R1 may be compactified
to S1, and now π1(S

2) = 0 and there are no different
classes of configurations based on homotopy. In order to
find out if there is a hidden topological structure in the
one dimensional case one has to analyze the Heisenberg
hamiltonian in more details. The vector field is normal-
ized and therefore we will use the following representation
for n = (sin θ cosφ, sin θ sinφ, cos θ). In θ and φ variables
the hamiltonian has the form:

H = J

∫ +∞

−∞

(θ2
s
+ sin θ2φ2

s
)ds (1)

where the subscript s stands for d

ds
and s denotes the

coordinate along R1. This hamiltonian is not symmet-
ric under homotety transformation s → λs and therefore
the spin configurations are not metastable like in the 2D
case. The equations of motion for this spin hamiltonian
have been established (Tjon and Wright 1977)) [2] in tak-
ing φ and cos θ to be the conjugated generalized coordi-
nate and momentum so that the Poisson bracket gives
[φ(x), cos θ(y)] = δ(x− y). The generator of translations
(momentum) is given by the following expression (Tjon
and Wright 1977) [2]:

P =

∫ +∞

−∞

(1− cos θ)φsds (2)

where the third component of the normalized generator
of rotations (magnetization) is given by (Tjon andWright

1977)[2]:

M =

∫ +∞

−∞

(cos θ − 1)ds (3)

The quantities P and M are constants of the motion.
For our analysis of the possible spin configurations it is
useful to map the unit vector n to the unit tangent of a
space curve (Balakrishnan et al. 1990) [3]. Now different
space curves will represent different spin configurations.
We will impose homogeneous boundary conditions, which
will assure that the energy is finite and the curves repre-
senting the different spin configurations will tend to the
straight line as s → ±∞ Now we will concentrate on the
geometrical and topological quantities characterizing a
space curve. Of special interest for us will be the writhe
of a curve (which characterizes the chirality of the curve).
It is defined as follows:

Wr =
1

4π

∫ +∞

−∞

ds

∫ +∞

−∞

ds′
(r− r

′).(n− n
′)

|r− r′|
(4)

The tip of the radius vector r draws the curve, while n
is the unit tangent. A theorem by Fuller (Fuller 1978)[4]
allows to express Wr as an integral of a local quantity.
We will express Wr with respect of a reference curve C0(
Fain and Rudnick 1997)[5]:

Wr = Wr0 +
1

2π

∫ +∞

−∞

n0 × n. d

ds
(n0 + n)

(1 + n0.n)
ds (5)

where Wr0 is the writhe of the reference curve. The
simplest choice is the straight line C0 = (0, 0, s), then
n0 = (0, 0, 1) and Wr0 = 0( Fain and Rudnick 1997)[5].
A simple calculation gives the following expression for
the writhe:

Wr =
1

2π

∫ +∞

−∞

(1− cos θ)φsds (6)

Our first observation is that the writhe Wr for the
spin configurations (quantity that characterizes the chi-
rality of the spin configuration) coincides with the total
momentum P . The total momentum P is a conserved
quantity - it follows that Wr is a conserved quantity too.
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This will lead us to a new class of possible excitations for
the continuous classical spin Heisenberg model. We will
note first that the writhe Wr suffers discontinuity when
one region of the curve crosses another and the jump is
always +2(Frank-Kamenetskii and Vologodskii)[6]. This
means that all configurations that belong to the configu-
ration of the ground state (θ = 0) are separated from all
other classes of configurations by a jump of the writhe
Wr. Let us consider one such configuration: the space
curve representing the spin configuration forms a knot
with a loop which follows the semi-circle at infinity and
then comes back from s = ±∞ as a straight line and goes
into the actual knot. One can imagine also a knot which
is cut at s = s0 and then both ends are pulled to +∞
and −∞ and are put together over the infinite semi-circle
(see Fig.1). The writhe is zero for both straight segments
when s → ±∞ and for the infinite semi-circle. This geo-
metrical construction does not change the writhe of the
actual knot. Such a knot belongs to a whole class of con-
figurations which deform smoothly from one to another
and who are separated from the ground state class by a
jump in the writhe Wr. Belonging to the knot configu-
ration will have consequences for the energy of the spin
configuration too. Let us consider the following Cauchy-
Schwarz inequality:

∫ +∞

−∞

sin2
θ

2
ds

∫ +∞

−∞

φ2
s sin

2 θ

2
≥

≥

(
∫ +∞

−∞

φs sin
2 θ

2
ds

)2

=
P 2

4
(7)

The energy satisfies the obvious inequality:

J

∫ +∞

−∞

(θ2s + sin2 θφ2
s)ds = J

∫ +∞

−∞

(θ2s + 4 sin2
θ

2
φ2
s)ds ≥

≥ J

∫ +∞

−∞

4 sin2
θ

2
φ2
s
ds (8)

Combining inequalities (7) and (8) leads to the follow-

ing inequality for the energy:

H ≥ J
P 2

M
(9)

Let us note here that M = 0 only for the ground state
θ = 0 and that P 6= 0 for curves in the knot configura-
tion. Thus the energy is limited from below for such a
configuration.

We have shown that there are topological configura-
tions for the Heisenberg spin model even in the one-
dimensional case. One should investigate the different
knot configurations in order to elaborate a classification
of such configurations according to the type of knot they
represent.
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FIG. 1: Spin configuration
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