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1 Introduction and preliminaries

A quantum mechanical system is described by a C*-algebra, the dynamical variables
(or observables) correspond to the self-adjoint elements and the physical state of the
system are modelled by the normalized positive functionals of the algebra, see [4, 5].
The evolution of the system M can be described in the Heisenberg picture in which
an observable A ∈ M moves into α(A), where α is a linear transformation. α is an
automorphism in case of the time evolution of a closed system but it could be the
irreversible evolution of an open system. The Schrödinger picture is dual, it gives
the transformation of the states, the state ϕ ∈ M∗ moves into ϕ ◦ α. The algebra
of a quantum system is typically non-commutative but the mathematical formalism
brings commutative algebras as well. A simple measurement is usually modelled
by a family of pairwise orthogonal projections, or more generally, by a partition of
unity, (Ei)

n
i=1. Since all Ei are supposed to be positive and

∑

iEi = I, β : Cn →
M, (z1, z2, . . . , zn) 7→

∑

i ziEi gives a positive unital mapping from the commutative
C*-algebra Cn to the non-commutative algebra M. Every positive unital mapping
occurs in this way. The essential concept in quantum information theory is the state
transformation which is affine and the dual of a positive unital mapping. All these
and several other situations justify to study of positive unital mappings between C*-
algebras from a quantum statistical viewpoint.

If the algebra M is “small” and N is “large”, and the mapping α : M → N
sends the state ϕ of the system of interest to the state ϕ ◦ α at our disposal, then
loss of information takes place and the problem of statistical inference is to reconstruct
the real state from partial information. In this paper we mostly consider parametric
statistical models, a parametric family S := {ϕθ : θ ∈ Θ} of states are given and on the
basis of the partial information the correct value of the parameter should be decided.
If the partial information is the outcome of a measurement, then we have statistical
inference in the very strong sense. However, there are “more” quantum situations, to
decide between quantum states on the basis of quantum data, see Example 3 below.
The problem we discuss is not the procedure of the decision about the true state of
the system but we want to describe the circumstances under which this is perfectly
possible.

The paper is organized as follows. In the rest of this section we summarize the
relevant basic concepts both in classical statistics in the non-commutative framework.
Section 2 is about sufficient subalgebras, or subsystems of a quantum system. Most of
the result of this section has been known but we give a complete presentation and in our
proof the operator algebraic methods are minimized. Section 3 is devoted to sufficient
coarse-grainings. The importance of the multiplicative domain of a completely positive
mapping is emphasized here. The factorization theorem of Section 4 is the main result
of the paper. Section 5 connects the exponential families of the quantum setting to
sufficiency problem. In Section 6 the equality case in the strong subadditivity of the
von Neumann entropy is discussed in a possibly infinite dimensional framework and
the factorization result is applied.
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In this paper C*-algebras always have a unit I. Given a C*-algebra M, a state
ϕ of M is a linear function M → C such that ϕ(I) = 1 = ‖ϕ‖. (Note that the
second condition is equivalent to the positivity of ϕ.) The books [4, 5] – among many
others – explain the basic facts about C*-algebras. The class of finite dimensional full
matrix algebras form a small and algebraically rather trivial subclass of C*-algebras,
but from the view-point of non-commutative statistics, almost all ideas and concepts
appear in this setting. A matrix algebra Mn(C) admits a canonical trace Tr and all
states are described by their densities with respect to Tr. The correspondence is given
by ϕ(A) = TrDϕA (A ∈Mn(C)) and we can simply identify the functional ϕ by the
density Dϕ. Note that the density is a positive (semi-definite) matrix of trace 1.

Let M and N be C*-algebras. Recall that 2-positivity of α : M → N means that

[

α(A) α(B)
α(C) α(D)

]

≥ 0 if

[

A B
C D

]

≥ 0

for 2 × 2 matrices with operator entries. It is well-known that a 2-positive unit-
preserving mapping α satisfies the Schwarz inequality

α(A∗A) ≥ α(A)∗α(A). (1)

A 2-positive unital mapping between C*-algebras will be coarse-graining. Here
are two fundamental examples.

Example 1 Let X be a finite set and N be a C*-algebra. Assume that for each x ∈ X
a positive operator E(x) ∈ N is given and

∑

xE(x) = I. In quantum mechanics such
a setting is a model for a measurement with values in X .

The space C(X ) of function on X is a C*-algebra and the partition of unity E
induces a coarse-graining α : C(X ) → N given by α(f) =

∑

x f(x)E(x). Therefore
a coarse-graining defined on a commutative algebra is an equivalent way to give a
measurement. (Note that the condition of 2-positivity is automatically fulfilled on a
commutative algebra.) �

Example 2 Let M be the algebra of all bounded operators acting on a Hilbert space
H and let N be the infinite tensor product M⊗M⊗. . .. (To understand the essence of
the example one does not need the very formal definition of the infinite tensor product.)
If γ denotes the right shift on N , then we can define a sequence αn of coarse-grainings
M → N :

αn(A) :=
1

n
(A+ γ(A) + . . .+ γn−1(A)).

αn is the quantum analogue of the sample mean. �

Let (Xi,Ai, µi) be a measure space (i = 1, 2). Recall that a positive linear map
M : L∞(X1,A1, µ1) → L∞(X2,A2, µ2) is called a Markov operator if it satisfies
M1 = 1 and fn ց 0 implies Mfn ց 0. For mappings defined between von Neumann
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algebras, the monotone continuity is called normality. In case that M and N are von
Neumann algebras, a coarse-graining M → N will be always supposed to be normal.
Our concept of coarse-graining is the analogue of the Markov operator.

We mostly mean that a coarse-graining transforms observables to observables cor-
responding to the Heisenberg picture and in this case we assume that it is unit
preserving. The dual of such a mapping acts on states or on density matrices and it
will be called coarse-graining as well.

We recall some well-known results from mathematical statistics, see [23] for details.

Let (X,A) be a measurable space and let P = {Pθ : θ ∈ Θ} be a set of probability
measures on (X,A). A sub-σ-algebra A0 ⊂ A is sufficient for P if for all A ∈ A,
there is an A0-measurable function fA such that for all θ,

fA = Pθ(A|A0) Pθ − almost everywhere,

that is,

Pθ(A ∩A0) =

∫

A0

fAdPθ (2)

for all A0 ∈ A0 and for all θ. It is clear from this definition that if A0 is sufficient then
for all Pθ there is a common version of the conditional expectation Eθ[g|A0] for any
measurable step function g, or, more generally, for any function g ∈ ∩θ∈ΘL

1(X,A, Pθ).

In the most important case, the family P is dominated, that is there is a σ-finite
measure µ such that P << µ. The following lemma is a useful tool in examining
sufficiency.

Lemma 1 If P is dominated, then there is a countable subset {P1, P2. . . .} ⊆ P such
that Pθ(A) = 0 holds for all θ ∈ Θ if and only if Pn(A) = 0 holds for all n ∈ N.

It follows that if P is dominated then there is a (possibly infinite) convex combina-
tion P0 =

∑

n cnPn, Pn ∈ P, such that P ≡ P0.

For our purposes, it is more suitable to use the following characterization of suffi-
ciency in terms of randomization.

Let Pi = {Pi,θ : θ ∈ Θ} be dominated families of probability measures on (Xi,Ai),
such that Pi ≡ µi, i = 1, 2. We say that (X2,A2,P2) is a randomization of
(X1,A1,P1), if there exists a Markov operatorM : L∞(X2,A2, µ2) → L∞(X1,A1, µ1),
satisfying

∫

(Mf)dPθ,1 =

∫

fdPθ,2 (θ ∈ Θ, f ∈ L∞(X2,A2,P2)).

If also (X1,A1,P1) is a randomization of (X2,A2,P2), then (X1,A1,P1) and (X2,A2,P2)
are stochastically equivalent.

For example, let P ≡ P0 and let A0 ⊆ A be a subalgebra. Then (X,A0,P|A0) is
obviously a randomization of (X,A,P), where the Markov operator is the inclusion
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L∞(X,A0, P0|A0) → L∞(X,A, P0). On the other hand, if A0 is sufficient, then the
map

f 7→ E[f |A0], E[f |A0] = Eθ[f |A0], Pθ − almost everywhere,

is a Markov operator L∞(X,A, P0) → L∞(X,A0, P0|A0
) and

∫

E[f |A0]dPθ|A0
=

∫

fdPθ (f ∈ L∞(X,A, P0), θ ∈ Θ).

We have the following characterizations of sufficient subalgebras.

Proposition 1 Let P be a dominated family and let A0 ⊆ A be a sub-σ-algebra. The
following are equivalent.

(i) A0 is sufficient for P

(ii) There exists a measure P0 such that P0 ≡ P and dPθ/dP0 is A0-measurable for
all θ.

(iii) (X,A,P) and (X,A0,P|A0) are stochastically equivalent

It follows that if P ≡ µ, then the sub-σ-algebra generated by the functions {dPθ/dµ :
θ ∈ Θ} is sufficient for P, moreover, it is contained in any other sufficient subalgebra
in A. Such subalgebras are called minimal sufficient.

Next we formulate a non-commutative setting. Let M be a von Neummann algebra
and M0 be its von Neumann subalgebra. Assume that a family S := {ϕθ : θ ∈ Θ}
of normal states are given. (M,S) is called statistical experiment. The subalgebra
M0 ⊂ M is sufficient for (M,S) if for every a ∈ M, there is α(a) ∈ M0 such that

ϕθ(a) = ϕθ(α(a)) (θ ∈ Θ) (3)

and the correspondence a 7→ α(a) is a coarse-graining. (Note that a positive mapping
is automatically completely positive if it is defined on a commutative algebra.)

Example 3 Consider a bipartite system H = HA ⊗ HB and a family {ϕθ : θ ∈ Θ}
of states on H. Assume that the expectation value of all observables localized at A is
known to us, that is, we know the restriction of ϕθ’s to B(HA) (or the reduced density
matrices). This information is not sufficient in general to decide about θ. We impose
the further condition that HA = HL ⊗HR and the factorization

ϕθ = ϕ0
θ ⊗ ϕRB,

where ϕ0
θ is a state on B(HL) and the state ϕRB of B(HR)⊗B(HB) is independent of

the parameter θ. In this case the restriction of the unknown state to B(HL) determines
the true value of the parameter θ and ϕθ is recovered uniquely.

The subalgebra B(HL) is sufficient and the example is close to typical. In the general
case, however, the relation of the subalgebras B(HL) and B(HA) is more subtle. �
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The following lemma is a quantum version of Lemma 1.

Lemma 2 Assume that the von Neumann algebra M admits a faithful normal state
ψ. Let S = {ϕθ : θ ∈ Θ} be a family of normal states on M. Then there is a sequence
(ϕn) of states in S and a normal state

ω =
∞
∑

n=1

λnϕn

such that suppϕθ ≤ suppω for all θ ∈ Θ.

Proof: Let {pi : i ∈ I} be a set of pairwise orthogonal projections in M, then
ψ(pi) > 0 and ψ(

∑

i pi) ≤ 1, therefore any such set must be at most countable.

We set
P = {pθ := suppϕθ : θ ∈ Θ}

and show that there is a countable subset {p1, p2, . . .} ⊂ P, such that supθ pθ = supn pn

Let C be a set of at most countable subsets in P, ordered by inclusion. Consider
all chains in C, such that if C ⊂ D in the chain, then supC 6= supD. It is clear
that each such chain has at most countably many elements. Let {C1, C2, . . .} be a
maximal such chain and let C = ∪nCn = {p1, p2, . . .}. Then supn pn = supθ pθ. Indeed,
if supn pn 6= supθ pθ, then there is an element p ∈ P, such that supC 6= supC ∪ {p},
which contradicts the maximality of {C1, C2, . . .}.

Let now ϕ1, ϕ2, . . . be elements is S such that suppϕn = pn. Choose a sequence
λ1, λ2, . . . such that λn > 0 for all n and

∑

n λn = 1 and put ω =
∑

λnϕn. Then it is
clear that suppω = supn pn and suppϕθ ≤ suppω for all θ. �

Throughout the paper, we suppose that the hypothesis of the above lemma is satis-
fied, that is, the von Neumann algebras considered admit a faithful normal state. The
algebra B(H) satisfies this condition if and only if the Hilbert space H is separable.

When the states ϕn belong to S and for

ω :=
∞
∑

n=1

λnϕn

the condition suppϕθ ≤ suppω holds for all θ ∈ Θ, we say that S is dominated by
ω.

2 Sufficient subalgebras

In the study of sufficient subalgebras monotone quasi-entropy quantities could be use-
ful. The relative entropy and the transition probability are examples of those
[16, 13].
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Let ϕ and ω be normal states of a von Neumann algebra and let ξϕ and ξω be the
representing vectors of these states from the natural positive cone. Then the transition
probability is defined as

PA(ϕ, ω) = 〈ξϕ, ξω〉.

In case of density matrices this reduces to PA(D1, D2) = Tr(D
1/2
1 D

1/2
2 ).

Theorem 1 Let (M, {ϕθ : θ ∈ Θ}) be a statistical experiment and let M0 ⊂ M be
von Neumann algebras. Assume that {ϕθ : θ ∈ Θ} is dominated by a faithful normal
state ω. Then the following conditions are equivalent.

(i) M0 is sufficient for (ϕθ).

(ii) PA(ϕθ, ω) = PA(ϕθ|M0, ω|M0) for all θ.

(iii) [Dϕθ, Dω]t = [D(ϕθ|M0), D(ω|M0)]t for every real t and for every θ.

(iv) [Dϕθ, Dω]t ∈ M0 for all real t and every θ.

(v) The generalized conditional expectation Eω : M → M0 leaves all the states ϕθ

invariant.

Note that condition (iii) is formulated in terms of Connes’ Radon-Nikodym cocy-
cle and the generalized conditional expectation appearing in (iv) is discussed in the
appendix.

The theorem is essentially Thm 9.5 from [13] and we give the detailed proof in the
finite dimensional situation. The following two lemmas will be used.

Lemma 3 Let T : B(H) → B(K) be a coarse-graining sending density matrices to
densities. Let D1 and D2 be density matrices acting on the Hilbert space H. Then

PA(D1, D2) ≤ PA(T (D1), T (D2))

Proof: On the Hilbert space B(H) one can define an operator ∆ as

∆a = D2aD
−1
1 (a ∈ B(H)),

where the generalized inverse D−1
1 is determined by the relation D1D

−1
1 = D−1

1 D1 =
suppD1. This is the so-called relative modular operator and it is the product of
two commuting positive operators: ∆ = LR, where

La = D2a and Ra = aD−1
1 (a ∈ B(H)).

We have
PA(D1, D2) = 〈D1/2

1 ,∆1/2D
1/2
1 〉.
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Set

∆a = D2aD
−1
1 (a ∈ B(H)) and ∆0x = T (D2)xT (D1)

−1 (x ∈ B(K)).

∆ and ∆0 are operators on the spaces B(H) and B(K). (They become Hilbert space
with the Hilbert-Schmidt inner product.) The transition probabilities are expressed by
the resolvent of relative modular operators:

PA(D1, D2) = 〈D1/2
1 ,∆1/2D

1/2
1 〉

=
1

π

∫ ∞

0

t−1/2 − t1/2〈D1/2
1 , (∆ + t)−1D

1/2
1 〉 dt

PA(T (D1), T (D2)) = 〈T (D1)
1/2,∆

1/2
0 T (D1)

1/2〉

=
1

π

∫ ∞

0

t−1/2 − t1/2〈T (D1)
1/2, (∆0 + t)−1T (D1)

1/2〉 dt

where the identity

x1/2 =
1

π

∫ ∞

0

t−1/2 − t1/2(x+ t)−1 dt

is used. Let us define the operator

V (xT (D1)
1/2 + ξ) = T ∗(x)D

1/2
1 (4)

where ξ ∈ [B(K)T (D1)
1/2]⊥. Then V is a contraction:

‖T ∗(x)D
1/2
1 ‖2 = TrD1T

∗(x∗)T ∗(x) ≤ TrD1T
∗(x∗x) = TrT (D1)x

∗x =

= ‖xT (D1)
1/2‖2 ≤ ‖xT (D1)

1/2 + ξ‖2

since the Schwarz inequality is applicable to T ∗. Let now p1 = suppD1 and q1 =
supp T (D1). Since T

∗ is unital, 0 = TrT (D1)(1−q1) = TrD1(1−T
∗(q1)) and therefore

p1 ≤ T ∗(q1). The Schwarz inequality (1) now implies

〈V (xT (D1)
1/2 + ξ),∆V (xT (D1)

1/2 + ξ)〉 = TrD2T
∗(x)p1T

∗(x∗) ≤ TrD2T
∗(xq1x

∗)

= 〈xT (D1)
1/2,∆0xT (D1)

1/2〉 ≤ 〈xT (D1)
1/2 + ξ,∆0(xT (D1)

1/2 + ξ)〉

where the last inequality follows from

〈∆0xT (D1)1/2, ξ〉 = 〈T (D2)xT (D1)
−1T (D1)

1/2, ξ〉 = 0

It follows that
V ∗∆V ≤ ∆0 . (5)

The function y 7→ (y + t)−1 is operator monotone (decreasing) and operator convex,
hence

(∆0 + t)−1 ≤ (V ∗∆V + t)−1 ≤ V ∗(∆ + t)−1V (6)

(see [6]). Since V T (D1)
1/2 = D

1/2
1 , this implies

〈D1/2
1 , (∆ + t)−1D

1/2
1 〉 ≥ 〈T (D1)

1/2, (∆0 + t)−1T (D1)
1/2 . (7)
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By integrating this inequality we have the monotonicity theorem from the above inte-
gral formulas. �

Condition (i) implies that PA(ϕθ, ω) = PA(ϕθ|M0, ω|M0) due to the monotonicity
of the transition probability under completely positive mappings. Indeed, if α leaves
all ϕθ invariant, then ω ◦ α = ω.

Now we are in the position to analyze the case of equality.

Lemma 4 If
PA(D1, D2) = PA(T (D1), T (D2)),

then
T ∗(T (D2)

itT (D1)
−it)p1 = Dit

2D
−it
1 p1 ,

where p1 = suppD1.

Proof: From the integral formula for the transition probability we have

〈T (D1)
1/2, V ∗(∆ + t)−1V T (D1)

1/2〉 = 〈T (D1)
1/2, (∆0 + t)−1T (D1)

1/2〉 . (8)

for all t > 0. This equality together with the operator inequality (6) gives

V ∗(∆ + t)−1D
1/2
1 = (∆0 + t)−1T (D1)

1/2 (9)

for all t > 0. Differentiating by t we have

V ∗(∆ + t)−2D
1/2
1 = (∆0 + t)−2T (D1)

1/2 (10)

and we infer

‖V ∗(∆ + t)−1D
1/2
1 ‖2 = 〈(∆0 + t)−2T (D1)

1/2, T (D1)
1/2〉

= 〈V ∗(∆ + t)−2D
1/2
1 , T (D1)

1/2〉

= ‖(∆ + t)−1D
1/2
1 ‖2

When ‖V ∗ξ‖ = ‖ξ‖ holds for a contraction V , it follows that V V ∗ξ = ξ. In the light
of this remark we arrive at the condition

V V ∗(∆ + t)−1D
1/2
1 = (∆ + t)−1D

1/2
1

and

V (∆0 + t)−1T (D1)
1/2 = V V ∗(∆ + t)−1D

1/2
1

= (∆ + t)−1D
1/2
1

By Stone-Weierstrass approximation we have

V f(∆0)T (D1)
1/2 = f(∆)D

1/2
1 (11)
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for continuous functions. In particular for f(x) = xit we have

T ∗(T (D2)
itT (D1)

−it)p1 = Dit
2D

−it
1 p1 . (12)

This condition is necessary and sufficient for the equality. �

The previous lemma shows that condition (ii) implies (iii) and it is clear that (iii)
implies (iv). We prove that (iv) implies (i).

Let M1 be the subalgebra generated by {[Dϕθ, Dω]t, t ∈ R} and let ω1, ϕ1 be the
restrictions of ω, ϕθ to M1. Then [Dϕθ, Dω]t satisfies the cocycle condition for σω1

t and
therefore there is a weight ψ on M1, such that [Dψ,Dω1]t = [Dϕθ, Dω]t.

On the other hand, M1 is invariant under the modular group σt
ω, hence there exists

a conditional expectation F : M → M1 preserving ω and

[Dψ ◦ F,Dω]t = [Dψ,Dω1]t = [Dϕθ, Dω]t, ∀t

It follows that ψ ◦ F = ϕθ, therefore ψ = ϕ1 and F preserves also ϕθ.

Let now (iv) be satisfied, then M1 ⊆ M0. The conditional expectation F is a
coarse-graining M → M0 preserving all ϕθ and (i) follows.

Next, we want to show that (iii) implies (v). Let E : M → M0 be the trace
preserving conditional expectation. Then the generalized conditional expectation Eω :
M → M0 acts as

Eω(a) = E(D)−1/2E(D1/2aD1/2)E(D)−1/2

We have to show that
TrE(Dθ)Eω(a) = TrDθa

which is equivalently written as

TrE(Dθ)
1/2E(D)−1/2E(D1/2aD1/2)E(D)−1/2E(Dθ)

1/2 = TrDθa

By analytic continuation from condition (iii), we have

E(Dθ)
1/2E(D)−1/2 = D

1/2
θ D−1/2

It follows that

TrE(Dθ)Eω(a) = TrE(Dθ)
1/2E(D)−1/2D1/2aD1/2E(D)−1/2E(Dθ)

1/2 =

= TrDθD
−1/2D1/2aD1/2D−1/2D

1/2
θ = TrDθa .

The implication (v) → (i) is trivial. �

10



3 Sufficient statistic and coarse-graining

A classical sufficient statistic for the family P is a measurable mapping T : (X,A) →
(X1,A1) such that the generated sub-σ-algebra T−1(A1) ⊂ A is sufficient for P. To
any statistic T , we associate a Markov operator

T̃ : L∞(X1,A1, P
T
0 ) → L∞(X,A, P0), (T̃ g)(x) = g(T (x))

Obviously, (X1,A1,PT ) is a randomization of (X,A,P). As in the case of subalgebras,
we have

Proposition 2 The statistic T : (X,A) → (X1,A1) is sufficient for P if and only if
(X,A,P) and (X1,A1,PT ) are stochastically equivalent.

Proposition 3 (Factorization criterion) Let P << µ. The statistic T : (X,A) →
(X1,A1) is sufficient for P if and only if there is an A1-measurable function gθ for all
θ and an A-measurable function h such that

dPθ

dµ
(x) = gθ(T (x))h(x) Pθ − almost everywhere

Let N , M be C*-algebras and let σ : N → M be a coarse-graining. We say that
σ is sufficient for the statistical experiment (M, ϕθ) if there exists a coarse-graining
β : M → N such that ϕθ ◦ σ ◦ β = ϕθ for every θ.

Let ω =
∑

n λnϕn be the normal state obtained in Lemma 2 and let p = suppω,
q = suppω ◦ σ. Let us define the map α : qN q → pMp by α(a) = pσ(a)p, then α is a
coarse-graining such that ϕθ ◦σ(a) = ϕθ ◦α(qaq) for all θ and α∗

ω = σ∗
ω, where the dual

σ∗
ω is defined in the Appendix. We check that α is sufficient for (pMp, ϕθ|pMp) if and

only if σ is sufficient for (M, ϕθ). Indeed, let β̃ : pMp → qN q be a coarse-graining
such that ϕθ|pMp ◦ α ◦ β̃ = ϕθ|pMp and let β : M → N be defined by

β(a) = β̃(pap) + ω(a)(1− q)

Then β is a coarse-graining and

ϕθ ◦ σ ◦ β(a) = ϕθ ◦ σ(qβ(a)q)) = ϕθ ◦ α ◦ β̃(pap) = ϕθ(pap) = ϕθ(a)

The converse is proved similarly, taking β̃(a) = qβ(a)q for a ∈ pMp. Therefore we
may, and will, suppose that both ω and ω ◦ σ are faithful.

Let us recall the following property of coarse-grainings.

Lemma 5 Let M and N be C*-algebras and let σ : N → M be a coarse-graining.
Then

Nσ := {a ∈ N : σ(a∗a) = σ(a)σ(a)∗ and σ(aa∗) = σ(a)∗σ(a)} (13)

is a subalgebra of N and

σ(ab) = σ(a)σ(b) and σ(ba) = σ(b)σ(a) (14)

holds for all a ∈ Nσ and b ∈ N .
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Proof: The proof is based only on the Schwarz inequality

σ(x∗x) ≥ σ(x)∗σ(x).

From this we have

t(σ(a)σ(b) + σ(b)∗σ(a)∗) = σ(ta∗ + b)∗σ(ta∗ + b)− t2σ(a)σ(a)∗ − σ(b)∗σ(b)

≤ σ(ta∗ + b)∗σ(ta∗ + b)− t2σ(aa∗)− σ(b)∗σ(b)

= tσ(ab+ b∗a∗) + σ(b∗b)− σ(b)∗σ(b)

for a real t and a ∈ Nσ. Divide the inequality by t and let t→ ±∞. Then

σ(a)σ(b) + σ(b)∗σ(a∗) = σ(ab+ b∗a∗)

and similarly
σ(a)σ(b)− σ(b)∗σ(a)∗ = σ(ab− b∗a∗).

Adding these two inequalities we have

σ(ab) = σ(a)σ(b).

�

We call the subalgebra Nσ the multiplicative domain of σ.

Let now N and M be von Neumann algebras and let ω be a faithful normal state
on M such that ω ◦ σ is also faithful. Let

N1 = {a ∈ N , σ∗
ω ◦ σ(a) = a}

It was proved in [17] that N1 is a subalgebra of Nσ, moreover, a ∈ N1 if and only
if σ(a∗a) = σ(a)∗σ(a) and σ(σω◦σ

t (a)) = σω
t (σ(a)). The restriction of σ to N1 is an

isomorphism onto
M1 = {b ∈ M, σ ◦ σ∗

ω(b) = b}

The following Theorem was proved in [17] in the case when ϕθ are faithful states.

Theorem 2 Let M and N be von Neumann algebras and let σ : N → M be a coarse-
graining. Suppose that (M, ϕθ) is a statistical experiment dominated by a state ω such
that both ω and ω ◦ σ are faithful and normal.

Then following properties are equivalent:

(i) σ(Nσ) is a sufficient subalgebra for (M, ϕθ).

(ii) σ is a sufficient coarse-graining for (M, ϕθ).

(iii) PA(ϕθ, ω) = PA(ϕθ ◦ σ, ω ◦ σ)

12



(iv) σ([Dϕθ ◦ σ,Dω ◦ σ]t) = [Dϕθ, Dω]t

(v) M1 is a sufficient subalgebra for (M, ϕθ).

(vi) ϕθ ◦ σ ◦ σ∗
ω = ϕθ.

Proof. Suppose (i), then there is a coarse-graining γ : M → σ(Nσ), preserving ϕθ.
It is easy to see that the restriction of σ to Nσ is invertible. Let α be the inverse of
this restriction and put

β = α ◦ γ

Then β : M → N is a coarse-graining such that ϕθ ◦ σ ◦ β = ϕθ and (ii) is proved.

The implications (ii) → (iii) and (iii) → (iv) follow from Lemmas 3 and 4.

Suppose (iv) and denote ut = [Dϕθ ◦ σ,Dω ◦ σ]t, vt = [Dϕθ, Dω]t. Then we have
σ(ut) = vt for all t. Let pθ = suppϕθ, qθ = suppϕθ ◦ σ. Putting t = 0 in the condition
(iv), we get σ(qθ) = pθ and

σ(utu
∗
t ) = σ(qθ) = pθ = vtv

∗
t = σ(ut)σ(ut)

∗

On the other hand, σ(ut)
∗σ(ut) ≤ σ(u∗tut) by Schwartz inequality and from

ω(σ(ut)
∗σ(ut)) = ω(v∗t vt) = ω(σω

t (pθ)) = ω(pθ)

ω(σ(u∗tut)) = ω ◦ σ(u∗tut) = ω ◦ σ(σω◦σ
t (qθ)) = ω(pθ)

we get σ(u∗tut) = σ(ut)
∗σ(ut). Hence ut ∈ σ(Nσ) for all t. Further, by the cocycle

condition and Lemma 5,

σ(σω◦σ
t (ut)) = σ(u∗sus+t) = v∗svt+s = σω

t (σ(ut))

therefore vt ∈ M1 and by Theorem 1, M1 is sufficient and (v) is proved. As M1 is a
subalgebra in σ(Nσ), this implies (i).

Finally, we prove that (ii) is equivalent to (vi). First, note that a coarse-graining is
sufficient for (M, ϕθ) if and only if it is sufficient for (M, ψθ), where

ψθ = εϕθ + (1− ε)ω

for some 0 < ε < 1.

As the states ψθ are faithful and ω =
∑

n λnψn, it follows from the results in [17]
that σ is sufficient if and only if ψθ ◦ σ ◦ σ∗

ω = ψθ for all θ. Since, by definition,
ω ◦ σ ◦ σ∗

ω = ω, this is equivalent to (vi). �

Let M0 ⊂ M be a subalgebra. From the above theorem, together with the remarks
preceding Lemma 5, we have a generalization of Theorem 1 to the case that suppω = p
and suppω|M0

= q. Namely, M0 is sufficient for (M, ϕθ) if and only if the coarse-
graining α : sqM0q → pMp, α(qaq) = pap is sufficient for the restricted experiment.
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Remark. Let S(ϕ, ω) be the relative entropy and suppose that S(ϕθ, ω) is finite for
all θ. Then the condition (iii) can be replaced by

S(ϕθ, ω) = S(ϕθ ◦ σ, ω ◦ σ)

This can be proved similarly as for the transition probability, using the formula

log x =

∫ ∞

0

(1 + t)−1 − (x+ t)−1dt . (15)

The equality in inequalities for entropy quantities was studied also in [20]. �

The previous theorem applies to a measurement which is essentially a positive map-
ping N → M from a commutative algebra. The concept of sufficient measurement
appeared also in [3]. For a non-commuting family of states, there is no sufficient mea-
surement.

4 Factorization

Let M be a von Neumann algebra and let ω be a faithful state on M. Let M0 ⊂ M
be a subalgebra and assume that it is invariant under the modular group σω

t of ω. Let
M1 = M′

0 ∩M be the relative commutant. We show that M1 is invariant under σω
t

as well. If a ∈ M0 and b ∈ M1, then for t ∈ R, we have

aσω
t (b) = σω

t (σ
ω
−t(a)b) = σω

t (bσ
ω
−t(a)) = σω

t (b)a

Hence M1 is invariant under σω
t . Let ω0, ω1 be the restrictions of ω to M0 and M1.

Then σω
t |M0

= σω0

t and σω
t |M1

= σω1

1 are known facts in modular theory.

Recall that the entropy of a state ϕ of a C*-algebra is defined as

S(ϕ) := sup
{

∑

i

λiS(ϕi‖ϕ) :
∑

i

ϕi = ϕ
}

,

see (6.9) in [13]. For the sake of simplicity, we will suppose in the rest of this section
that the state ω has finite von Neumann entropy S(ω). Then M must be a countable
direct sum of type I factors, see Theorem 6.10. in [13]. Let τ be the canonical normal
semifinite trace on M and let Dω be the density of ω with respect to τ , then

σω
t (a) = Dit

ωaD
−it
ω , a ∈ M.

As the subalgebras M0 and M1 are invariant under σω
t , we have by Proposition

6.7. in [13] that S(ω0), S(ω1) ≤ S(ω) <∞. It follows that both M0 and M1 must be
countable direct sums of type I factors as well.
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Let Dω0
∈ M0 and Dω1

∈ M1 be the densities of ω0 and ω1 with respect to the
canonical traces τ0 := τ |M0 and τ1 := τ |M1. Then for a ∈ M0,

Dit
ωaD

−it
ω = σω

t (a) = σω0

t (a) = Dit
ω0
aD−it

ω0
.

It follows that wt := D−it
ω0
Dit

ω is a unitary operator in M1 and the operators Dit
ω0

and Dis
ω commute for all t, s ∈ R. It is easy to see that wt is a strongly continuous

one-parameter group. Moreover, we have for a ∈ M1,

wtaw
∗
t = Dit

ωaD
−it
ω = σω1

t (a) = Dit
ω1
aD−it

ω1

Therefore, the unitary zt = D−it
ω1
wt is in the center of M1. Again, wt and D

is
ω1

commute
for all t, s and it is easy to see that zt = zit for some positive element z in the center
of M1. Putting all together, we get

Dω = Dω0
Dω1

z (16)

The following theorem is a generalization of the classical factorization theorem.

Theorem 3 Let (M,S) be a statistical experiment dominated by a faithful normal
state ω such that S(ω) < ∞. Let M0 ⊂ M be a von Neumann subalgebra invariant
with respect to the modular group σω

t . Then M0 is sufficient for S if and only if

Dθ = Dθ,0Dω1
z, (17)

where Dθ, Dθ,0 and Dω1
are the densities of ϕθ, ϕθ|M0

and ω|M′
0 ∩ M, respectively

and z is a positive operator from the centre of M′
0 ∩M.

Proof. By the assumptions and (16), we have Dit
ω = Dit

ω0
Dit

ω1
zit. If M0 is sufficient,

then
ut := Dit

θD
−it
ω = [Dϕθ, Dω]t = [Dϕθ|M0

, Dω0]t = Dit
θ,0D

−it
ω0
,

hence Dit
θ = utD

it
ω = Dit

θ,0D
it
ω1
zit and (17) follows.

Conversely, let (17) be true, then ut = Dit
θ,0D

−it
ω0

and M0 is sufficient. �

The essence of the factorization (16) is that the first factor depends on θ while the
others do not.

From Theorem 1 (iv), it follows that the subalgebra generated by the partial isome-
tries {[Dϕθ, Dω]t : t ∈ R} is minimal sufficient, that is, it is sufficient and contained
in any sufficient subalgebra. Moreover, it is invariant under σω

t . We will denote this
subalgebra by MS . By Theorem 3, we have the decompositions:

Dθ = DS,θDRzS , Dω = DS,ωDRzS (18)

where DS,θ, DS,ω are the densities of the restrictions ϕθ|MS
and ω|MS

with respect
to the canonical trace τS , it will be called the S-decomposition. The next Theorem
shows that each decomposition of the form (17) is given by an invariant sufficient
subalgebra and (18) is the maximal one.
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Theorem 4 Let us suppose that there is a decompositionDθ = LθR, with some positive
operators Lθ, R in M, such that suppR = I and R commutes with all Lθ. Let ML

be the von Neumann algebra generated by {Lθ : θ ∈ Θ}. Then ML is sufficient and
invariant under σω

t . Moreover,
Lθ = DS,θR0 ,

where DS,θ is given by (18) and R0 ∈ ML is a positive element commuting with all
DS,θ.

Proof. We have Dω =
∑

n λnDθn =
∑

n λnLθnR, hence
∑

n λnLθn converges strongly
to some positive operator Lω ∈ ML, such that Dω = LωR. For a ∈ ML, we get

Dit
ωaD

−it
ω = Lit

ωaL
−it
ω ∈ ML

and ML is invariant under σω
t . It follows also that there is a density operator DωL

∈
ML of the restriction ωL := ω|ML

, such that DωL
c = Lω for some c ∈ M′

L ∩ ML.
Moreover, it is easy to see that MS ⊂ ML, so that ML is sufficient and the densities
of ϕθ|ML

satisfy

Dit
θ,Lc

it = [Dϕθ|ML
, DωL]tD

it
ωL
cit = [Dϕθ, Dω]tL

it
ω = Lit

θ

By Theorem 3, there is a decomposition Dθ,L = DS,θDR,LzL, such that DR,LzL ∈
M′

S ∩ML. Putting all together, we get

Lθ = Dθ,Lc = DS,θR0

where R0 = DR,LzLc ∈ M′
S ∩ML. �

It is easy to see that the S-decomposition is, up to a central element in MS , the
unique decomposition having the property described in the previous theorem.

Keeping the assumptions of Theorem 3, let us suppose that M acts on some Hilbert
space H. The relative commutant Mc

S := M′
S∩M is a countable direct sum of factors

of type I, hence there is an orthogonal family of minimal central projections pn such
that

∑

n pn = 1. Therefore, zS =
∑

n znpn, with some zn > 0. Moreover, there is a
decomposition

H =
⊕

n

HL
n ⊗HR

n , pn : H → HL
n ⊗HR

n (19)

such that, up to isomorphism,

Mc
S =

⊕

n

CIHL
n
⊗B(HL

n)

(Mc
S)

′ =
⊕

n

B(HL
n)⊗ CIHR

n

From DR ∈ Mc
S and DS,θ ∈ MS ⊆ (Mc

S)
′, we have

pnDR = cRn (1HL
n
⊗DR

n ), pnDS,θ = cLn(θ)(Dn(θ)⊗ 1HR
n
),
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where DR
n is a density operator in B(HR

n ), Dn(θ) is a density operator in B(HL
n) and

cRn , c
L
n(θ) > 0. From this and (18), we get the following form of the S-decomposition

Dθ = DS,θDRzS =
∑

n

znpnDS,θpnDR =
∑

n

sn(θ)Dn(θ)⊗DR
n , (20)

where sn(θ) ≥ 0 for all θ, n. Clearly, this decomposition is unique, up to isomorphisms.
It is also clear that sn(θ) = τ(Dθpn) = ϕθ(pn).

In particular, each statistical experiment (B(H),S), dominated by a faithful state
with finite entropy, defines a decomposition of the form (19) of the Hilbert space H,
which is up to isomorphisms unique. Note also that if the dimension of H is finite, then
it can be shown from Theorem 4 that (20) gives the maximal decomposition, obtained
by Koashi and Imoto in [8].

Theorem 5 Let K and H be Hilbert spaces and let (B(H),S) be a statistical experi-
ment, dominated by a faithful state ω with S(ω) < ∞. Let α : B(K) → B(H) be a
coarse-graining and let (B(K),S0) be the experiment induced by α. Then the following
are equivalent.

(i) α is sufficient for (B(H),S).

(ii) Let (19) be the decomposition of H given by (B(H),S). There is a decomposition
K =

⊕

nK
L
n ⊗ KR

n such that if qn : K → KL
n ⊗ KR

n is the orthogonal projection,
then α(qn) = pn. Moreover, there are unitaries Un : KL

n → HL
n and coarse-

grainings αn,2 : B(KR
n ) → B(HR

n ) such that the restriction αn := α|qnB(K)qn
has the form

αn = α1,n ⊗ α2,n, α1,n(a) = UnaU
∗
n , a ∈ B(KL

n)

(iii) Let Dθ = DS,θDRzR be the S-decomposition. The density Dθ,0 of ϕθ ◦ α has the
form

Dθ,0 = Lθ,0α
∗(DRzR).

where Lθ,0 ∈ B(K) is a positive operator satisfying α(Lθ,0) = DS,θ.

If any of the above conditions is satisfied, then the S0-decomposition of the densities
Dθ,0 is

Dθ,0 = α∗
ω(DS,θ)α

∗(DRzR) =
∑

n

ϕθ(pn)U
∗
nDn(θ)Un ⊗ α∗

2,n(D
R
n ) (21)

Proof. Let MS ⊂ B(H) be generated by {[Dϕθ, Dω]t : t ∈ R}, note that in this
case MS = (Mc

S)
′ and Mc

S = M′
S .

Let us denote by NS0
⊂ B(K) the subalgebra generated by {[D(ϕθ ◦ α), D(ω ◦

α)]t, t ∈ R}. If α is sufficient, then by Theorem 2, NS0
is in the multiplicative domain

of α and the restriction α|NS is a *-isomorphism NS0
onto MS . Hence, NS0

has
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the same structure as MS . Namely, there is an orthogonal family of minimal central
projections {qn} in NS0

such that qnK = KL
n ⊗KR

n ,

NS0
=
⊕

n

B(KL
n)⊗ CIKR

n
, N ′

S0
=
⊕

n

CIKL
n
⊗B(KR

n )

and α(qn) = pn. Moreover, there are unitaries Un : KL
n → HL

n , such that if a ∈ NS0
,

a =
∑

n an ⊗ IKR
n
for some an ∈ B(KL

n), then α(a) =
∑

n UnanU
∗
n ⊗ IHR

n
.

Let b ∈ N ′
S0
, then for a ∈ MS ,

α(b)a = α(b)α(α−1(a)) = α(bα−1(a)) = α(α−1(a)b) = aα(b)

so that α(b) ∈ M′
S . Consequently, α(bqn) = α(b)pn ∈ M′

Spn and if bn ∈ B(KR
n ), then

αn(IKL
n
⊗ bn) = IHL

n
⊗ b′n for some b′n ∈ B(HR

n ). It is clear that the map α2,n : bn 7→ b′n
is a coarse-graining B(KR

n ) → B(HR
n ). We also have

αn(an⊗bn) = αn((an⊗IKR
n
)(IKL

n
⊗bn)) = αn(an⊗IKR

n
)αn(IKL

n
⊗bn) = UnanU

∗
n⊗α2,n(bn),

hence αn = α1,n ⊗ α2,n and (ii) is proved.

Conversely, let (ii) be satisfied and let a ∈ MS . Then a =
∑

n an⊗1HR
n
and a = α(b)

with b =
∑

n bn ⊗ IKR
n
, bn = U∗

nanUn. Clearly, α(b∗b) = α(b)∗α(b), α(bb∗) = α(b)α(b)∗

and therefore b is in the multiplicative domain. By Theorem 2 (i), α is sufficient for S
and (i) is proved.

To prove (i) → (iii), suppose that α is sufficient, then by the first part of the proof
of (ii), NS0

is a countable direct sum of type I factors and, moreover, if τS0
is the

canonical trace on NS0
, then τS0

= τS ◦ α. We have the S0-decomposition

Dθ,0 = DS0,θDR,0zR,0

where DS0,θ is the density of ϕθ ◦ α|NS0
with respect to τS0

. For a ∈ NS0
, α(a) ∈ MS

and

τS0
(DS0,θa) = ϕθ(α(a)) = τS(DS,θα(a)) = τS(α(α

∗
ω(DS,θ))α(a)) = τS0

(α∗
ω(DS,θ)a),

hence DS0,θ = α∗
ω(DS,θ) and α(DS0,θ) = DS,θ. Further, let a ∈ B(K), then

TrDθ,0a = TrDθα(a) = Trα(DS0,θ)DRzRα(a) = TrDS0,θα
∗(DRzR)a

and (iii) follows, with Lθ,0 = DS0,θ.

Conversely, suppose (iii) and let a ∈ B(K), then

TrDθ,0a = TrLθ,0α
∗(DRzR)a = Trα(aLθ,0)DRzR

On the other hand

TrDθ,0a = TrDθα(a) = Trα(a)α(Lθ,0)DRzR
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In particular, by putting a = Lθ,0, we get

Tr(α(L2
θ,0)− α(Lθ,0)

2)DRzR = 0

From this and Schwarz inequality, we get

W 1/2(α(L2
θ,0)− α(Lθ,0)

2)W 1/2 = 0

where W = DRzR is positive, suppW = 1. Consequently, α(L2
θ,0) = α(Lθ,0)

2, hence
Lθ,0 is in the multiplicative domain. Since DS,θ = α(Lθ,0) generates MS , this implies
that α is sufficient.

It remains only to prove the second half of (21), which follows easily from (ii). �

Corollary 1 Let H and K be finite dimensional Hilbert spaces. Let (B(H),S) be a
statistical experiment dominated by a faithful state ω and let (19) be the corresponding
decomposition of H. Suppose that α : B(K) → B(H) is a completely positive map,
with the Kraus representation α(a) =

∑

i ViaV
∗
i . Then α is sufficient for (B(H),S) if

and only if there is a decomposition K =
⊕

n K
L
n ⊗KR

n and

Vi =
∑

n

Un ⊗ Li,n

where Un : KL
n → HL

n are unitary and Li,n : KR
n → HR

n are linear maps such that
∑

i Li,nL
∗
i,n = 1HR

n
.

Proof. Note first that S(ω) <∞, so that the conditions of Theorem 5 are satisfied.

It is clear that if Vi have the above form, then the restrictions

αn = α|B(KL
n ⊗KR

n ) = α1,n ⊗ α2,n,

with α1,n(a) = UnaU
∗
n and α2,n(a) =

∑

i Li,naL
∗
i,n. By Theorem 5 (ii), α is sufficient.

Conversely, if α is sufficient, then there is a decomposition K =
⊕

nK
L
n ⊗ KR

n and
the corresponding projections qn satisfy α(qnaqm) = pnα(a)pm. Consequently

α(a) =
∑

n,m

pnα
(

∑

k,l

qkaql

)

pm =
∑

n,m

pnα(qnaqm)pm =
∑

i

(

∑

n

pnViqn

)

a
(

∑

m

qmV
∗
i pm

)

Let Vi,n := pnViqn, then Vi,n : B(KL
n)⊗B(KR

n ) → B(HL
n)⊗B(HR

n ) and

∑

i

Vi,naV
∗
i,n = αn(a), a ∈ B(KL

n)⊗B(KR
n ).

By Theorem 5, there are unitaries Un : KL
n → HL

n and coarse-grainings α2,n : B(KR
n ) →

B(HR
n ) such that αn = α1,n⊗α2,n, in fact, it is easy to see that α2,n have to be completely
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positive. This implies that there are linear maps Ki,n : KR
n → HR

n ,
∑

iKi,nK
∗
i,n = 1HR

n
,

such that
αn(a) =

∑

i

(Un ⊗Ki,n)a(Un ⊗Ki,n)
∗

is another Kraus representation of αn. Hence there are {µn
i,j},

∑

i µ
n
i,jµ̄

n
i,k = δj,k, such

that Vi,n = Un ⊗
∑

j µ
n
i,jKj,n. Similarly, there are νi,j ,

∑

i νi,j ν̄i,k = δj,k, such that

Vi =
∑

j

νi,j(
∑

n

Vj,n) =
∑

n

Un ⊗ Li,n

where Li,n =
∑

j,k νi,jµ
n
j,kKk,n. �

As another corollary, we obtain a result previously proved in [8].

Corollary 2 Under the assumptions of Corollary 1, suppose that K = H. Let Dθ =
∑

n ϕθ(pn)Dn(θ)⊗DR
n be the S-decomposition. Then ϕθ ◦α = ϕθ for all ϕθ ∈ S if and

only if

Vi =
∑

n

1HL
n
⊗ Li,n

where
∑

i Li,nL
∗
i,n = 1HR

n
and Li,n commutes with DR

n for all i, n.

Proof. Let α satisfy ϕθ ◦ α = ϕθ for all θ, then α is obviously sufficient and by
Corollary 1, Vi =

∑

n Un ⊗ Li,n. On the other hand, by (21),

Dθ = Dθ,0 =
∑

n

ϕθ(pn)U
∗
nDn(θ)Un ⊗ α∗

2,n(D
R
n )

and therefore UnDn(θ)U
∗
n = Dn(θ) and α

∗
2,n(D

R
n ) =

∑

i L
∗
i,nD

R
nLi,n = DR

n for all θ and
n. By construction of the S-decomposition (20), the operators Dn(θ) generate B(HL

n),
hence Un = 1HL

n
. Moreover, the operator DR

n is in the fixed point space of α∗
2,n if and

only if it commutes with the Kraus operators Li,n for all i, [7].

The converse statement is obvious. �

5 Exponential families

A set of measures P = {Pθ, θ ∈ Θ} << µ is an exponential family if there are
functions ξ1, . . . , ξm : Θ → R and measurable functions T1, . . . , Tm : X → R such that
for all θ ∈ Θ

dPθ

dµ
(x) =

1

Z(θ)
exp

(

m
∑

i=1

ξi(θ)Ti(x)

)

h(x) .

In this case, all elements in P are mutually equivalent.
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It is immediate from the factorization criterion that the statistic T = (T1, . . . , Tm)
is sufficient for P. Moreover, it is minimal sufficient if the functions {1P , ξ1, . . . , ξm}
are linearly independent.

Let P be a family of measures such that the elements are mutually equivalent. Then
P is an exponential family if and only if the linear space spanned by the functions
{log dP

dµ
, P ∈ P}, is finite dimensional.

In the non-commutative case, let us assume that ω is a state of the finite dimensional
algebra M and assume that the density of ω is written in the form expH , H = H∗ ∈
M. Determine the states ϕθ by their density

Dθ :=
exp (H +

∑

i ξi(θ)ai)

Z(θ)
, (22)

where ξ1, . . . , ξm : Θ → R are functions, a1, a2, . . . , am are self-adjoint operators from
M and Z(θ) is for normalization. We call (22) quantum exponential family around
ω. One can always assume that ω(ai) = 0 in (22).

The next example tells us how the exponential family arises.

Example 4 Let a1, a2, . . . , am be self-adjoint operators from an algebraM and assume
that the density of a state ω is written in the form expH , H = H∗ ∈ M, moreover
ω(ai) = 0. If Θ is a small neighborhood of 0 ∈ Rn, then minimization of S(ψ, ω) under
the constraints ψ(ai) = θi (θ = (θ1, θ2, . . . , θn) ∈ Θ, 1 ≤ i ≤ n) gives a state Dθ which
is of the form (22) and we arrive at an exponential family. The functions ξi(θ) are
determined by the constraints

1

Z(θ)
Tr exp

(

H +
∑

i

ξi(θ)ai

)

aj = θj ,

which has a unique solution if θj are small enough. �

Let M be a von Neumann algebra and ω be a normal state. For a ∈ Msa define
the state [ωa] as the minimizer of

ψ 7→ S(ψ, ω)− ψ(a). (23)

If the density of ω is eH , then the density of [ωa] is nothing else but

exp (H + a)

Tr exp (H + a)
,

therefore we can extend the above concept of exponential family as

θ 7→ ϕθ := [ω
∑

i
θiai ], (24)

where a1, a2, . . . , an are self-adjoint operators from M. Note that the support of the
above states is suppω. For more details about perturbation of states, see Chap. 12 of
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[13] but here we recall the analogue of (22) in the general case. We assume that the
von Neumann algebra is in a standard form and the representative of ω is Ω from the
positive cone. Let ∆ω be the modular operator of ω then ϕθ of (24) is the vector state
induced by the unit vector

Φθ :=
exp 1

2

(

log∆ω +
∑

i θiai

)

Ω
∥

∥

∥
exp 1

2

(

log∆ω +
∑

i θiai

)

Ω
∥

∥

∥

. (25)

(This formula holds in the strict sense if ω is faithful, since ∆ω is invertible in this case.
For non-faithful ω the formula is modified by the support projection.)

In the next theorem σω
t denotes the modular automorphism group of ω, σω

t (a) =
∆it

ωa∆
−it
ω .

Theorem 6 [15] Let M be a von Neumann algebra with a faithful normal state ω and
M0 be a subalgebra. For a1, a2, . . . , an ∈ Asa the following conditions are equivalent.

(i) M0 is sufficient for the exponential family (24)

(ii) σω
t (ai) ∈ M0 for all t ∈ R and 1 ≤ i ≤ n.

(iii) For the generalized conditional expectation Eω : M → M0 Eω(ai) = ai holds,
1 ≤ i ≤ n.

Let us denote by c(ω, a) the minimum in (23), that is, c(ω, a) = S([ωa], ω)− [ωa](a).
Then

c(ω, a) = − log ωa(1),

where ωa is the positive functional induced by the vector exp 1
2

(

log∆ω + a
)

Ω. The

function θ 7→ c(ω,
∑

θiai) is analytic and

−
∂

∂θj
c(ω,

∑

iθiai) = ϕθ(aj), for allθ and j .

Theorem 7 Let N , M be von Neumann algebras and let α : N → M be a coarse-
graining. Let ω be a faithful normal state on M and suppose that ω0 := ω ◦ α is also
faithful. Let ϕθ, θ ∈ Θ be the exponential family ϕθ = [ω

∑

i
θibi ] for b1, . . . bk ∈ Msa.

Then α is sufficient for (M, ϕθ) if and only if bi = α(ai), i = 1, . . . , n for some ai ∈ N sa

and
ϕθ ◦ α =

[

ω
∑

i
θiai

0

]

. (26)

Proof. Let α be sufficient for (M, ϕθ) and let

N1 = {a ∈ N , α∗
ω ◦ α(a) = a} = {a ∈ Nα, α(σ

ω0

t (a)) = σω
t (α(a))}.
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Then α(N1) is a sufficient subalgebra and therefore σω
t (bj) ∈ α(N1) for all t, j =

1, . . . , k, in particular, bi = α(ai), ai ∈ N1. Let a(θ) =
∑

j θjaj and consider the
expansion

[Dϕθ, Dω]t = [Dωα(a(θ)), Dω]t

=

∞
∑

n=0

in
∫ t

0

dt1 . . .

∫ tn−1

0

dtnσ
ω
tn(α(a(θ)))...σ

ω
t1
(α(a(θ)))

=

∞
∑

n=0

in
∫ t

0

dt1 . . .

∫ tn−1

0

dtnα(σ
ω0

tn (a(θ)))...α(σ
ω0

t1 (a(θ)))

= α([Dω
a(θ)
0 , Dω0]t)

On the other hand, α is sufficient, therefore [Dϕθ, ω]t ∈ α(Nα) and

α([Dϕθ ◦ α,Dω0]t) = [Dϕθ, Dω]t

As α is invertible on Nα, it follows that [Dϕθ ◦ α,Dω0]t = [D[ω
a(θ)
0 ], Dω0]t and (26)

follows.

Conversely, let bi = α(ai) for some ai ∈ N and suppose (26), then

∂

∂θj
c(ω0, a(θ)) = −[ω

a(θ)
0 ](aj) = −ϕθ(α(aj)) =

∂

∂θj
c(ω, α(a(θ)))

for all θ and j. Putting θ = 0, it follows that c(ω0, a(θ)) = c(ω, α(a(θ))) for all θ.
Hence

S(ϕθ, ω) = c(ω, α(a(θ))) + ϕθ(α(a(θ))) = c(ω0, a(θ)) + ϕθ ◦ α(a(θ)) = S(ϕθ ◦ α, ω ◦ α)

and α is sufficient. �

Remark. Note that in case M = B(H), dimH = n, the condition (26) reads

α(logα∗(Dθ)− logα∗(Dω0
)) = logDθ − logDω,

where α∗ is the dual of α with respect to 〈A,B〉 = TrA∗B. This condition is known
to be equivalent to sufficiency of α. �

Corollary 3 Let M be a von Neumann algebra with a faithful normal state ω, M0 a
commutative subalgebra and (24) the exponential family for a1, a2, . . . , an ∈ Msa. Then
M0 is sufficient for the exponential family if and only if a1, . . . , an ∈ M0 and

ϕθ(a) = ω( exp (
∑

iθiai)a) a ∈ M

Proof. Let M1 be the subalgebra generated by σω
t (ai), t ∈ R, i = 1, . . . , n. Then

M1 is sufficient, by Theorem 6. Let E : M → M1 be the ω preserving conditional
expectation, then E preserves all ϕθ, by sufficiency (Theorem 1 (iv)). IfM0 is sufficient,
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then M1 ⊆ M0, hence M1 is commutative. Let ω0, ϕθ,0 be the restriction of ω, ϕθ to
M1, then by Theorem 7,

ϕθ,0 = [ω
∑

θiai
0 ] = ω0(exp(

∑

θiai) · )

It follows that for a ∈ M,

ϕθ(a) = ϕθ,0(E(a)) = ω0(exp(
∑

θiai)E(a)) = ω(exp(
∑

θiai)a)

Conversely, let a1, . . . , an ∈ M0 and let ϕθ = ω(exp
∑

θiai) · ), then the restriction

of ϕθ to M0 is the exponential family [ω
∑

θiai
0 ] and M0 is sufficient, by Theorem 7. �

6 Strong subadditivity of entropy

Let H = HA ⊗ HB ⊗ HC and let ωABC be a normal state on B(H) with restrictions
ωB, ωAB and ωBC . The von Neumann entropies satisfies the strong subadditivity

S(ωABC) + S(ωB) ≤ S(ωAB) + S(ωBC) , (27)

which was obtained by Lieb and Ruskai [9]. A concise proof using the Jensen operator
inequality is contained in [16] and [12] is a didactical presentation of the same ideas.
As we want to investigate the case of equality mostly, we suppose below that all the
involved entropies are finite. The case of equality was studied in several papers recently
but always restricted to finite dimensional Hilbert spaces [7, 10]. Our aim now is to
allow infinite dimensional spaces.

The strong subadditivity is equivalent to

S(ωAB, ωA ⊗ ωB) ≤ S(ωABC , ωA ⊗ ωBC), (28)

which is a consequence of monotonicity of the relative entropy. Clearly, the equality in
(27) is equivalent to equality in (28) which means that B(HA)⊗B(HB) is a sufficient
subalgebra for the states ωABC and ωA ⊗ ωBC . Our results on factorization apply.

Theorem 8 Let ωABC be a faithful normal state on B(H) such that the von Neumann
entropy S(ωABC) is finite and

S(ωABC) + S(ωB) = S(ωAB) + S(ωBC).

Then there is a decomposition HB =
⊕

n H
L
nB ⊗HR

nB such that

ωABC =
∑

n

ωB(pn)D
L
n ⊗DR

n , (29)

where DL
n ∈ B(HA)⊗ B(HL

nB) and D
R
n ∈ B(HR

nB)⊗ B(HC) are density operators and
pn ∈ B(HB) are the orthogonal projections HB → HL

nB ⊗HR
nB.
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Proof. Equality in the strong subadditivity is equivalent to sufficiency of the subal-
gebra B(HA⊗HB)⊗C1C for (B(H),S) where S := {ωABC , ωA⊗ωBC}, and the latter
is equivalent to

[DωABC , DωA ⊗ ωBC ]t = [DωAB, DωA ⊗ ωB]t ⊗ 1C

for all t. Let NB ⊂ B(HB) be the subalgebra

NB = {b ∈ B(HB) : σ
ωBC

t (b⊗ IC) = σωB

t (b)⊗ IC for every t ∈ R} .

Then in follows from the above equality and the cocycle condition that

[DωAB, D(ωA ⊗ ωB)]t ∈ B(HA)⊗NB for all t

and therefore B(HA) ⊗ NB ⊗ C1C is sufficient for S. Since ωA ⊗ ωBC is faithful,
S(ωA ⊗ ωBC) < ∞ and clearly dominates S, moreover, the subalgebra is invariant
under σωA⊗ωBC

t , we have by Theorem 3 that there is a decomposition

DABC = (DL ⊗ 1C)(1A ⊗DR),

where DL ∈ B(HA)⊗NB, DR ∈ N ′
B ⊗ B(HC) are density operators.

On the other hand, NB is invariant under σωB

t , therefore S(ωB|NB
) ≤ S(ωB) < ∞.

Similarly as in Section 4, we obtain a decomposition HB =
⊕

n H
L
nB ⊗HR

nB such that

NB =
⊕

n

B(HL
nB)⊗ C1HR

nB

N ′
B =

⊕

C1HL

nB

⊗ B(HR
nB)

and (29) follows. �

The structure (29) of the density matrix ωABC is similar to the finite dimensional
situation discussed in [7, 10], however the direct sum decomposition may be infinite.

The theorem is stated under the condition of faithfulness of ωABC . It would be
worthwhile to weaken this condition. When ωABC is pure the strong subadditivity
reduces to

S(ωAC) ≤ S(ωA) + S(ωC),

which is simply the subadditivity. The equality holds here if ωAC = ωA ⊗ ωC . Since
the purification of a product state is a product vector, we have the product structure
(29) (without the summation over n). Note that this kind of states were discussed in
[21].

The decomposition (29) has a continuous version formulated in terms of direct
integrals (see [14] for references about the direct integral of fields of Hilbert spaces
and operators or [22]). Let (X, µ) be a measure space. Assume that for x ∈ X
density matrices DL(x) ∈ B(HA)⊗ B(HL(x)) and DR(x) ∈ B(HR(x)) ⊗ B(HC) such
that HL(x) and HR(x) are measurable fields of Hilbert spaces and the operator fields
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DL(x) and DR(x) are measurable as well, x ∈ X . Given a probability density p(x) on
X

ωABC :=

∫

⊕

p(x)DL(x)⊗DR(x) dµ(x) (30)

is a density on the Hilbert space HA ⊗HB ⊗HC , where

HB :=

∫

⊕

HL(x)⊗HR(x) dµ(x) .

Then B(HA)⊗B(HB) is a sufficient subalgebra for the states ωABC and ωA ⊗ ωBC . If
the measure µ is not atomic, then S(ωABC) = ∞.

7 Appendix

Dual mapping

Let M1 and M2 be von Neumann algebras and let σ : M1 → M2 be a coarse-graining.
Suppose that a normal state ϕ2 is given and ϕ1 := ϕ2 ◦ σ is normal as well.

We assume that both von Neumann algebras are in a standard form and the rep-
resentative of ϕi is Φi from the positive cone. From the modular theory we know
that

pi := JiMiΦi

is the support projection of ϕi (i=1,2).

The dual α : p2M2p2 → p1M1p1 of σ is is characterized by the property

〈A1, J1α(A2)〉 = 〈σ(A1), J2A2〉 (31)

(see Prop. 8.3 in [13]). The dual of the embedding of a subalgebra into an algebra is
called generalized conditional expectation [1].
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[4] J. Blank, P. Exner and M. Havliček, Hilbert space operators in quantum
physics, American Institute of Physics, 1994.

[5] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical
mechanics. 1. C*- and W*–algebras, symmetry groups, decomposition of states,
2nd ed., Texts and Monographs in Physics, Springer Verlag, New York, 1987.

[6] F. Hansen and G.K. Pedersen, Jensen’s inequality for operator and Löwner’s
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