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ULTRAHYPERFUNCTIONAL APPROACH TO

NON-COMMUTATIVE QUANTUM FIELD THEORY

DANIEL H.T. FRANCO, JOSÉ A. LOURENÇO, AND LUIZ H. RENOLDI

Abstract. In the present paper, we intent to enlarge the axiomatic framework of non-commutative

quantum field theories (QFT). We consider QFT on non-commutative spacetimes in terms of the

tempered ultrahyperfunctions of Sebastião e Silva corresponding to a convex cone, within the frame-

work formulated by Wightman. Tempered ultrahyperfunctions are representable by means of holo-

morphic functions. As is well known there are certain advantages to be gained from the representa-

tion of distributions in terms of holomorphic functions. In particular, for non-commutative theories

the Wightman functions involving the ⋆-product, W⋆
m, have the same form as the standard form

Wm. We conjecture that the functions W
⋆
m satisfy a set of properties which actually will charac-

terize a non-commutative QFT in terms of tempered ultrahyperfunctions. In order to support this

conjecture, we prove for this setting the validity of some important theorems, of which the CPT

theorem and the theorem on the Spin-Statistics connection are the best known. We assume the

validity of these theorems for non-commutative QFT in the case of spatial non-commutativity only.

Dedicated to Prof. Olivier Piguet on the occasion of his 65th birthday.

1. Introduction

In recent years, many novel questions have emerged in theoretical physics, particularly in non-

commutative quantum field theories (NCQFT), for which a considerable effort has been made in

order to clarify structural aspects from an axiomatic standpoint [1]-[6]. Axiomatic Quantum Field

Theory is the program, originally conceived by G̊arding and Wightman [7]-[10], that aims to study

of unified form the fundamental postulates, and their consequences, of the two pillars apparently

opposite of the modern physics: the Relativity Theory and the Quantum Mechanics. The standard

formulation of the axioms of quantum field theories is best expressed by the so-called Wightman

axioms, which can be summarized as follows: (I) Quantum mechanical postulates. The states are

described by vectors of a Hilbert space H . In H , there exists a unitary representation of the

Poincaré group, whose translation group admits the closed forward light cone V + =
{
pµ ∈ R

4 |
p2 ≥ 0, p0 ≥ 0

}
as its spectrum. There is a unique vaccum state |Ωo〉 in H , which is the unique
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state invariant by translations (this implies in the uniqueness of the vacuum). (II) Special relativity

postulates. The fields transform covariantly under Poincaré transformations. The microcausality

condition imposes that the fields either commute or anti-commute at spacelike separated points[
Φ(x),Φ(x′)

]
±

= 0 for (x − x′)2 < 0. (III) Technical postulate. The assumption of a character

of distribution takes essential place among the basis postulates of quantum field theory. In a

mathematical language, there are some reasons to consider the fields as tempered distributions [7]-

[10]. This choice is connected with a definition of local properties of distributions. It turn out that

all these postulates can be fully reexpressed in terms of an infinite set of tempered distributions,

called Wightman distributions (or correlation functions of the theory).

By a variety of reasons, the Wightman framework of local QFT turned out to be too narrow for

theoretical physicists, who are interested in handling situations involving in particular NCQFT. One

of the reasons is that the commutation relations for the non-commutative coordinates [xµ, xν ] =

iθµν break down the Lorentz group SO(1, 3) to a residual symmetry SO(1, 1) × SO(2). This

happens because the deformation parameter θµν is assumed to be a constant antisymmetric matrix

of lenght dimension two. Although an axiomatic formulation has been proposed based in the

residual symmetry SO(1, 1) × SO(2) [1]-[6], a serious inconvenient arises of this analysis: the

subgroup SO(1, 1)×SO(2) does not allow that particles be classified according to the 4-dimensional

Wigner particle concept [11]-[13].

Another reason why the framework of local QFT turned out to be too narrow, it is that NC-

QFT are nonlocal. This can have implications on highly physical properties. For example, in the

formulation of general properties of a field theory the localization plays a fundamental role in the

concrete realization of the locality of field operators in coordinate space and spectral condition in

energy-momentum space, which are achieved through the localization of test functions – the fields

are considered tempered functionals on the Schwartz’s test function space, the space of rapidly

decreasing C∞-functions. However, the nonlocal character of the interactions in NCQFT seems

to indicate that fields are not tempered. In fact, as it was emphasized in [1], the existence of

hard infrared singularities in the non-planar sector of the theory, induced by uncancelled quadratic

ultraviolet divergences, can destroy the tempered nature of the Wightman functions. Besides, the

commutation relations [xµ, xν ] = iθµν also imply uncertainty relations for spacetime coordinates

∆xµ∆xν ∼
∣∣θµν

∣∣, indicating that the notion of spacetime point loses its meaning. Spacetime points

are replaced by cells of area of size
∣∣θµν

∣∣. This observation has led physicists to suggest the exis-

tence of a finite lower limit to the possible resolution of distance. Instead, the nonlocal structure

of NCQFT manifests itself in the delocalization of the interaction regions, which spread over a

spacetime domain whose size is determined by the existence of a minimum length ℓθ related to

the scale of nonlocality ℓθ ∼
√
θ [14]. Among other things, the existence of this minimum length
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renders impossible the preservation of the local commutativity condition, so it is unclear why we

should even consider the microcausal condition based on local fields as in [1, 2, 15].

These are some very important evidences to expect that the traditional Wightman axioms must

be somewhat modified within the context of NCQFT [16]. From our point of view, the spacetime

non-commutativity can be accommodated simply by choosing a space of generalized functions

different from the usual space of Schwartz’s tempered distributions. As a matter of fact, in a

fundamental formulation of QFT, the mathematical problem can be seen as a problem of the

choice of the right class of generalized functions which is appropriate for the representation of

quantum fields. Thus, the class of generalized functions which one should use in the formulation

of NCQFT remains an open problem still to be fully understood.

Some attempts have been made to extend the framework fomulated by Wightman for NCQFT,

so as to include a wider class of fields [3, 6]. It has been suggested that NCQFT must should be

formulated in terms of generalized functions over the space of analytic test functions S0 [22]-[28],

exploring some ideas by Soloviev to nonlocal quantum fields [25]-[28].1 In this case, the fields

are so singulars that, of course, one of the conceptual problems we are faced is find an adequate

generalization of the causality condition. Soloviev has suggested to replace the ordinary causality

condition by an asymptotic causality condition. Despite its apparent weakness, the asymptotic

causality condition in the sense of Soloviev yet one allows us to show the validity of the CPT

theorem and the Spin-Statistic connection for NCQFT [3]. And more, the existence of a Borchers

class for a non-commutative field is shown [4]. On the other hand, recently, different definitions

of perturbative theory to NCQFT [31, 32] seem to point out that the nonlocal interactions in

NCQFT improve the UV behavior of theory. It is therefore reasonable to consider another space

of test functions where the fields are not highly singulars as adopted in [3, 6].

In this paper, we present an alternative approach. Because NCQFT suggest the existence of a

minimum length ℓθ, we will assume as space of test functions for NCQFT the space H of rapidly

decreasing entire functions in any horizontal strip. The elements of the dual space of the space H

are so-called tempered ultrahyperfunctions [33]-[48] and have the advantage of being representable

by means of holomorphic functions. Tempered ultrahyperfunctions generalize the notion of hyper-

functions on R
n but can not be localized as hyperfunctions. Because of this, NCQFT of this sort

will be called quasilocal, namely, the fields are localizable only in regions greater than the scale of

nonlocality ℓθ. We shall walk along the general lines proposed recently by Brüning-Nagamachi [46].

They have conjectured that tempered ultrahyperfunctions, i.e., those ultrahyperfunctions which

1More recently, Chaichian et al [29] have obtained a result that the appropriate space of test functions in the

Wightman approach to non-commutative quantum field theory is one of the Gel’fand-Shilov spaces S
β, with β <

1/2 [30]. The authors of Refs. [3, 6] assume β = 0 in order to emphasize that this is the smallest space among the

Gel’fand-Shilov spaces Sβ traditionally adopted in nonlocal quantum field theory, as indicated from non-commutative

quantum field theory.
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admit the Fourier transform as an isomorphism of topological vector spaces, are well adapted for

their use in quantum field theory with a fundamental length. In particular, we shall consider tem-

pered ultrahyperfunctions in a setting which includes the results of [33, 34, 35] as special cases, by

considering functions analytic in tubular radial domains [41, 47, 48]. We shall denote the NCQFT

in terms of tempered ultrahyperfunctions by UHFNCQFT for brevity, hereafter.

The presentation of the paper is organized as follows. In Section 2, for the convenience of the

reader, we present the reasons why tempered ultrahyperfunctions are well adapted for their use in

NCQFT, going through a simple example taken from Ref. [46]. Section 3 contains an exposition

of the theory of tempered ultrahyperfuntions, where we include and prove some results which are

important in applications to quantum field theory. Section 4 is devoted to the formulation of the

axioms for UHFNCQFT in terms of the Wightman functionals. How the properties of the Wight-

man functionals change when we pass to the test function space which are entire analytic functions

of rapid decrease in any horizontal strip is considered. In Section 5, we derive for our UHFNC-

QFT the validity of some important theorems, obtained previously for essentially nonlocalizable

fields [3, 4, 6]. These include the existence of CPT symmetry and the connection between Spin

and Statistics for UHFNCQFT. Throughout the paper we assume only the case of space-space

non-commutativity, i.e., θ0i = 0, with i = 1, 2, 3. It is well known that if there is space-time

non-commutativity, the resulting theory violates the causality and unitarity [49, 50]. For most our

purposes, we consider for simplicity a theory with only one basic field, a neutral scalar field. Section

6 is reserved for our concluding remarks.

2. Motivation

For the sake of completeness in the exposition, we recall the example which has motivated

Brüning-Nagamachi [46] to conjecture that tempered ultrahyperfunctions are suitable in order to

treat quantum field theories with a minimum length. Consider the Dirac delta measure δ(x + a),

which when applied to a continuous function f(x) produces the value f(−a)
∫
δ(x + a)f(x) dx = f(−a) .

By using a generalization of the Cauchy’s integral formula, we define δ(x + a) applied to a holo-

morphic function f(z) on an open set Ω ⊂ C. Assuming that 0 ∈ Ω and letting γ = ∂Ω denote the

boundary of Ω, we have

(2.1)
1

2πi

∮

γ

f(z)

z + a
dz = f(−a) , for z ∈ Ω .

Define H(T (−ℓ, ℓ)) as being the space of all holomorphic functions f(z) on T (−ℓ, ℓ) = R
n+i(−ℓ, ℓ) ⊂

C. In this case, from (2.1), for f(z) ∈ H(T (−ℓ, ℓ)) and |a| < ℓ, f(−a) can be given by the Taylor’s
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series of center in zero

f(−a) =
∞∑

n=0

(−a)n
n!

f (n)(0) .

This series possesses the functional representation

F (f) =

∫ [ ∞∑

n=0

an

n!
δ(n)(x)

]
f(x) dx =

∞∑

n=0

(−a)n
n!

f (n)(0)

= f(−a) =
∫
δ(x+ a)f(x) dx .

Thus, as an equation for functionals defined on the function space H(T (−ℓ, ℓ)), we have the iden-

tification
∞∑

n=0

an

n!
δ(n)(x) = δ(x+ a) ,

in the distributional sense. In other words, the sequence of generalized functions

SN =
N∑

n=0

an

n!
δ(n)(x) ,

with support {0} weakly converges to the generalized function δ(x + a) with support {−a}, as
N → ∞. However, if |a| > ℓ, this sequence does not converge in the dual space of H(T (−ℓ, ℓ)).

The motivation for suggesting that tempered ultrahyperfunctions are well adapted for their use

in quantum field theory with a fundamental length lies in the following fact: the non-local structure

of the functional F is represented by a dislocation of the support from {0} to {−a}. According

to Brüning-Nagamachi [46], this means that, if |a| < ℓ, then the elements in the dual space of

H(T (−ℓ, ℓ)) do not distinguish between the points {0} to {−a}, but if |a| > ℓ the elements in

H′(T (−ℓ, ℓ)) can distinguish between the points {0} to {−a}. Since |a| < ℓ is arbitrary, one can say

that the elements in H′(T (−ℓ, ℓ)) distinguish points only in spacetime regions large in comparison

with ℓ. This is the reason why we discuss here a mathematically more satisfactory approach for

NCQFT. The tempered ultrahyperfunctions have this property.

Remark 1. Such an example was already considered in 1958 by Güttinger [51] in order to treat

certain exactly soluble models which would correspond to field theories with non-renormalizable

interactions.

3. Tempered Ultrahyperfunctions

The interest in tempered ultrahyperfunctions arose simultaneously with the growing interest in

various classes of analytic functionals and various attempts to develop a theory of such functionals

which would be analogous to the Schwartz theory of distributions. Tempered ultrahyperfunctions
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were first introduced in papers of Sebastião e Silva [33, 34] and Hasumi [35] as the strong dual of

the space of test functions H of rapidly decreasing entire functions in any horizontal strip. As a

matter of fact, these objects are equivalence classes of holomorphic functions defined by a certain

space of functions which are analytic in the 2n octants in C
n and represent a natural generalization

of the notion of hyperfunctions on R
n, but are non-localizable. In this section, we recall some basic

properties of the tempered ultrahyperfunction space which are the most important in applications

to quantum field theory.

To begin with, we shall define our notation. We will use the standard multi-index notation.

Let R
n (resp. C

n) be the real (resp. complex) n-space whose generic points are denoted by x =

(x1, . . . , xn) (resp. z = (z1, . . . , zn)), such that x+ y = (x1 + y1, . . . , xn + yn), λx = (λx1, . . . , λxn),

x ≥ 0 means x1 ≥ 0, . . . , xn ≥ 0, 〈x, y〉 = x1y1 + · · · + xnyn and |x| = |x1|+ · · · + |xn|. Moreover,

we define α = (α1, . . . , αn) ∈ N
n
o , where No is the set of non-negative integers, such that the length

of α is the corresponding ℓ1-norm |α| = α1 + · · ·+αn, α+ β denotes (α1 + β1, . . . , αn + βn), α ≥ β

means (α1 ≥ β1, . . . , αn ≥ βn), α! = α1! · · ·αn!, x
α = xα1

1 . . . xαn
n , and

Dαϕ(x) =
∂|α|ϕ(x1, . . . , xn)

∂xα1

1 ∂xα1

2 . . . ∂xαn
n

.

Let Ω be a set in R
n. Then we denote by Ω◦ the interior of Ω and by Ω the closure of Ω. For r > 0, we

denote by B(xo; r) =
{
x ∈ R

n | |x−xo| < r
}
a open ball and by B[xo; r] =

{
x ∈ R

n | |x−xo| ≤ r
}

a closed ball, with center at point xo and of radius r = (r1, . . . , rn), respectively.

We consider two n-dimensional spaces – x-space and ξ-space – with the Fourier transform defined

f̂(ξ) = F [f(x)](ξ) =

∫

Rn

f(x)ei〈ξ,x〉dnx ,

while the Fourier inversion formula is

f(x) = F−1[f̂(ξ)](x) =
1

(2π)n

∫

Rn

f̂(ξ)e−i〈ξ,x〉dnξ .

The variable ξ will always be taken real while x will also be complexified – when it is complex, it

will be noted z = x+iy. The above formulas, in which we employ the symbolic “function notation,”

are to be understood in the sense of distribution theory.

We shall consider the function

hK(ξ) = sup
x∈K

∣∣〈ξ, x〉
∣∣ , ξ ∈ R

n ,

the indicator ofK, whereK is a compact set in R
n. hK(ξ) <∞ for every ξ ∈ R

n sinceK is bounded.

For sets K =
[
−k, k

]n
, 0 < k <∞, the indicator function hK(ξ) can be easily determined:

hK(ξ) = sup
x∈K

∣∣〈ξ, x〉
∣∣ = k|ξ| , ξ ∈ R

n , |ξ| =
n∑

i=1

|ξi| .
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Let K be a convex compact subset of Rn, then Hb(R
n;K) (b stands for bounded) defines the space

of all functions in C∞(Rn) such that ehK(ξ)Dαf(ξ) is bounded in R
n for any multi-index α. One

defines in Hb(R
n;K) seminorms

(3.1) ‖ϕ‖K,N = sup
ξ∈Rn

α≤N

{
ehK(ξ)|Dαf(ξ)|

}
<∞ , N = 0, 1, 2, . . . .

Now, let T (Ω) = R
n + iΩ ⊂ C

n be the tubular set of all points z, such that yi = Im zi belongs

to the domain Ω, i.e., Ω is a connected open set in R
n called the basis of the tube T (Ω). Let K

be a convex compact subset of Rn, then Hb(T (K)) defines the space of all C∞ functions ϕ on R
n

which can be extended to C
n to be holomorphic functions in the interior T (K◦) of T (K) such that

the estimate

(3.2) |ϕ(z)| ≤ C(1 + |z|)−N

is valid for some constant C = CK,N(ϕ). The best possible constants in (3.2) are given by a family

of seminorms in Hb(T (K))

(3.3) ‖ϕ‖T (K),N = sup
z∈T (K)

{
(1 + |z|)N |ϕ(z)|

}
<∞ , N = 0, 1, 2, . . . .

Next, we consider a set of results which will characterize the spaces introduced above.

Lemma 3.1. If Ki ⊂ Ki+1 are two convex compact sets, then the following canonical injections

holds: (i) Hb(T (Ki+1)) →֒ Hb(T (Ki)), (ii) Hb(R
n;Ki+1) →֒ Hb(R

n;Ki).

Proof. We prove the first item. If Ki ⊂ Ki+1 and ϕ ∈ Hb(T (Ki+1)), then ϕ ∈ Hb(T (Ki)). By

taking the restriction of ϕ ∈ Hb(T (Ki+1)) to T (Ki), it follows that

sup
z∈T (Ki+1)

{
(1 + |z|)j |ϕ(z)|

}
= sup

z∈T (Ki)

{
(1 + |z|)j |ϕ(z)|

}
.

Therefore, the topology induced by Hb(T (Ki+1)) on Hb(T (Ki)) is identical with the topology of

ϕ ∈ Hb(T (Ki)). The proof of second statement is similar, taking into account the seminorm

(3.1). �

Let O be a convex open set of Rn. To define the topologies of H(Rn;O) and H(T (O)) it suffices to

let K range over an increasing sequence of convex compact subsets K1,K2, . . . contained in O such

that for each i = 1, 2, . . ., Ki ⊂ K◦
i+1 and O =

⋃∞
i=1Ki. Then the spaces H(Rn;O) and H(T (O))

are the projective limits of the spaces Hb(R
n;K) and Hb(T (K)), respectively, i.e., we have that

(3.4) H(Rn;O) = lim proj
K⊂O

Hb(R
n;K) ,

and

(3.5) H(T (O)) = limproj
K⊂O

Hb(T (K)) ,
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where the projective limit is taken following the restriction mappings according to the Lemma 3.1.

Remark 2. Any C∞ function of exponential growth is a multiplier in H(Rn;O), while that any C∞

function which can be extended to be an entire function of polynomial growth is a multiplier in

H(T (O)). Besides, the space H(Rn;O) is continuosly embedded into Schwartz space S (Rn), and

elements of S (Rn) are also multipliers for the space H(Rn;O) [35].

Lemma 3.2. The spaces H(T (O)) and H(Rn;O) are Hausdorff locally convex spaces.

Proof. First, we prove that H(T (O)) is a Hausdorff locally convex space. Let {Ki}i=1,2,... be the

usual increasing sequence of compact subsets of O, whose union is O, and such that with Ki is the

closure of its interior, K◦
i+1; for all i, Ki ⊂ K◦

i+1. We shall prove that each element of the base for

neighborhoods of 0 generated by the open balls

Bi,n(0) =
{
ϕ ∈ H(T (Ki)) | ‖ϕ‖T (Ki),j = sup

z∈T (Ki)

[
(1 + |z|)j |ϕ(z)|

]
< n−1, n ∈ N

}
,

contains at least one convex neighborhood of 0. For this, it is sufficient to show that there exist

natural numbers ℓ, n′ such that Bℓ,n′(0) ⊂ Bi,n(0). In fact, one can always choose ℓ such that

Kℓ ⊂ Ki. Then, ‖ϕ‖T (Kℓ),j ≤ ‖ϕ‖T (Ki),j if n < n′ and ℓ ≤ i. Now, consider ‖λϕ1+(1−λ)ϕ2‖T (O),j,

with 0 ≤ λ ≤ 1 and ϕ1, ϕ2 ∈ Bℓ,n′(0). But,

‖λϕ1 + (1− λ)ϕ2‖T (O),j ≤ ‖λϕ1‖T (O),j + ‖(1− λ)ϕ2‖T (O),j

≤ λ‖ϕ1‖T (O),j + (1− λ)‖ϕ2‖T (O),j

< λn−1 + (1− λ)n−1 = n−1 .

Hence, λϕ1+(1−λ)ϕ2 ∈ Bℓ,n′(0). This proves that H(T (O)) is locally convex. Now, let ϕ1, ϕ2, ψ ∈
H(T (O)). Consider that for the pair of distinct functions ϕ1, ϕ2, ‖ϕ1 − ϕ2‖T (O),j = ε > 0. Let

φ(ϕi) = Bε/3(ϕi) =
{
ψ ∈ H(T (O)) | ‖ϕi − ψ‖T (O),j < ε/3, i = 1, 2

}
. For if ψ ∈ φ(ϕ1) ∩ φ(ϕ2), we

have ‖ϕ1−ψ‖T (O),j < ε/3 and ‖ϕ2−ψ‖T (O),j < ε/3. Therefore, it follows that ε = ‖ϕ1−ϕ2‖T (O),j =

‖ϕ1−ψ+ψ−ϕ2‖T (O),j ≤ ‖ϕ1−ψ‖T (O),j +‖ϕ2−ψ‖T (O),j < 2ε/3, which is a contradiction. Hence,

H(T (O)) is Hausdorff. The proof that H(Rn;O) is a Hausdorff locally convex space is immediate,

by considering that the base for neighborhoods of 0 is generated by the open balls

Bi,n(0) =
{
ϕ ∈ H(Rn;Ki) | ‖ϕ‖Ki,j = sup

x∈Rn;α≤j

{
ehKi

(ξ)|Dαf(ξ)|
}
< n−1, n ∈ N

}
,

and the proof is complete. �

Theorem 3.3. The spaces H(T (O)) and H(Rn;O) are Fréchet spaces.
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Proof. That H(T (O)) is metrizable is clear from Theorem V.5 in [52], if we endow the space

H(T (O)) with the metric d(ϕ1, ϕ2) =
∑∞

i=1 ai‖ϕ1 − ϕ2‖T (O),i/
[
1 + ‖ϕ1 − ϕ2‖T (O),i

]
, such that∑∞

i=1 ai < ∞. Thus, it remains to show that H(T (O)) is complete. Let {ϕn} be a sequence

of functions in H(T (O)). We shall take ϕj ∈ {ϕn}. Given ε > 0, there exists no such that

for p ≥ no and n ≥ no, we have d(ϕj , ϕn) < ε/2 and d(ϕj , ϕp) < ε/2. Then, it follows that

d(ϕp, ϕn) ≤ d(ϕj , ϕp) + d(ϕj , ϕn) < ε/2 + ε/2 = ε. This proves that {ϕn} is Cauchy and hence

H(T (O)) is complete. Thus H(T (O)) is Fréchet. For the proof that H(Rn;O) is Fréchet see [37]

(and in the case of O = R
n see [35]). �

It is an elementary fact that H(T (O)) and H(Rn;O) are Banach spaces.

Theorem 3.4 (Brüning-Nagamachi [46], Proposition 2.6). Let O ⊂ R
n be a nonempty convex

open subset. Then the spaces H(T (O)) and H(Rn;O) are nuclear Fréchet spaces and, in particular,

reflexive.

In light of the Theorems 3.3 and 3.4, it follows that the spaces H(T (O)) and H(Rn;O) are

barreled [53, Corollary 1, p.347] and quasi-complete [53, p.354]. According to Treves [53, Corollary

3, p.520] and Schaefer [54, exercise 19b, p.194], each quasi-complete barreled nuclear space is a

Montel space. Thus, one immediately arrives at

Corollary 3.5. The spaces H(T (O)) and H(Rn;O) are Montel spaces.

Theorem 3.6 ([35, 37, 46]). The space D(Rn) of all C∞-functions on R
n with compact support

is dense in H(Rn;K) and H(Rn;O). Moreover, the space H(Rn;Rn) is dense in H(Rn;O) and in

H(Rn;K), and H(Rm;Rm)⊗H(Rn;Rn) is dense in H(Rm+n;Rm+n).

Theorem 3.7 (Kernel theorem [46]). Let M be a separately continuous multilinear functional on

[H(T (R4))]n. Then there is a unique functional F ∈ H′(T (R4n)), for all fi ∈ H(T (R4)), i = 1, . . . , n

such that M(f1, . . . , fn) = F (f1 ⊗ · · · ⊗ fn).

Theorem 3.8 ([37, 46]). The space H(T (Rn)) is dense in H(T (O)) and the space H(T (Rm+n)) is

dense in H(T (O)).

From Theorem 3.6 we have the following injections [37]: H ′(Rn;K) →֒ H ′(Rn;Rn) →֒ D ′(Rn)

and H ′(Rn;O) →֒ H ′(Rn;Rn) →֒ D ′(Rn).

Definition 3.9. The dual space H ′(Rn;O) of H(Rn;O) is the space of distributions of exponential

growth.

A distribution V ∈ H ′(Rn;O) may be expressed as a finite order derivative of a continuous

function of exponential growth

V = Dγ
ξ [e

hK(ξ)g(ξ)] ,

where g(ξ) is a bounded continuous function. For V ∈ H ′(Rn;O) the following result is known:
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Lemma 3.10 ([37]). A distribution V ∈ D ′(Rn) belongs to H ′(Rn;O) if and only if there exists a

multi-index γ, a convex compact set K ⊂ O and a bounded continuous function g(ξ) such that

V = Dγ
ξ [e

hK(ξ)g(ξ)] .

For any element U ∈ H′, its Fourier transform is defined to be a distribution V of exponential

growth, such that the Parseval-type relation V (ϕ) = U(ψ), ϕ ∈ H, ψ = F [ϕ] ∈ H, holds. In the

same way, the inverse Fourier transform of a distribution V of exponential growth is defined by the

relation U(ψ) = V (ϕ), ψ ∈ H, ϕ = F−1[ψ] ∈ H.

Proposition 3.11 ([37]). If ϕ ∈ H(Rn;O), the Fourier transform of ϕ belongs to the space

H(T (O)), for any open convex nonempty set O ⊂ R
n. By the dual Fourier transform H ′(Rn;O) is

topologically isomorphic with the space H′(T (−O)).

Let us now recall very briefly the basic definition of tempered ultrahyperfunctions. These are

defined as elements of a certain subspace of Z ′ of ultradistributions of Gel’fand and Shilov which ad-

mit representations in terms of analytic functions on the complement of some closed horizontal strip

of the complex space, and having polynomial growth on the complement of an open neighborhood

of that strip.

Let Hω be the space of all functions f(z) such that (i) f(z) is analytic for {z ∈ C
n | |Im z1| >

p, |Im z2| > p, . . . , |Im zn| > p}, (ii) f(z)/zp is bounded continuous in {z ∈ C
n | |Im z1| ≧

p, |Im z2| ≧ p, . . . , |Im zn| ≧ p}, where p = 0, 1, 2, . . . depends on f(z) and (iii) f(z) is bounded

by a power of z, |f(z)| ≤ C(1 + |z|)N , where C and N depend on f(z). Define the kernel

of the mapping f : H(T (Rn)) → C by Π, as the set of all z-dependent pseudo-polynomials,

z ∈ C
n (a pseudo-polynomial is a function of z of the form

∑
s z

s
jG(z1, ..., zj−1, zj+1, ..., zn), with

G(z1, ..., zj−1, zj+1, ..., zn) ∈ Hω). Then, f(z) ∈ Hω belongs to the kernel Π if and only if

f(ψ(x)) = 0, with ψ(x) ∈ H(T (Rn)) and x = Re z. Consider the quotient space U = Hω/Π.

The set U is the space of tempered ultrahyperfunctions. Thus, we have the

Definition 3.12. The space of tempered ultrahyperfunctions, denoted by U (Rn), is the space of

continuous linear functionals defined on H(T (Rn)).

In the following, we will put H = H(Cn) = H(T (Rn)) and the dual space of H will be denoted by

H′.

Theorem 3.13 (Hasumi [35], Proposition 5). The space of tempered ultrahyperfunctions U is

algebraically isomorphic to the space of generalized functions H′.
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3.1. Tempered Ultrahyperfunctions Corresponding to a Proper Convex Cone. Next, we

consider tempered ultrahyperfunctions in a setting which includes the results of [33, 35, 37] as

special cases, by considering analytic functions in tubular radial domains [40, 41, 47, 48] and hence

includes the important setting for quantum field theory of tube domains over light cones. All the

results below are taken from Refs. [47, 48] and hence the proofs will not be repeated.

We start by introducing some terminology and simple facts concerning cones. An open set

C ⊂ R
n is called a cone if x ∈ C implies λx ∈ C for all λ > 0. Moreover, C is an open connected

cone if C is a cone and if C is an open connected set. In the sequel, it will be sufficient to assume

for our purposes that the open connected cone C in R
n is an open convex cone with vertex at the

origin and proper, that is, it contains no any straight line. A cone C ′ is called compact in C – we

write C ′ ⋐ C – if the projection prC
′ def
= C

′ ∩ Sn−1 ⊂ prC
def
= C ∩ Sn−1, where Sn−1 is the unit

sphere in R
n. Being given a cone C in x-space, we associate with C a closed convex cone C∗ in

ξ-space which is the set C∗ =
{
ξ ∈ R

n | 〈ξ, x〉 ≥ 0,∀x ∈ C
}
. The cone C∗ is called the dual cone

of C. By T (C) we will denote the set R
n + iC ⊂ C

n. If C is open and connected, T (C) is called

the tubular radial domain in C
n, while if C is only open T (C) is referred to as a tubular cone. In

the former case we say that f(z) has a boundary value U = BV (f(z)) in H′ as y → 0, y ∈ C or

y ∈ C ′ ⋐ C, respectively, if for all ψ ∈ H the limit

〈U,ψ〉 = lim
y→0

y∈C or C′

∫

Rn

f(x+ iy)ψ(x)dnx ,

exists. We will deal with tubes defined as the set of all points z ∈ C
n such that

T (C) =
{
x+ iy ∈ C

n | x ∈ R
n, y ∈ C, |y| < δ

}
,

where δ > 0 is an arbitrary number.

An important example of tubular radial domain used in quantum field theory is the tubular

radial domain with the forward light-cone, V+, as its basis

V+ =
{
z ∈ C

n | Im z1 >
( n∑

i=2

Im2 zi

) 1

2

, Im z1 > 0
}
.

Let C be an open convex cone, and let C ′ ⋐ C. Let B[0; r] denote a closed ball of the origin in R
n

of radius r, where r is an arbitrary positive real number. Denote T (C ′; r) = R
n+i

(
C ′\
(
C ′∩B[0; r]

))
.

We are going to introduce a space of holomorphic functions which satisfy certain estimate according

to Carmichael [40]. We want to consider the space consisting of holomorphic functions f(z) such

that

(3.6)
∣∣f(z)

∣∣ ≤ C(C ′)(1 + |z|)NehC∗ (y) , z ∈ T (C ′; r) ,

where hC∗(y) = supξ∈C∗ |〈ξ, y〉| is the indicator of C∗, C(C ′) is a constant that depends on an

arbitrary compact cone C ′ and N is a non-negative real number. The set of all functions f(z) which
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are holomorphic in T (C ′; r) and satisfy the estimate (3.6) will be denoted by H o
c . Throughout the

remainder of this paper T (C ′; r) will denote the set Rn + i
(
C ′ \

(
C ′ ∩B[0; r]

))
.

Remark 3. The space of functions H o
c constitutes a generalization of the space Ai

ω
of Sebastião e

Silva [33] and the space aω of Hasumi [35] to arbitrary tubular radial domains in C
n.

Lemma 3.14 ([41, 47]). Let C be an open convex cone, and let C ′ ⋐ C. Let h(ξ) = ek|ξ|g(ξ),

ξ ∈ R
n, be a function with support in C∗, where g(ξ) is a bounded continuous function on R

n. Let

y be an arbitrary but fixed point of C ′ \
(
C ′ ∩ B[0; r]

)
. Then e−〈ξ,y〉h(ξ) ∈ L2, as a function of

ξ ∈ R
n.

Definition 3.15. We denote by H ′
C∗(Rn;O) the subspace of H ′(Rn;O) of distributions of expo-

nential growth with support in the cone C∗:

(3.7) H ′
C∗(Rn;O) =

{
V ∈ H ′(Rn;O) | supp(V ) ⊆ C∗

}
.

Lemma 3.16 ([41, 47]). Let C be an open convex cone, and let C ′ ⋐ C. Let V = Dγ
ξ [e

hK(ξ)g(ξ)],

where g(ξ) is a bounded continuous function on R
n and hK(ξ) = k|ξ| for a convex compact set

K =
[
−k, k

]n
. Let V ∈ H ′

C∗(Rn;O). Then f(z) = (2π)−n(V, e−i〈ξ,z〉) is an element of H o
c .

We now shall define the main space of holomorphic functions with which this paper is concerned.

Let C be a proper open convex cone, and let C ′ ⋐ C. Let B(0; r) denote an open ball of the origin

in R
n of radius r, where r is an arbitrary positive real number. Denote T (C ′; r) = R

n + i
(
C ′ \(

C ′ ∩ B(0; r)
))
. Throughout this section, we consider functions f(z) which are holomorphic in

T (C ′) = R
n+ iC ′ and which satisfy the estimate (3.6), with B[0; r] replaced by B(0; r). We denote

this space by H ∗o
c . We note that H ∗o

c ⊂ H o
c for any open convex cone C. Put Uc = H ∗o

c /Π,

that is, Uc is the quotient space of H ∗o
c by set of pseudo-polynomials Π.

Definition 3.17. The set Uc is the space of tempered ultrahyperfunctions corresponding to a proper

open convex cone C ⊂ R
n.

The following theorem shows that functions in H ∗o
c have distributional boundary values in H′.

Further, it shows that functions in H ∗o
c satisfy a strong boundedness property in H′.

Theorem 3.18 ([48]). Let C be an open convex cone, and let C ′ ⋐ C. Let V = Dγ
ξ [e

hK(ξ)g(ξ)],

where g(ξ) is a bounded continuous function on R
n and hK(ξ) = k|ξ| for a convex compact set

K =
[
−k, k

]n
. Let V ∈ H ′

C∗(Rn;O). Then

(i) f(z) = (2π)−n(V, e−i〈ξ,z〉) is an element of H ∗o
c ,

(ii)
{
f(z) | y = Im z ∈ C ′ ⋐ C, |y| ≤ Q

}
is a strongly bounded set in H′, where Q is an

arbitrarily but fixed positive real number,
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(iii) f(z) → F−1[V ] ∈ H′ in the strong (and weak) topology of H′ as y = Im z → 0, y ∈ C ′ ⋐ C.

The functions f(z) ∈ H ∗o
c can be recovered as the (inverse) Fourier-Laplace transform of the

constructed distribution V ∈ H ′
C∗(Rn;O). This result is a generalization of the Paley-Wiener-

Schwartz theorem for the setting of tempered ultrahyperfunctions.

Theorem 3.19 (Paley-Wiener-Schwartz-type Theorem [48]). Let f(z) ∈ H ∗o
c , where C is an open

convex cone. Then the distribution V ∈ H ′
C∗(Rn;O) has a uniquely determined inverse Fourier-

Laplace transform f(z) = (2π)−n(V, e−i〈ξ,z〉) which is holomorphic in T (C ′) and satisfies the esti-

mate (3.6), with B[0; r] replaced by B(0; r).

The following corollary is immediate from Theorem 3.19.

Corollary 3.20 ([46]). Let C∗ be a closed convex cone and K a convex compact set in R
n. Define

an indicator function hK,C∗(y), y ∈ R
n, and an open convex cone CK such that hK,C∗(y) =

supξ∈C∗

∣∣hK(ξ)−〈ξ, y〉
∣∣ and CK =

{
y ∈ R

n | hK,C∗(y)<∞
}
. Then the distribution V ∈ H ′

C∗(Rn;O)

has a uniquely determined inverse Fourier-Laplace transform f(z) = (2π)−n(V, e−i〈ξ,z〉) which is

holomorphic in the tube T (C ′
K) = R

n + iC ′
K , and satisfies the following estimate, for a suitable

K ⊂ R
n,

(3.8)
∣∣f(z)

∣∣ ≤ C(C ′)(1 + |z|)NehK,C∗ (y) , z ∈ T (C ′
K ; r) = R

n + i
(
C ′
K \

(
C ′
K ∩B(0; r)

))

where C ′
K ⋐ CK .

The same proof as in Carmichael [41, Theorem 1, equation (4)] combined with the proofs of

Theorems 3.18 and 3.19 shows that the following theorem is true.

Theorem 3.21. Let C be an open convex cone, and let C ′ ⋐ C. Let f(z) ∈ H ∗o
c . Then there

exists a unique element V ∈ H ′
C∗(Rn;O) such that

(3.9) f(z) = F−1
[
e−〈ξ,y〉V

]
, z ∈ T (C ′; r) = R

n + i
(
C ′ \

(
C ′ ∩B(0; r)

))
,

where (3.9) holds as an equality in H′(T (O)).

Remark 4. It is important to remark that in Theorems 3.18 and 3.19 we are considering the

inverse Fourier-Laplace transform f(z) = (2π)−n
〈
V, e−i〈ξ,z〉

〉
, in opposition to the Fourier-Laplace

transform used in the proof of Theorem 1 of Ref. [41]. In this case the proof of Theorem 3.21

is achieved if we consider ξ as belonging to the open half-space
{
ξ ∈ C∗ | 〈ξ, y〉 < 0

}
, for y ∈

C ′ \
(
C ′ ∩ B(0; r)

)
, since by hypothesis f(z) ∈ H ∗o

c . Then, from [55, Lemma 2, p.223] there is

δ(C ′) such that for y ∈ C ′ \
(
C ′ ∩B(0; r)

)
implies 〈ξ, y〉 ≤ −δ(C ′)|ξ||y|. This justifies the negative

sign in (3.9).
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In this point, we note the following fact important. Let H′
C(T (O)) denote the subset of H′(T (O))

defined by H′
C(T (O)) =

{
U ∈ H′(T (O)) | U = F [V ], V ∈ H ′

C∗(Rn;O)
}
. Then, by exactly the same

arguments explained in [42, p.114], we have the following corollary of Theorems 3.18, 3.19 and 3.21.

Corollary 3.22. Let C be an open convex cone. Then H ∗o
c is algebraically isomorphic to both

H ′
C∗(Rn;O) and H′

C(T (O)).

We finish this section with two results proved in Ref. [48], which will be used in the applications

of Section 5.

Theorem 3.23 (Ultrahyperfunctional version of edge of the wedge theorem). Let C be an open cone

of the form C = C1 ∪C2, where each Cj, j = 1, 2, is a proper open convex cone. Denote by ch(C)

the convex hull of the cone C. Assume that the distributional boundary values of two holomorphic

functions fj(z) ∈ H ∗o
cj

(j = 1, 2) agree, that is, U = BV (f1(z)) = BV (f2(z)), where U ∈ H′ in

accordance with the Theorem 3.18. Then there exists F (z) ∈ H o
ch(C) such that F (z) = fj(z) on

the domain of definition of each fj(z), j = 1, 2.

Theorem 3.24. Let C be some open convex cone. Let f(z) ∈ H ∗o
c . If the boundary value

BV (f(z)) of f(z) in the sense of tempered ultrahyperfunctions vanishes, then the function f(z)

itself vanishes.

4. Wightman Functionals for UHFNCQFT and Their Properties

According to Wightman, the conventional postulates of QFT can be fully reexpressed in terms

of an equivalent set of properties of the vacuum expectation values of their ordinary field products,

called Wightman distributions

Wm(f1 ⊗ · · · ⊗ fm)
def
= 〈Ωo | Φ(f1) · · ·Φ(fm) | Ωo〉 ,(4.1)

where (f1 ⊗ · · · ⊗ fm) = f1(x1) · · · fm(xm) is considered as an element of S (R4m), and | Ωo〉 is the
vacuum vector, unique vector time-translation invariant of the Hilbert space of states.

Remark 5. To keep things as simple as possible, we will assume that the Wightman distributions

are “functions” Wm(x1, . . . , xm). The reader can easily supply the necessary test functions.

As a general rule, the continuous linear functionals Wm(x1, . . . , xm) are assumed to satisfy the

following properties:

P1 (Temperedness). The sequence of Wightman functions Wm(x1, . . . , xm) are tempered dis-

tributions in S ′(R4m), for all m ≥ 1. This property is included in the list of properties for

a QFT for technical reasons.
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P2 (Poincaré Invariance). Wightman functions are invariant under the Poincaré group

Wm(Λx1 + a, . . . ,Λxm + a) = Wm(x1, . . . , xm) .

P3 (Spectral Condition). The Fourier transforms of the Wightman functions have support in

the region

{
(p1, . . . , pm) ∈ R

4m
∣∣

m∑

j=1

pj = 0,

k∑

j=1

pj ∈ V +, k = 1, . . . ,m− 1
}
,(SC)

where V + = {(p0,p) ∈ R
4 | p2 ≥ 0, p0 ≥ 0} is the closed forward light cone.

P4 (Local commutativity). This property has origin in the quantum principle that operator

observables Φ(x) corresponding to independent measurements must comute.

Wm(x1, . . . , xj, xj+1, . . . , xm) = Wm(x1, . . . , xj+1, xj , . . . , xm) ,

if (xj − xj+1)
2 < 0.

P5 For any finite set fo, f1, . . . , fN of test functions such that fo ∈ C, fj ∈ S (R4j) for 1 ≤ j ≤
N , one has

N∑

k,ℓ=0

Wk+ℓ(f
∗
k ⊗ fℓ) ≥ 0 .

P6 (Hermiticity). A neutral scalar field must be real valued. This implies that

Wm(x1, x2, . . . , xm−1, xm) = Wm(xm, xm−1, . . . , x1, x2) .

Generalizing these properties to NCQFT is not as simple, especially the Lorentz symmetry.

For example, as already mentioned in the Introduction, the Lorentz symmetry is not preserved

in NCQFT. Furthemore, the existence of hard infrared singularities in the non-planar sector of

the theory can destroy the tempered nature of the Wightman functions. And more, how can the

Property P4 be described in field theory with a fundamental length? In order to answer these

questions, we shall assume a NCFT where the Wightman functionals fulfil a set of properties which

actually will characterize a UHFNCQFT.
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4.1. Twisted Poincaré Symmetry. In this paper, we will assume that our fields are transform-

ing according to representations of the twisted Poincaré group [12, 13]. This formalism has the

advantage of retaining the Wigner’s notion of elementary particles.2

When referring to NCQFT one should have in mind the deformation of the ordinary product

of fields. This deformation is performed in terms of the star product extended for noncoinciding

points via the functorial relation [14]

ϕ(x1)⋆ · · · ⋆ ϕ(xn) =
∏

i<j

exp

(
i

2
θµν

∂

∂xµi
⊗ ∂

∂xνj

)
ϕ(x1) · · ·ϕ(xn) .(4.2)

For coinciding points x1 = x2 = · · · = xn the product (4.2) becomes identical to the multiple

Moyal ⋆-product. We shall consider NCQFT in the sense of a field theory on a non-commutative

spacetime encoded by a Moyal product on the test function algebra.

Definition 4.1 (Vacuum Expectation Values of Fields [2]). In a UHFNCQFT the Wightman

functionals in Uc(R
4m), i.e., the m-points vacuum expectation values of fields operators are defined

by

W
⋆
m(z1, . . . , zm)

def
= 〈Ωo | Φ(z1) ⋆ · · · ⋆ Φ(zm) | Ωo〉 .(4.3)

Remark 6. The tempered ultrahyperfunctions W⋆
m ∈ Uc(R

4m) will be called non-commutative

Wightman functions.

Remark 7. In [5] the Wightman functions were written as follows:

W
⋆̃
m(z1, . . . , zm)

def
= 〈Ωo | Φ(z1)⋆̃ · · · ⋆̃Φ(zm) | Ωo〉 ,

where the meaning of ⋆̃ depends on the considered case. In particular, if ⋆̃ = 1, we obtain the

standard form Wm(z1, . . . , zm) = 〈Ωo | Φ(z1) · · ·Φ(zm) | Ωo〉 adopted in [1], which corresponds

to the commutative theory with the SO(1, 1) × SO(2) invariance. On the other hand, if ⋆̃ =

⋆, this choice corresponds to the Wightman functions introduced in [2]. In this case, the non-

commutativity is manifested not only at coincident points but also in their neighborhood.

As a consequence of the twisted Poincaré covariance condition of the ⋆-product of fields [13],

the non-commutative Wightman functions W⋆
m(z1, . . . , zm) ∈ Uc(R

4m) satisfy the twisted Poincaré

transformations (besides of the symmetry SO(1, 1) × SO(2)). Thus, we have the

Theorem 4.2. W⋆
m(z1, . . . , zm) = W⋆

m(Λz1 + a, . . . ,Λzm + a), in the usual distributional sense.

2Another approach where the full Poincaré group is preserved was proposed by Doplicher-Fredenhagen-

Roberts [56].
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4.2. Domain of Analyticity of Non-Commutative Wightman Functions. Since for non-

commutative theories the group of translations is intact, the Wightman functions only depends

on the (m− 1) coordinate differences as in the commutative case. Then, passing to the difference

variables ζi, we obtain, symbolically, that

W
⋆
m(z1, . . . , zm) =W ⋆

m(ζ1, . . . , ζm−1) , ζj = zj − zj+1 , j = 1, . . . ,m− 1 .

Applying Corollary 3.20 to the ordinary Wightman functions Wm(ζ1, . . . , ζm−1), we obtain the

following important result:

Theorem 4.3. The functions Wm−1(ζ1, . . . , ζm−1) are holomorphic functions of 4(m− 1) complex

variables in a set which contains R
4(m−1) + V+(ℓθ1 , . . . , ℓθm−1

), where

V+(ℓθ1 , . . . , ℓθm−1
) =

{
(η1, . . . , ηm−1) ∈ R

4(m−1) | ηj = yj + (ℓθj ,0) ∈ V+ + (ℓθj ,0)
}
,

and satisfy the estimate

(4.4)
∣∣Wm−1(ζ1, . . . , ζm−1)

∣∣ ≤ C(V ′)
m−1∏

j=1

(1 + |ζj|)N exp
(
h
K,V

m−1

+

(yj)
)
.

Proof. The first part of theorem follows immediately from Remark 2.18 in [46]. Thus we need

only show that Wm−1(ζ1, . . . , ζm−1) satisfies the estimate (4.4). But, this can be proved by using

the Theorem 3.19 in order to show that the function Wm−1(ζ1, . . . , ζj−1, ζ
′, ζj+1, . . . , ζm−1) is a

holomorphic function of ζ ′ alone, with the complex variables ζ1, . . . , ζj−1, ζj+1, . . . , ζm−1 being kept

fixed. Then, we apply this argument, in turn, to each variable ζj separately. �

Proposition 4.4. In a UHFNCQFT the Wightman functionals in Uc(R
4(m−1)), i.e., the non-

commutative Wightman functions involving the ⋆-product, W ⋆
m−1, coincide with the standard Wight-

man functions Wm−1.

Proof. By considering that in terms of complex variables

∏

i<j

exp

(
i

2
θµν

∂

∂xµi
⊗ ∂

∂xνj

)
=
∏

i<j

exp

(
1

2
θµν

∂

∂ζµi
∧ ∂

∂ζ̄νj

)
,

and since the functions Wm(ζ1, . . . , ζm−1) are holomorphic, then it follows that

W ⋆
m−1(ζ1, . . . , ζm−1) =Wm−1(ζ1, . . . , ζm−1) ,

and the proof is complete. �

Corollary 4.5. The non-commutative Wightman functions W ⋆
m−1(ζ1, . . . , ζm−1) are holomorphic

functions of 4(m− 1) complex variables in a set which contains R
4(m−1) + V+(ℓθ1 , . . . , ℓθm−1

), and
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satisfy the estimate

∣∣W ⋆
m−1(ζ1, . . . , ζm−1)

∣∣ ≤ C(V ′)
m−1∏

j=1

(1 + |ζj|)N exp
(
h
K,V

m−1

+

(yj)
)
.

It is suggestive to see thatW ⋆
m−1 has the same form as the standard formWm−1 in a UHFNCQFT.

In light of Proposition 4.4, where we have as result that ⋆̃ = ⋆ = 1, we conjecture that the possibility

of extending the axiomatic approach to the NCQFT in terms of tempered ultrahyperfunctions is

independent of the concrete type of the ⋆̃-product (similar conclusion was obtained in [5]). In

order to support this conjecture, in Section 5, we derive for the UHFNCQFT the validity of some

important theorems. These include the existence of CPT symmetry and the connection between

Spin and Statistics for UHFNCQFT, in the case of space-space non-commutativity. In what follows,

we shall always refer to the functions W ⋆
m−1 in order to include non-commutativity effects not only

into the vacuum state, as it happens with the functions Wm−1.

4.3. Extended Local Commutativity Condition. The existence of a minimum length related

to the scale of nonlocality ℓθ [14] renders impossible the preservation of the canonical commutation

rules since those rules make sense only in the distance regions greater than ℓθ. Thus, in order

to remedy this difficulty the local commutativity will be replaced by a distinguished localization

property in the sense of Brüning-Nagamachi [46], called extended local commutativity. This property

is defined as a continuity condition of the expectation values of the field commutators in a topology

associated to a ℓθ-neighborhood of the light cone.

Let |x|1 be the norm

|x|1 = |x0|+ |x| , |x| =

√√√√
3∑

i=1

(xj)2 ,

for x = (x0,x) ∈ R
4. Denote

Lℓ =
{
(x1, x2) ∈ R

8 | |x1 − x2|1 < ℓθ

}
.

Define the open set V+ of all strictly time-like points in R
4 by

V+ =
{
x ∈ R

4 | (x0)2 − x2 > 0
}
.

In order to prepare for the definition of the extended local commutativity, we shall consider func-

tionals which are carried by sets close to R
4 but not contained in R

4. Denote by V ℓθ the complex

ℓθ-neighborhood of V+

V ℓθ =
{
z ∈ C

4 | ∃ x ∈ V+, |Re z − x|+ |Im z|1 < ℓθ

}
.
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Consider the set of all pairs of points in C
4 whose difference belongs to the ℓθ-neighborhood,

M ℓθ =
{
(z1, z2) ∈ C

8 | z1 − z2 ∈ V ℓθ
}
,

and introduce the space H(M ℓθ ) consisting of all holomorphic functions on M ℓθ . Then, according

to Brüning-Nagamachi [46], we formulate the axiom of extended local commutativity condition as

follows.

Definition 4.6 (extended local commutativity condition). Let f, g be two test functions in H(T (R4)),

then the fields Φ(f) and Φ(g) are said to commute for any relative spatial separation ℓ′ > ℓθ of

their arguments, if the functional

F =
〈
Θ |

[
ϕ(f), ϕ(g)

]
⋆
| Ψ
〉

=
〈
Θ |

(
ϕ(f) ⋆ ϕ(g) − ϕ(g) ⋆ ϕ(f)

)
| Ψ
〉
,(4.5)

is carried by the set M ℓ′ =
{(
z1, z2) ∈ C

8 | z1 − z2 ∈ V ℓ′}, for any vectors Θ,Ψ ∈ D0, i.e., if the

functional F can be extended to a continuous linear functional on H(M ℓ′).

The Definition 4.6 can be understood saying that two operators Φ(f) and Φ(g), at two distinct

points of the non-commutative spacetime, can not be distinguished if the relative spatial distance

between their arguments is less than ℓθ. In other words, in NCQFT the quantum fluctuations of

the spacetime operationally prevent the exact localization of the events inside of the minimum area

ℓ2θ. This area is interpreted as the minimum region which observables can be probed [57].

Moreover, it follows from the extended local commutativity condition and from the Propositions

4.3 and 4.4 in [46] that the functional F ∈ Uc(R
4m) defined by

F = W
⋆
m(z1, . . . , zj , zj+1, . . . , zm)−W

⋆
m(z1, . . . , zj+1, zj , . . . , zm) ,

for any ℓ′ > ℓθ, m ≥ 2 and j ∈ {1, . . . ,m − 1}, can be extended to a continuous linear functional

on H(M ℓ′
j ), with M ℓ′

j =
{(
z1, . . . , zm) ∈ C

4m | zj − zj+1 ∈ V ℓ′
}
.

4.4. Properties of Non-Commutative Wightman Functions. The analysis of the preceding

results has shown that the sequence of vacuum expectation values of a NCQFT in terms of tempered

ultrahyperfunctions satisfies a number of specific properties. We summarize these below:

P′

1
W⋆

0 = 1, W⋆
m ∈ Uc(R

4m) for n ≥ 1, and W⋆
m(f∗) = W⋆

m(f), for all f ∈ H(T (R4m)), where

f∗(z1, . . . , zm) = f(z̄1, . . . , z̄m).

P′

2
The Wightman functionals W⋆

m are invariant under the twisted Poincaré group
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P′

3
Spectral condition. Since the Fourier transformation of tempered ultrahyperfunctions are

distributions, the spectral condition is not so much different from that of Schwartz distri-

butions. Thus, for every m ∈ N, there is Ŵ⋆
m ∈ H ′

V ∗(R4m,R4m) [46], where

(4.6) H ′
V ∗(R4m,R4m) =

{
V ∈ H ′(R4m,R4m) | supp (Ŵ⋆

m) ⊂ V ∗
}
,

with V ∗ being the properly convex cone (SC) defined in P3.

P′

4
Extended local commutativity condition.

P′

5
For any finite set fo, f1, . . . , fN of test functions such that fo ∈ C, fj ∈ H(T (R4j)) for

1 ≤ j ≤ N , one has

N∑

k,ℓ=0

W
⋆
k+ℓ(f

∗
k ⊗ fℓ) ≥ 0 .

5. CPT, Spin-Statistics and All That in UHFNCQFT

In the preceding sections, we have defined what is meant by NCQFT in terms of tempered

ultrahyperfunctions and assembled some tools to aid in the analysis of its structure. In this section,

these are used to establish some important theorems as the celebrated CPT and spin-statistics

theorems. The proof of these results as given in the literature [7]-[10] usually seem to rely on

the local character of the distributions in an essential way. In the approach which we follow the

apparent source of difficulties in proving these results is the fact that for functionals belonging to

the space of tempered ultrahyperfunctions the standard notion of the localization principle breaks

down.

Let Φ be a Hermitian scalar field. For this field, it is well-known that in terms of the Wightman

functions, a necessary and sufficient condition for the existence of CPT theorem is given by:

(5.1) Wm(x1, . . . , xm) = Wm(−xm, . . . ,−x1) .

Under the usual temperedness assumption, the proof of the equality (5.1) as given by Jost [58] starts

of the weak local commutativity (WLC) condition, namely under the condition that the vacuum

expectation value of the commutator of n scalar fields vanishes outside the light cone, which in

terms of Wightman functions takes the form

(5.2) Wm(x1, . . . , xm)−Wm(xm, . . . , x1) = 0 , for xj − xj+1 ∈ Jm .

Jost’s proof that the WLC condition (5.2) is equivalent to the CPT symmetry (5.1) one relies on the

fact that the proper complex Lorentz group contains the total spacetime inversion. Therefore, the

equality Wn(xm, . . . , x1) = Wn(−xm, . . . ,−x1) holds, taking in account the symmetry property

Jm = −Jm in whole extended analyticity domain, by the Bargman-Hall-Wightman (BHW)
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theorem. In particular, the BHW theorem has been shown [46] to be applicable to domains of

the form Tm−1 = R
4(m−1) + V+(ℓ

′
1, . . . , ℓ

′
m−1). Then, W ⋆

m(ζ1, . . . , ζm−1) can be extended to be a

holomorphic function on the extended tube

T ext.
m−1 =

{
(Λζ1, . . . ,Λζm−1)) | (ζ1, . . . , ζm−1) ∈ Tm−1,Λ ∈ L+(C)

}
,

which contains certain real points of type of the Jost points.

In order to prove that CPT theorem holds in NCQFT, an analogous of the WLC condition is

now formulated:

Definition 5.1. The non-commutative quantum field Φ defined on the test function space H(T (R4))

is said to satisfy the weak extended local commutativity (WELC) condition if the functional

F = W
⋆
m(z1, . . . , zm)−W

⋆
m(zn, . . . , z1) ,

is carried by set M ℓ′
j =

{(
z1, . . . , zm) ∈ C

4m | zj − zj+1 ∈ V ℓ′
}
.

The WELC condition takes the form W ⋆
m(ζ1, . . . , ζm−1) −W ⋆

m(−ζm−1, . . . ,−ζ1) in terms of the

NC Wightman functions depending on the relative coordinates ζj = zj − zj+1 ∈ V ℓ′ .

Proposition 5.2. Consider W ⋆
m(ζ1, . . . , ζm−1) and W

⋆
m(−ζm−1, . . . ,−ζ1). Then

W ⋆
m(ζ1, . . . , ζm−1) =W ⋆

m(−ζm−1, . . . ,−ζ1) ,

on their respective domains of holomorphy.

Proof. The idea of the proof follows from the standard strategy. As in Ref. [7] suppose that

x1, . . . , xm are such that all the differences xi − xj are space-like. Then (z1, . . . , zm) /∈M ℓ′
j . Hence,

W ⋆
m(ζ1, . . . , ζm−1) =W ⋆

m(−ζm−1, . . . ,−ζ1)

by Definition 5.1. Now, our propose is to show that these are points of holomorphy of both func-

tions. This is achieved applying the Edge of the Wedge theorem (Theorem 3.23). First, we note

that W ⋆
m(ζ1, . . . , ζm−1) is holomorphic in R

4(m−1) + V+(ℓ
′
1, . . . , ℓ

′
m−1) by Corollary 4.5. Further-

more, the functionsW ⋆
m(ζ1, . . . , ζm−1) and W

⋆
m(−ζm−1, . . . ,−ζ1) have boundary values which agree

at totally space-like points in the sense of the strong topology of H′. Hence, by Theorem 3.23

W ⋆
m(−ζm−1, . . . ,−ζ1) is holomorphic at such points. �

Theorem 5.3 (CPT Theorem). A non-commutative scalar field theory symmetric under the CPT-

operation Θ is equivalent to the WELC.

Proof. The CPT invariance condition is derived by requiring that the CPT operator Θ be antiuni-

tary – see [7]-[10]:

(5.3) 〈ΘΞ | ΘΨ〉 = 〈Ψ | Ξ〉 .
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This means that the CPT operator leaves invariant all transition probabilities of the theory. In the

case of a NCFT, the operator Θ can be constructed in the ordinary way. Taking the vector states as

〈Ξ | = 〈Ωo | and | Ψ〉 = Φ(zm) ⋆ · · · ⋆Φ(z1) | Ωo〉 we shall express both sides of (5.3) in terms of NC

Wightman functions. For the left-hand side of (5.3) we can use directly the CPT transformation

properties of the field operators, which for a neutral scalar field is equal to ΘΦ(z)Θ−1 = Φ(−z).
Using the CPT-invariance of the vacuum state, Θ | Ωo〉 = | Ωo〉, the left-hand side of (5.3) becomes:

〈ΘΞ | ΘΨ〉 = 〈ΘΩo | Θ(Φ(zm) ⋆ · · · ⋆ Φ(z1) | Ωo〉

= W
⋆
m(−zm, . . . ,−z1) .(5.4)

In order to express the right-hand side of (5.3), we take the Hermitian conjugates of the vectors

| Ψ〉 and 〈Ξ |, to obtain:

(5.5) 〈Ψ | Ξ〉 = W
⋆
m(z1, . . . , zm) .

Putting together (5.3) with (5.4) and (5.5), we obtain the CPT invariance condition in terms of

NC Wightman functions as

W
⋆
m(z1, . . . , zm) = W

⋆
m(−zn, . . . ,−z1) ,

which in terms of the NC Wightman functions depending on the relative coordinates ζj reads

(5.6) W ⋆
m(ζ1, . . . , ζm) =W ⋆

m(ζm−1, . . . , ζ1) ,

Then, without giving more details, it should be clear from the Proposition 5.2 that the arguments

of Chap. V of Ref. [8] apply in our case. Hence, the CPT theorem continues to hold in UHFNCQFT.

�

As it is well-known, the Borchers class of a quantum field is a direct consequence of the CPT

theorem. Thus, we have the

Theorem 5.4 (Borchers class of quantum fields for a NCQFT). Suppose Φ is a field satisfying the

assumptions of Theorem 5.3 and Θ is the corresponding CPT -symmetry operator. Suppose ψ is

another field transforming under the same representation of the twisted Poincaré group, with the

same domain of definition. Suppose that the functional 〈Ωo | Φ(z1) ⋆ · · · ⋆ Φ(zj) ⋆ψ(z) ⋆ Φ(zj+1) ⋆

· · · ⋆ Φ(zm) | Ωo〉 − 〈Ωo | Φ(zm) ⋆ · · · ⋆ Φ(zj+1) ⋆ ψ(z) ⋆ Φ(zj) ⋆ · · · ⋆ Φ(z1) | Ωo〉 is carried by

M ℓ′
j =

{(
z1, . . . , zm+1) ∈ C

4(m+1) | zj − zj+1 ∈ V ℓ′
}
. Then Θ implements the CPT symmetry for

ψ as well and the fields Φ,ψ satisfy the weak extended local commutativity condition.

Proof. The proof is similar to the proof of Theorem 3.4 of Ref. [4]. �
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Corollary 5.5 (Transitivity of the WELC). The weak relative extended local commutativity prop-

erty is transitive in the sense that if each of the fields ψ1,ψ2 satisfies the assumptions of Theorem

5.4, then there is a CPT-symmetry operator common to the fields {Φ,ψ1,ψ2} and by Theorem 5.3,

the weak relative extended local commutativity condition is satisfied not only for {ψ1,ψ2} but also

for {Φ,ψ1,ψ2}.

Theorem 5.6 (Spin-Statistics Theorem). Suppose that Φ and its Hermitian conjugate Φ∗ satisfy

the WELC with the “wrong” connection of spin and statistics. Then Φ(x)Ωo = Φ∗(x)Ωo = 0.

Proof. The arguments of the standard proof apply [7], since the properties of Lorentz group repre-

sentations, existence of Jost points and the analyticity properties of NC Wightman functions are

also available in UHFNCQFT. �

We complete this section with a of the most important results of the axiomatic approach: the

Reconstruction theorem. Based in our analysis, we have the following

Theorem 5.7 (Reconstruction theorem to UHFNCQFT). Suppose that the hypotheses of Theorem

5.1 in [46] hold except that instead of the sequence
{
Wm

}
m∈N

and of the conditions (R0) − (R5),

we have the sequence
{
W⋆

m

}
m∈N

and the conditions P′

1
−P′

5
. Then the conclusions of Theorem 5.1

in [46] again hold.

6. Concluding Remarks

In the present paper, we extend the Wightman axiomatic approach to NCQFT in terms of

tempered ultrahyperfunctions. An important hint in favor of this approach comes from the fact

that the class of UHFNCQFT allows for the possibility that the off-mass-shell amplitudes can grow

at large energies faster than any polynomial (such behavior is not possible if fields are assumed to be

tempered only). This is relevant since NCQFT stands as an intermediate framework between string

theory and the usual quantum field theory. Here, we restrict ourselves to the simplest case, that of

a single, scalar, Hermitian field Φ(x) associated with spinless particles of mass m > 0. Some results

of the ordinary QFT, the existence of the symmetry CPT and of the Spin-Statistics connection

were proved to hold, if we replace the local commutativity by an extended local commutativity in

the sense of Brüning-Nagamachi [46]. We assume (implicitly) the case of a theory with space-

space non-commutativity (θ0i = 0). There is still a number of important questions to be studied

based on the ideas of this paper, such as the existence of the S-matrix, a representation of the

Jost-Lehmann-Dyson-type, the Reeh-Schlieder property and so on. Furthemore, as it was pointed

out in [1], for gauge theories, in particular the non-commutative QED (NCQED), the questions

associated to the Wightman axioms and their consequences are more involved due to the UV/IR

mixing. As said at the beginning, the existence of hard infrared singularities in the non-planar

sector of the theory, induced by uncancelled quadratic ultraviolet divergences, can result in one
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kind of problem: they can destroy the tempered nature of the Wightman functions. This result

reinforces the hypothesis that the infrared issue in NCFT must be dealt with another approach.

In this case the ultrahyperfunctional approach to NCQFT could be an interesting step in order to

resolve the problem of the UV/IR mixing in NCFT. This topic is under investigation.3 We hope

to report our conclusions on this issue in a forthcoming paper.

As a last remark, we note the result obtained in [15] where has been showed that the star

commutator of : φ(x) ⋆ φ(y) : and : φ(y) ⋆ φ(x) : does not obey the microcausality even for the

case in which θ0i = 0. However, we see that this is not the case here. The condition of extended

local commutativity being defined as a continuity condition of the expectation values of the field

commutators in a topology associated to a complex neighborhood of the light cone, it is not applied

to the tempered fields. Hence, for NCQFT in terms of tempered ultrahyperfunctions no violation

of Einstein’s causality is ever involved.
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[23] W. Lücke, “Spin-statistics Theorem for Fields with Arbitrary High Energy Behavior,” Acta Phys. Austr. 55

(1984) 213.
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[33] J. Sebastião e Silva, “Les Fonctions Analytiques Commes Ultra-Distributions dans le Calcul Opérationnel,”

Math. Ann. 136 (1958) 58.
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