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Abstract

An asymptotic expansion of a ratio of products of gamma functions

is derived. It generalizes a formula which was stated by Dingle, first

proved by Paris, and recently reconsidered by Olver.
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1 Introduction

Our starting point is the Gaussian hypergeometric function F (a, b; c; z) and
its series representation

1

Γ(c)
F (a, b; c; z) =

∞∑

n=0

(a)n(b)n
Γ(c+ n)n!

zn, |z| < 1,

which here is written in terms of Pochhammer symbols

(x)n = x(x+ 1) . . . (x+ n− 1) = Γ(x+ n)/Γ(x).

The hypergeometric series appears as one solution of the Gaussian (or hyper-
geometric) differential equation, which is characterized by its three regular
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singular points at z = 0, 1,∞. The local series solutions at 0 and 1 of this
differential equation are connected by the continuation formula [1]

1

Γ(c)
F (a, b; c; z) =

Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b; 1 + a + b− c; 1− z)

+
Γ(a + b− c)

Γ(a)Γ(b)
(1− z)c−a−bF (c− a, c− b; 1 + c− a− b; 1− z), (1)

(| arg(1− z)| < π).

Here we want to show that Eq. (1) implies an interesting asymptotic
expansion for a ratio of products of gamma functions, of which only a special
case was known before.

By applying the method of Darboux [4, 8] to (1), we derive in Sec. 2 the
formula in question. The behaviour of this and a related formula is discussed
in Sec. 3 and illustrated by a few numerical examples.

2 Derivation of an asymptotic expansion for

a ratio of products of gamma functions

It is well-known that the late coefficients of a Taylor series expansion contain
information about the nearest singular point of the expanded function [3]. In
this respect we want to analyze the continuation formula (1), in which then
only the second, at z = 1 singular term R is relevant, which may be written
as

R =
Γ(a+ b− c)Γ(1 + c− a− b)

Γ(a)Γ(b)

∞∑

m=0

(c− a)m(c− b)m
Γ(1 + c− a− b+m)m!

(1− z)c−a−b+m.

By means of the binomial theorem in its hypergeometric-series-form , we may
expand the power factor

(1− z)c−a−b+m =
∞∑

n=0

Γ(a+ b− c−m+ n)

Γ(a+ b− c−m)n!
zn.

Interchanging then the order of the summations and simplifying by means of
the reflection formula of the gamma function, we arrive at

R =
1

Γ(a)Γ(b)

∞∑

n=0

∞∑

m=0

(−1)m
(c− a)m(c− b)m

m!

Γ(a+ b− c−m+ n)

n!
zn.

2



This is to be compared with the left-hand side L of (1), which is

L =
1

Γ(a)Γ(b)

∞∑

n=0

Γ(a + n)Γ(b+ n)

Γ(c+ n)n!
zn.

Comparison of the coefficients of these two power series, which according
to Darboux [4] and Schäfke and Schmidt [8] should agree asymptotically as
n→∞, then yields

Γ(a + n)Γ(b+ n)

Γ(c+ n)
=

M∑

m=0

(−1)m
(c− a)m(c− b)m

m!
Γ(a+ b− c−m+ n) (2)

+O(Γ(a+ b− c−M − 1 + n)).

By means of

O(Γ(a+ b− c−M − 1 + n)) = Γ(a+ b− c+ n)O(n−M−1)

and the reflection formula of the gamma function, the relevant formula (2)
may also be written as

Γ(a+ n)Γ(b+ n)

Γ(c+ n)Γ(a + b− c+ n)
= 1 +

M∑

m=1

(c− a)m(c− b)m
m!(1 + c− a− b− n)m

+O(n−M−1).

(3)
The asymptotic expansion for a ratio of products of gamma functions in this
form (3) or the other (2) seems to be new. It is only the special case when
c = 1 which is known. This special case was stated by Dingle[2], first proved
by Paris[7], and reconsidered recently by Olver[5], who has found a simple
direct proof. His proof, as well as the proof of Paris, can be adapted easily
to the more general case when c is different from 1 . Still another proof is
available [6] which includes an integral representation of the remainder term.
Our derivation of Eq. (2) or (3) is significantly different from all the earlier
proofs of the case when c = 1.

3 Discussion and numerical examples

We now want to discuss our result in the form (3). First we observe that the
substitution c→ a+ b− c leads to the related formula

Γ(a + n)Γ(b+ n)

Γ(c+ n)Γ(a + b− c+ n)
= 1 +

M∑

m=1

(a− c)m(b− c)m
m!(1 − c− n)m

+O(n−M−1). (4)
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Which of (3) or (4) is more advantageous numerically depends on the values
of the parameters, and in this respect the two formulas complement each
other. Table 1 shows an example with a set of parameters for which (3) gives
more accurate values than (4), while Table 2 contains an example for which
(4) is superior to (3).

For finite n and M →∞ the series on the right-hand side of (3) converges
if Re(1− c− n) > 0. The same is true for (4) if Re(1 + c− a− b− n) > 0 .
Then, in both cases, the Gaussian summation formula yields

Γ(1− c− n)Γ(1 + c− a− b− n)

Γ1− a− n)Γ(1− b− n)
,

which, by means of the reflection formula of the gamma function, is seen to
be equal to

Γ(a+ n)Γ(b+ n)

Γ(c+ n)Γ(a+ b− c+ n)

sin(π[a+ n]) sin(π[b+ n])

sin(π[c+ n]) sin(π[a + b− c+ n])
. (5)

Otherwise (2) – (4) are divergent asymptotic expansions as n→∞.
Although in our derivation n is a sufficiently large positive integer, the

asymptotic expansions (2) – (4) are expected to be valid in a certain sector
of the complex n -plane, and in fact, the proofs of Paris [7] and of Olver [6]
apply to complex values of n.

If the series in (3) or (4) converge, their sums are equal to (5), which
generally (if neither c− a nor c− b is equal to an integer ) is different from
the left-hand side of (3) or (4). Therefore (3) and (4) can be valid only in the
half-planes in which the series do not converge. This means that (3) is an
asymptotic expansion as n→∞ in the half-plane Re(c−1+n) ≥ 0, and (4) is
an asymptotic expansion as n→∞ in the half-plane Re(a+b−c−1+n) ≥ 0.
Otherwise the series on the right-hand sides represent a different function,
namely (5).

A few numerical examples may serve for demonstration of these facts. In
Table 3 , the series converge to (5) for n = 10 , and therefore (3) and (4) are
not valid. For n = 20, on the other hand, the series diverge and so (3) and
(4) hold. The transition between the two regions is at the line Re(n) = 12.4
in case of (3) or Re(n) = 12.5 in case of (4). In Table 4, we see convergence
for n = −15 and divergence for n = −5, the transition between the two
regions being at the line Re(n) = −10.4 in case of (3) or Re(n) = −10.5 in
case of (4) .
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M right-hand side of (3) right-hand side of(4)
n = 10 1 0.9771429 0.9744681

2 0.9773113 0.9780243
3 0.9772978 0.9769927
4 0.9773005 0.9774980 ←
5 0.9772995 ← 0.9771117 ←
6 0.9773001 ← 0.9775615
7 0.9772995 0.9767519
8 0.9773003 0.9791530
9 0.9772983 0.9652341
10 0.9773079 1.2823765
exact value of (3) or (4): 0.97729983

Table 1: Values of the right-hand sides of (3) and (4) for the parameters
a = 0.7, b = 1.2, c = 0.4.

M right-hand side of (3) right-hand side of(4)
n = 10 1 0.968000 0.972093

2 0.973760 0.972350
3 0.971512 ← 0.972324
4 0.973078 ← 0.972331
5 0.971231 0.972327 ←
6 0.975016 0.972330 ←
7 0.959571 0.972325
8 1.179434 0.972342
9 4.748048 0.972163
10 26.430946 0.968966
exact value of (3) or (4): 0.97232850

Table 2: Values of the right-hand sides of (3) and (4) for the parameters
a = −0.7, b = −1.2, c = −0.4.
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M right-hand side of (3) right-hand side of(4)
n = 10 1 0.976000 0.975000

2 0.972434 0.971912
3 0.971341 0.971037
4 0.970882 0.970687
5 0.970651 0.970517
6 0.970520 0.970423
7 0.970440 0.970367
8 0.970388 0.970331
9 0.970352 0.970307
10 0.970326 0.970290
exact value of(3) or (4): 1.94045281
exact value of (5): 0.97022640 ←

n = 20 1 1.008000 1.007895
2 1.007360 1.007392
3 1.007521 1.007504
4 1.007438 ← 1.007452 ←
5 1.007515 ← 1.007497 ←
6 1.007385 1.007426
7 1.007839 1.007650
8 1.002201 1.005398
9 0.921096 0.965891
10 0.478588 0.740024
exact value of (3) or (4): 1.00747290 ←
exact value of (5): 0.50373645

Table 3: Values of the right-hand sides of (3) and (4) for the parameters
a = −11.7, b = −11.2, c = −11.4 .
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M right-hand side of (3) right-hand side of(4)
n = −15 1 0.986667 0.986957

2 0.985648 0.985745
3 0.985453 0.985492
4 0.985397 0.985415
5 0.985376 0.985386
6 0.985368 0.985373
7 0.985363 0.985367
8 0.985361 0.985363
9 0.985360 0.985361
10 0.985359 0.985360
exact value of (3) or (4): 1.97071532
exact value of (5): 0.98535766 ←

n = −5 1 1.010909 1.011111
2 1.009891 1.009798
3 1.010254 ← 1.010331 ←
4 1.009940 ← 1.009818 ←
5 1.010589 1.011015
6 1.005300 0.998322
7 0.951894 0.887892
8 0.737202 0.459630
9 0.134729 −0.725230
10 −1.243041 −3.418810
exact value of (3) or (4): 1.01011438 ←
exact value of (5): 0.50505719

Table 4: Values of the right-hand sides of (3) or (4) for the parameters
a = 11.7, b = 11.2, c = 11.4.
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