An asymptotic expansion for a ratio of products of gamma functions

Wolfgang Bühring

Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, 69120 Heidelberg, GERMANY

Abstract

An asymptotic expansion of a ratio of products of gamma functions is derived. It generalizes a formula which was stated by Dingle, first proved by Paris, and recently reconsidered by Olver.

MSC (2000): 33B15 Key words: gamma function, asymptotic expansion.

buehring@physi.uni-heidelberg.de

1 Introduction

Our starting point is the Gaussian hypergeometric function $F(a, b; c; z)$ and its series representation

$$
\frac{1}{\Gamma(c)}F(a,b;c;z) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{\Gamma(c+n)n!} z^n, \quad |z| < 1,
$$

which here is written in terms of Pochhammer symbols

$$
(x)_n = x(x+1)...(x+n-1) = \Gamma(x+n)/\Gamma(x).
$$

The hypergeometric series appears as one solution of the Gaussian (or hypergeometric) differential equation, which is characterized by its three regular singular points at $z = 0, 1, \infty$. The local series solutions at 0 and 1 of this differential equation are connected by the continuation formula [\[1](#page-4-0)]

$$
\frac{1}{\Gamma(c)}F(a,b;c;z) = \frac{\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}F(a,b;1+a+b-c;1-z)
$$

$$
+\frac{\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)}(1-z)^{c-a-b}F(c-a,c-b;1+c-a-b;1-z), \qquad (1)
$$

$$
(\vert \arg(1-z) \vert < \pi).
$$

Here we want to show that Eq. (1) implies an interesting asymptotic expansion for a ratio of products of gamma functions, of which only a special case was known before.

By applying the method of Darboux [\[4, 8\]](#page-4-0) to (1), we derive in Sec. 2 the formula in question. The behaviour of this and a related formula is discussed in Sec. [3](#page-2-0) and illustrated by a few numerical examples.

2 Derivation of an asymptotic expansion for a ratio of products of gamma functions

It is well-known that the late coefficients of a Taylor series expansion contain information about the nearest singular point of the expanded function [\[3](#page-4-0)]. In this respect we want to analyze the continuation formula (1), in which then only the second, at $z = 1$ singular term R is relevant, which may be written as

$$
R = \frac{\Gamma(a+b-c)\Gamma(1+c-a-b)}{\Gamma(a)\Gamma(b)} \sum_{m=0}^{\infty} \frac{(c-a)_m(c-b)_m}{\Gamma(1+c-a-b+m)m!} (1-z)^{c-a-b+m}.
$$

By means of the binomial theorem in its hypergeometric-series-form , we may expand the power factor

$$
(1-z)^{c-a-b+m} = \sum_{n=0}^{\infty} \frac{\Gamma(a+b-c-m+n)}{\Gamma(a+b-c-m)n!} z^n.
$$

Interchanging then the order of the summations and simplifying by means of the reflection formula of the gamma function, we arrive at

$$
R = \frac{1}{\Gamma(a)\Gamma(b)} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} (-1)^m \frac{(c-a)_m(c-b)_m}{m!} \frac{\Gamma(a+b-c-m+n)}{n!} z^n.
$$

Thisis to be compared with the left-hand side L of (1) (1) , which is

$$
L = \frac{1}{\Gamma(a)\Gamma(b)} \sum_{n=0}^{\infty} \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)n!} z^n.
$$

Comparison of the coefficients of these two power series, which according toDarboux $[4]$ and Schäfke and Schmidt $[8]$ $[8]$ $[8]$ should agree asymptotically as $n \to \infty$, then yields

$$
\frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} = \sum_{m=0}^{M} (-1)^m \frac{(c-a)_m (c-b)_m}{m!} \Gamma(a+b-c-m+n) \quad (2)
$$

$$
+ O(\Gamma(a+b-c-M-1+n)).
$$

By means of

$$
O(\Gamma(a+b-c-M-1+n)) = \Gamma(a+b-c+n)O(n^{-M-1})
$$

and the reflection formula of the gamma function, the relevant formula (2) may also be written as

$$
\frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)\Gamma(a+b-c+n)} = 1 + \sum_{m=1}^{M} \frac{(c-a)_m(c-b)_m}{m!(1+c-a-b-n)_m} + O(n^{-M-1}).
$$
\n(3)

The asymptotic expansion for a ratio of products of gamma functions in this form (3) or the other (2) seems to be new. It is only the special case when $c = 1$ which is known. This special case was stated by Dingle[\[2](#page-4-0)], first proved by Paris[[7\]](#page-4-0), and reconsidered recently by Olver[\[5](#page-4-0)], who has found a simple direct proof. His proof, as well as the proof of Paris, can be adapted easily to the more general case when c is different from 1. Still another proof is available[[6\]](#page-4-0) which includes an integral representation of the remainder term. Our derivation of Eq. (2) or (3) is significantly different from all the earlier proofs of the case when $c = 1$.

3 Discussion and numerical examples

We now want to discuss our result in the form (3). First we observe that the substitution $c \to a + b - c$ leads to the related formula

$$
\frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)\Gamma(a+b-c+n)} = 1 + \sum_{m=1}^{M} \frac{(a-c)_m(b-c)_m}{m!(1-c-n)_m} + O(n^{-M-1}).
$$
 (4)

Which of [\(3](#page-2-0))or ([4\)](#page-2-0) is more advantageous numerically depends on the values of the parameters, and in this respect the two formulas complement each other. Table [1](#page-5-0) shows an example with a set of parameters for which([3\)](#page-2-0) gives more accurate values than([4\)](#page-2-0), while Table [2](#page-5-0) contains an example for which (4) (4) is superior to (3) (3) (3) .

For finite n and $M \to \infty$ the series on the right-hand side of [\(3](#page-2-0)) converges ifRe(1 – c – n) > 0. The same is true for ([4\)](#page-2-0) if Re(1 + c – a – b – n) > 0. Then, in both cases, the Gaussian summation formula yields

$$
\frac{\Gamma(1-c-n)\Gamma(1+c-a-b-n)}{\Gamma 1-a-n)\Gamma(1-b-n)},
$$

which, by means of the reflection formula of the gamma function, is seen to be equal to

$$
\frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)\Gamma(a+b-c+n)} \frac{\sin(\pi[a+n])\sin(\pi[b+n])}{\sin(\pi[c+n])\sin(\pi[a+b-c+n])}.
$$
 (5)

Otherwise([2\)](#page-2-0) – [\(4](#page-2-0)) are divergent asymptotic expansions as $n \to \infty$.

Although in our derivation n is a sufficiently large positive integer, the asymptoticexpansions $(2) - (4)$ $(2) - (4)$ are expected to be valid in a certain sector ofthe complex n -plane, and in fact, the proofs of Paris [[7](#page-4-0)] and of Olver [\[6](#page-4-0)] apply to complex values of n .

Ifthe series in (3) (3) (3) or (4) converge, their sums are equal to (5) , which generally (if neither $c - a$ nor $c - b$ is equal to an integer) is different from the left-hand side of([3](#page-2-0)) or([4](#page-2-0)). Therefore [\(3](#page-2-0)) and([4](#page-2-0)) can be valid only in the half-planesin which the series do not converge. This means that (3) (3) (3) is an asymptotic expansion as $n \to \infty$ in the half-plane Re($c-1+n$) > 0, and [\(4](#page-2-0)) is an asymptotic expansion as $n \to \infty$ in the half-plane Re $(a+b-c-1+n) \geq 0$. Otherwise the series on the right-hand sides represent a different function, namely (5).

A few numerical examples may serve for demonstration of these facts. In Table [3](#page-6-0),the series converge to (5) for $n = 10$, and therefore (3) (3) and (4) (4) are notvalid. For $n = 20$, on the other hand, the series diverge and so ([3\)](#page-2-0) and [\(4](#page-2-0)) hold. The transition between the two regions is at the line $\text{Re}(n) = 12.4$ in case of [\(3](#page-2-0)) or $\text{Re}(n) = 12.5$ in case of [\(4](#page-2-0)). In Table [4](#page-7-0), we see convergence for $n = -15$ and divergence for $n = -5$, the transition between the two regions being at the line $\text{Re}(n) = -10.4$ in case of [\(3\)](#page-2-0) or $\text{Re}(n) = -10.5$ in case of (4) .

References

- [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
- [2] R. B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation (Academic Press, London, 1973).
- [3] P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953) , Vol. I.
- [4] F. W. J. Olver, *Asymptotics and Special Functions* (Academic Press, New York, 1974).
- [5] F. W. J. Olver, Asymptotic expansions of the coefficients in asymptotic series solutions of linear differential equations, Methods and Applications of Analysis 1, 1–13 (1994).
- [6] F. W. J. Olver, On an asymptotic expansion of a ratio of gamma functions, Proc. Royal Irish Acad. **A95**, 5-9 (1995).
- [7] R. B. Paris, Smoothing of the Stokes phenomenon using Mellin-Barnes integrals, J. Comput. Appl. Math. 41 , 117–133 (1992).
- [8] R. Schäfke and D. Schmidt, *The connection problem for general lin*ear ordinary differential equations at two regular singular points with applications in the theory of special functions, SIAM J. Math. Anal. 11 , 848–862 (1980).

	М	right-hand side of (3)	right-hand side of (4)	
$n=10$	1	0.9771429	0.9744681	
	2	0.9773113	0.9780243	
	3	0.9772978	0.9769927	
	4	0.9773005	0.9774980	
	5	0.9772995	0.9771117	
	6	0.9773001	0.9775615	
	7	0.9772995	0.9767519	
	8	0.9773003	0.9791530	
	9	0.9772983	0.9652341	
	10	0.9773079	1.2823765	
	exact value of (3) or (4) : 0.97729983			

Table 1: Values of the right-hand sides of([3](#page-2-0)) and([4\)](#page-2-0) for the parameters $a = 0.7, b = 1.2, c = 0.4.$

	М	right-hand side of (3)	right-hand side of (4)
$n=10$	1	0.968000	0.972093
	2	0.973760	0.972350
	3	0.971512	0.972324
	4	0.973078 \leftarrow	0.972331
	5	0.971231	0.972327
	6	0.975016	0.972330 \leftarrow
	7	0.959571	0.972325
	8	1.179434	0.972342
	9	4.748048	0.972163
	10	26.430946	0.968966
		exact value of (3) or (4) : 0.97232850	

Table 2: Values of the right-hand sides of([3](#page-2-0)) and([4\)](#page-2-0) for the parameters $a = -0.7, b = -1.2, c = -0.4.$

	$\,$	right-hand side of (3)	right-hand side of (4)
$n=10$	$\mathbf{1}$	0.976000	0.975000
	$\overline{2}$	0.972434	0.971912
	3	0.971341	0.971037
	$\overline{4}$	0.970882	0.970687
	5	0.970651	0.970517
	6	0.970520	0.970423
	7	0.970440	0.970367
	8	0.970388	0.970331
	9	0.970352	0.970307
	10	0.970326	0.970290
		exact value of (3) or (4): 1.94045281	
	exact value of (5) : 0.97022640 \leftarrow		
$n=20$	$\mathbf{1}$	1.008000	1.007895
	$\overline{2}$	1.007360	1.007392
	3 ¹	1.007521	1.007504
	$\overline{4}$	1.007438 \leftarrow	1.007452 \leftarrow
	5 ⁵	1.007515 \leftarrow	1.007497 \leftarrow
	6	1.007385	1.007426
	7	1.007839	1.007650
	8	1.002201	1.005398
	9	0.921096	0.965891
	10	0.478588	0.740024
		exact value of (3) or (4) : 1.00747290	
		exact value of (5) : 0.50373645	

Table 3: Values of the right-hand sides of([3](#page-2-0)) and([4\)](#page-2-0) for the parameters $a = -11.7, b = -11.2, c = -11.4$.

	$\,$	right-hand side of (3)	right-hand side of (4)
$n = -15$	$\mathbf{1}$	0.986667	0.986957
	$\overline{2}$	0.985648	0.985745
	3	0.985453	0.985492
	$\overline{4}$	0.985397	0.985415
	5	0.985376	0.985386
	6	0.985368	0.985373
	$\overline{7}$	0.985363	0.985367
	8	0.985361	0.985363
	$\boldsymbol{9}$	0.985360	0.985361
	10	0.985359	0.985360
		exact value of (3) or (4) : 1.97071532	
		exact value of (5) : 0.98535766	\leftarrow
$n=-5$	$\mathbf{1}$	1.010909	1.011111
	$\overline{2}$	1.009891	1.009798
	3	1.010254 \leftarrow	1.010331 \leftarrow
	$\overline{4}$	1.009940 \leftarrow	1.009818 \leftarrow
	5	1.010589	1.011015
	6	1.005300	0.998322
	$\overline{7}$	0.951894	0.887892
	8	0.737202	0.459630
	9	0.134729	-0.725230
	10	-1.243041	-3.418810
		exact value of (3) or (4) : 1.01011438	\leftarrow
		exact value of (5) : 0.50505719	

Table 4: Values of the right-hand sides of([3\)](#page-2-0) or([4\)](#page-2-0) for the parameters $a = 11.7, b = 11.2, c = 11.4.$