
Antinomies of Mathematical Reason:  

The Inconsistency of PM Arithmetic and Related Systems 

 

(S. Fennell, Cambridge) 

 

 

Abstract: We give a proof of the inconsistency of PM arithmetic, classical set theory 
and related systems, incidentally exposing an error in Gödel’s own proof of Gödel’s 
Theorems. The inconsistency proof, that formulae of the form R and ~R occur as 
theorems in the PM-isomorphic system P, proceeds from a reflexive substitution 
instance of the axiom p ∨ p → p, the first axiom of the propositional calculus (axiom 
II.1 of P). Gödel’s formalism is used throughout.  
 

 
It has long been thought that the paradox of the Cretan Epimenides uttering Krht̀e~ 

ajei; yeus̀tai (‘Cretans are always liars’), as recorded in one of the more exiguous 

books of the New Testament,1 and more earnestly expounded as a paralogism by 

Eubulides,2 cannot be constructively formulated in conventional logical and 

mathematical systems. We formulate in the following pages, however, a structure 

which possesses some of the critical properties of that paralogism. 

 

We note initially that deductive systems as a class (including mathematical systems) 

by their nature presuppose the relations and axioms embodied in the propositional 

calculus. In particular we note the indispensability of the propositional axiom (known 

as the ‘principle of tautology’) listed as axiom II.1 in Gödel’s 1931 paper, p ∨ p → p,3 

which is equivalent to (~p → p) → p. If this principle, itself a tautology, were neither 

stipulated nor derivable in the system, little sense could be made of the system’s basic 

connectives, and of deductive implication in particular: the consequences of excluding 

this axiom (on ‘intuitive’ grounds) would be (i) denial that p is implied by p, and (ii) 

denial that p is implied by p ∧ p (both denials in obvious contradiction of the 

meanings of those signs).4  

 

We shall see that cases of both R and ~R occur as theorems in the PM-isomorphic 

system P of basic arithmetic (where R is some well-formed formula of the system), as 

they will in any impredicative deductive system of this type (and in any wider set of 

methods or computer program5 embracing any of those systems, as well as all theories 

in which the structure of the present proof can be reproduced): hence these systems 



are inconsistent. We shall use the same system as Gödel did in 1931; in the 

explanations however, for clarity’s sake, we shall use ‘Gn’ as an abbreviation for 

‘Gödel-number’ (where Gödel used italics to denote the Gn of any described object.) 

The axiom sets of the system are well known, and we need here only remind the 

reader of a few items which feature in the immediate formulation of Gödel’s crucial 

self-referential formula.6 A relationmark is a formula of P with two or more free 

variables. A classmark is a formula of P with a single free variable. A numbermark is 

the term in P corresponding to a natural number. The expressions ‘Bew (a)’, ‘Neg a’, 

and ‘a Imp b’ mean: ‘the P-formula with Gn a is provable in P’, ‘the Gn of the 

negation of the P-formula with Gn a’, and ‘the Gn of the P-formula denoting the 

implication of the P-formula with Gn b by the P-formula with Gn a’ respectively.7 ω-

consistency is defined by Gödel as asserting that, regardless of whether the 

generalisation of a classmark with Gn a is a theorem of system P (or of some class κ 

of its formulae), it cannot be so that both the negation of that generalisation be a 

theorem, and yet each successive natural-numbermark-substitution instance of the 

classmark with Gn a also be a theorem.8 This purports to define a stricter standard of 

consistency than normal consistency.  

 

The framework for deriving contradictories in P is created essentially by expressing a 

variant of axiom II.1 as a formula referring to recursive self-referential formulae.  

 

We note the recursiveness of the substitution function Sb as defined by Gödel, 

whereby the relationmark Sb ( 23

)( yZ
x ) signifies the Gn of the result of substituting the 

numbermark of a natural-number value y into the single free variable (here defined as 

the variable with Gn 23) of the classmark with Gn x. We can also make use, as Gödel 

did, of the ‘self-substitution’ case Sb ( 23

)(xZ
x ) where y = x: where the numbermark of a 

classmark’s own Gn is substituted into its own single free variable. (The primary 

purpose of this structure is to overcome the problems of arithmetical impossibility 

involved in more direct strategies of self-reference.) We define a classmark with Gn s 

as follows: 

 s = Sb ( 23

)(xZ
x )         (1) 



 Using two instances of this ‘self-substitution’ function, we define a classmark with 

Gn t as follows: 

 t = s Imp Neg s                  (2) 

noting that Imp is recursively defined as in Gödel’s Recursive Definition 32.9 

 

We now define a formula with Gn u as follows: 

 u = Sb ( 23

)(tZ
t )   (3) 

noting that the single free variable with Gn 23 in the classmark with Gn t is x itself. 

The semantic content of formula with Gn u is, to express it demotically: “This quoted 

statement implies the negation of this quoted statement.” Intuitively, we might not 

expect this formulation to be a theorem of P, and indeed, since this formula is itself of 

the form (p → ~p), it follows via the P-axiom II.1, in the form (p → ~p) → ~p, that: 

 Bew (u Imp Neg u)   [by axiom II.1]  (4) 

for the formula u is also the specification of its own consequence via axiom. But since 

this provable implication is itself the formula referred to by its own protasis (the 

lefthand side of the implication formula) – i.e. it holds, in terms of Gödel’s Definition 

35, that A1 - Ax (u), – it follows that: 

 Bew (u)  [by 2, 3 & 4]   (5) 

 Proceeding from line 4, however, the apodosis will also be a theorem of P, via the 

same axiom: 

 Bew (Neg u)  [by 4 & axiom II.1]  (6) 

 Bew (u Con Neg u)  [by 5 & 6]     (7) 

 

This establishes that (contra Gödel p. 189) there is proof in P of a pair of mutually 

contradictory formulae of P, regardless of whether we suppose the system to be 

complete or not: the system P itself is inconsistent, and all speculations arising from 

the notion of its incompleteness must be discarded. 

 

One immediate consequence of P’s inconsistency is that the distinction between the 

consistent and ω-consistent formulae of this system, substantiated by formulae 

derived from Gödel’s undecidability proof, vanishes;10 there will exist in this system 

no consistent (and a potiori no ω-consistent) class κ of formulae in which the 

formulability of Gödel’s undecidable formulae could be demonstrated; his 1931 proof 

of P’s undecidability thus lapses from Theorem VI onwards. 



 

It follows from hitherto proven elements of Church’s Thesis that the same 

contradiction as demonstrated above arises in Turing-, lambda- and abacus-

computable as well as combinatorically definable functions, Shepherd/Sturgis register 

machines, Markov algorithms and the geometries and other systems isomorphic to or 

reducible to them, or even (as extensions) simply including them. Hence the normal 

conditions defining these systems define in each case a contradictory complex. As the 

consequences of Gödel’s proof would also have applied to Zermelo-Fraenkel-

Neumann set theory (ZF),11 there is no difficulty in constructing an analogous proof 

for ZF’s inconsistency. The same applies to a vast class of theories whose supposed 

undecidabilites arise from self-referential formulae (or derivatives of them) which can 

be dealt with in the same way as above; in particular this affects all arithmetisable 

systems in which Cantorian diagonalisation can be defined and carried out, and thus 

affects the logical and mathematical results that have been obtained in that manner. 

Although the discussion of them goes beyond the remit of this paper, the 

consequences of mathematical inconsistency for systems of theoretical physics may 

be traced in terms of the system relations discussed in Deutsch (1985), Wolfram 

(1985), A.C. Manoharan (2000) and others.12  

 

It is a consequence of a system’s inconsistency that every proposition formulable 

within it (including each proposition’s negation) also becomes provable; the condition 

for the consistency of a system is namely that the system contain at least one 

proposition which is not a theorem. As the computable analogues of the theorems of 

any such system, a Turing machine would simply give (in any formally specified 

order) the analogues of every ‘correct’ proposition and its negation: thus there are in 

these systems no genuinely undecidable propositions or numbering problems arising 

from them.  

 

 

For this reason no formulation of the inconsistency principle is offered here in any 

such system itself: trivially, the negation of the respective inconsistency result would 

also be a theorem of each of these systems. The inconsistency result is in that 

particular sense suprasystemic. This further – and vastly more serious – 

disappointment for Hilbert’s formalist programme changes considerably the means by 



which we must pursue our intuitive conceptions of verifiable mathematics and other 

constructive systems, although the basic impulses whose elaboration is our ongoing 

task remain: ‘the impression that mathematics deals with structures of abstract objects 

that are independent of us, and the conviction, that principles for some structures are 

immediately evident, because we can grasp the build-up or construction of their 

elements’.13 
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