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Abstract

The problem of controlling surge and stall in jet engine compressors is of fundamental importance

in preventing damage and lengthening the life of these components. In this paper, we use the Moore-

Greitzer mathematical model to develop an output feedback controller for these two instabilities (only

one of the three states is measurable). This problem is particularly challenging since the system is

not completely observable and, hence, none of the output feedback control techniques found in the

literature can be applied to recover the performance of a full state feedback controller. However, we

show how to successfully solve it by using a novel output feedback approach for the stabilization of

general stabilizable and incompletely observable systems.

1 Introduction and Problem Description

In this paper we consider the problem of controlling two instabilities which occur in jet engine compressors,

namely rotating stall and surge. Rotating stall develops when there is a region of stagnant flow rotating

around the circumference of the compressor causing undesired vibrations in the blades and reduced

pressure rise of the compressor. Surge is an axisymmetric oscillation of the flow through the compressor

that can cause undesired vibrations in other components of the compression system and damage to the

∗This work was supported by NASA Glenn Research Center, Grant NAG3-2084.
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engine. In [18], Moore and Greitzer developed a three-state finite dimensional Galerkin approximation

of a nonlinear PDE model describing the compression system. Since its development, several researchers

have used the Moore-Greitzer three state model (MG3) to design stabilizing controllers for stall and

surge. The available control approaches may be divided into three main categories: 1) Linearization and

linear perturbation models (e.g., [23, 19, 4] among others); 2) Bifurcation analysis (e.g., [10, 11, 6, 17, 1]);

and 3) Lyapunov based methods (e.g., [8, 3, 22]). Most existing results focus on the development of state

feedback controllers, thus complicating their practical implementation as in [6], where the authors use

sensor arrays (2D sensing) to implement a state feedback control law depending on the squared amplitude

of the first harmonic of asymmetric flow and the derivative of the air flow through the compressor. In [8],

a partial state feedback controller simplifies practical implementation by only requiring measurements

of the mass flow and plenum pressure rise (hence 2D sensing is not needed). On the other hand, the

limitation of this partial state feedback controller lies in the fact that it cannot globally stabilize a unique

equilibrium point.

To the best of our knowledge, no attempt has been made to design a stabilizing output feedback

controller (using only plenum pressure rise feedback) based on a full-state feedback control law. This is

probably due to the fact that MG3 becomes unobservable when there is no mass flow through the com-

pressor, i.e., the system is not uniformly completely observable (UCO), and none of the techniques found

in the output feedback control literature (e.g., [5, 21, 20, 7, 15, 16, 2]) can be employed for the solution

of this problem. In this paper we introduce a new globally stabilizing full state feedback control law for

MG3, and we employ the theory developed in [14, 12] for the output feedback control of incompletely

observable nonlinear systems to regulate stall and surge by using only pressure measurements. The MG3

model is described by (see [9, 8] for an analogous exposition)

Φ̇ = −Ψ+ΨC(Φ)− 3ΦR

Ψ̇ =
1

β2
(Φ− ΦT )

Ṙ = σR(1 − Φ2 −R), R(0) ≥ 0

(1)

where Φ represents the mass flow, Ψ is the plenum pressure rise, R ≥ 0 is the normalized stall cell
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squared amplitude, ΦT is the mass flow through the throttle, σ = 7, and β = 1/
√
2. The functions Ψc(Φ)

and ΦT (Ψ) are the compressor and throttle characteristics, respectively, and are defined as ΨC(Φ) =

ΨC0
+ 1 + 3/2Φ− 1/2Φ3, Ψ = 1

γ
(1 + ΦT (Ψ))2, where ΨC0

is a constant and γ is the throttle opening,

the control input. Given the static relationship existing between ΦT and γ, without loss of generality,

in what follows we will design a controller assuming that ΦT is our control input. Our control objective

is to stabilize system (1) around the critical equilibrium Re = 0,Φe = 1,Ψe = ΨC(Φ
e) = ΨC0

+ 2,

which achieves the peak operation on the compressor characteristic. We shift the origin to the desired

equilibrium with the change of variables φ = Φ− 1, ψ = Ψ−ΨC0
− 2. System (1) then becomes

Ṙ = −σR2 − σR(2φ+ φ2)

φ̇ = −ψ − 3/2φ2 − 1/2φ3 − 3Rφ− 3R

ψ̇ = − 1

β2
(ΦT − 1− φ)

(2)

The pressure rise (and hence ψ) is the only measurable state variable. It is readily seen that this system

is input output feedback linearizable with relative degree one (the first derivative of ψ contains the input

γ), and its zero-dynamics are nonminimum phase.

2 State Feedback Control Design

For convenience, in the remainder of the paper we will redefine the control input to be u = ΦT − 1.

Next, notice that Assumption A2 in [14, 12] is satisfied since, for example, a stabilizing control law for

(2) is given in [9] by means of backstepping design. However, the control law proposed in [9] turns

out to be quite complex. In [8], it is shown that a linear partial state feedback control law of the type

u = d1ψ−d2φ achieves either a unique asymptotically stable equilibrium point with domain of attraction

{(R, φ, ψ) ∈ R
3|R ≥ 0} or two equilibria on the axisymmetric and stall characteristic, with domains of

attraction {(R, φ, ψ) ∈ R
3|R = 0} and {(R, φ, ψ) ∈ R

3|R > 0}, respectively (see Theorem 3.1 in [8]).

Here, this problem is overcome by viewing system (2) as an interconnection of two subsystems, namely the

R-subsystem and the (φ, ψ)-subsystem, and then building a full state feedback controller which makes the
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origin of (2) an asymptotically stable equilibrium point with domain of attraction {(R, φ, ψ) ∈ R
3|R ≥ 0},

as seen in the next theorem.

Theorem 1 For system (2), with the choice of the control law

ū = (1− β2k1k2)φ+ β2k2ψ + 3β2k1Rφ (3)

where k1 and k2 are positive scalars satisfying the inequalities,

k1 >
17

8
+

(2Cσ + 3)2

2
(4)

(

Cσ − 105

64

)

k21 +
3

4

(

−1

2
Cσ +

21

4

)

k1 − (Cσ + 3)2 > 0 (5)

k2 > k1 +
9

4
k21 +

9k1
4k1 − 9/2

+
(k21 − 1)2

4
(6)

C >
3

2σ
(7)

the origin is an asymptotically stable equilibrium point with domain of attraction A = {(R, φ, ψ) ∈ R
3|R ≥

0}.

Proof. For the sake of simplicity, redefine the control input to be u′ = − 1
β2 (u − φ), so that the last

equation in (2) becomes ψ̇ = u′. Next, notice that system (2) can be viewed as the interconnection of

two subsystems:

[S1] Ṙ = −σR2, [S2]















φ̇ = −ψ − 3

2
φ2 − 1

2
φ3

ψ̇ = −u′

A Lyapunov function for [S1], defined on the domain {R ∈ R |R ≥ 0}, is V1 = R, and its time derivative is

readily found to be V̇1 = −σR2 thus showing that the origin of [S1] is an asymptotically stable equilibrium

point of [S1], and its domain of attraction is {R ∈ R |R ≥ 0}. As for subsystem [S2] the analysis found in

Section 2.4.3 in [9] suggests using V2 = 1
2φ

2 + k1

8 φ
4 + 1

2 (φ− k1ψ)
2, where k1 is a positive design constant.

Furthermore, in [9], a stabilizing control law for [S2] is found to be u′ = −c1φ + c2ψ, where c1 and
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c2 are two appropriate positive constants. In the following we will show that, in order to stabilize the

interconnection of systems [S1] and [S2], one needs to add to u′ = −c1φ+c2ψ a term which is proportional

to the product Rφ. Based on these considerations, consider the following candidate Lyapunov function

for system (2),

V = CV1 + V2 = CR +
1

2
φ2 +

k1
8
φ4 +

1

2
(ψ − k1φ)

2
(8)

where C > 0 is a scalar. After noticing that V is positive definite on the domain A, and letting

ψ̃ = ψ − k1φ, we calculate the time derivative of V as follows,

V̇ =− CσR2 − CσR(2φ+ φ2) +

(

φ+
k1
2
φ3
)(

−ψ − 3

2
φ2 − 1

2
φ3 − 3Rφ− 3R

)

+

+ ψ̃

(

u′ + k1ψ +
3

2
k1φ

2 +
1

2
k1φ

3 + 3k1Rφ+ 3k1R

)

(9)

Here, as in [9], we use the identity − 3
2φ

2 − 1
2φ

3 = − 1
2

(

φ+ 3
2

)2
φ + 9

8φ to eliminate the potentially

destabilizing term −
(

φ+ k1/2φ
3
)

3/2φ2. Next, substituting (3) into (9) (after taking in account the

definition of u′), letting k̄1 = k1 − 9/8, and using the definition of ψ̃, we get

V̇ =− CσR2 − CσR(2φ+ φ2) +

(

φ+
k1
2
φ3
)

(

−ψ̃ − k̄1φ− 1

2

(

φ+
3

2

)2

φ− 3Rφ− 3R

)

+

+ ψ̃

(

−(k2 − k1)ψ̃ + k21φ+
3

2
k1φ

2 +
1

2
k1φ

3 + 3k1R

)

(10)

Now notice that the expression −
(

φ+ k1

2 φ
3
)

1
2

(

φ+ 3
2

)2
can be discarded since it is negative definite, and

that the term k1

2 φ
3ψ̃ cancels out. After collecting the remaining terms, we get

V̇ ≤− CσR2 − (2Cσ + 3)Rφ− (Cσ + 3)Rφ2 − k̄1φ
2 −

(

k1k̄1
2

+
3k1
2
R

)

φ4 − 3k1
2
Rφ3 +

+ ψ̃

(

−(k2 − k1)ψ̃ + (k21 − 1)φ+
3

2
k1φ

2 + 3k1R

)

(11)
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By using Young’s inequality five times we have

−(2Cσ + 3)Rφ ≤ 1

2
R2 +

(2Cσ + 3)2

2
φ2, −3k1

2
Rφ3 ≤ 3k1

2

(

Rφ2

4
+Rφ4

)

,

(k21 − 1)φψ̃ ≤ φ2 +
(k21 − 1)2

4
ψ̃2, 3k1Rψ̃ ≤ R2 +

9

4
k21ψ̃

2,
3

2
k1φ

2ψ̃ ≤ k1k̄1
4

φ4 +
9k1

4k̄1
ψ̃2

Applying the inequalities above to (11) we get

V̇ ≤−
(

Cσ − 3

2

)

R2 −
(

k̄1 −
(2Cσ + 3)2

2
− 1

)

φ2 −
(

k2 − k1 −
9

4
k21 −

9k1

4k̄1
− (k21 − 1)2

4

)

ψ̃2 +

−
(

Cσ + 3− 3

8
k1

)

Rφ2 − k1k̄1
4

φ4,

≤−









R

φ2









⊤ 







Cσ − 3
2

1
2

(

Cσ + 3− 3
8k1
)

1
2

(

Cσ + 3− 3
8k1
)

1
4k1k̄1

















R

φ2









−
(

k̄1 −
(2Cσ + 3)2

2
− 1

)

φ2 +

−
(

k2 − k1 −
9

4
k21 −

9k1

4k̄1
− (k21 − 1)2

4

)

ψ̃2 (12)

Hence, V̇ is negative definite on the domain A, provided that the quadratic form above is positive definite

and that the coefficients multiplying φ2 and ψ̃2 be positive. By imposing the positive definiteness of the

quadratic form we obtain Cσ − 3
2 > 0,

(

Cσ − 3
2

)

1
4k1k̄1 − 1

4

(

Cσ + 3− 3
8k1
)2

> 0, while by imposing

the positivity of the coefficients of the remaining two terms we get k̄1 >
(2Cσ+3)2

2 + 1, k2 > k1 +
9
4k

2
1 +

9k1

4k̄1

+
(k2

1
−1)2

4 . By using the definition of k̄1, inequalities (4), (5), (6), and (7) follow. In conclusion, if k1,

k2, and C are chosen so that (4)-(7) hold, we have that V̇ is negative definite on A which contains the

origin. This leads to the conclusion that {R = 0, φ = 0, ψ̃ = 0} is an asymptotically stable equilibrium

point, which in turn implies that {R = 0, φ = 0, ψ = 0} is an asymptotically stable equilibrium point.

Our next objective is to show that A is a region of attraction for the origin. This, however, is not

immediately evident from our result, since the set {[R, φ, ψ]⊤ ∈ R
3 |V ≤ K,K > 0} is unbounded

and, due to the presence of the term CR in V , it is not completely contained in A. In other words, it

may happen that, while the Lyapunov function is decreasing, R becomes negative, and thus the state

trajectory exits the set A, where V̇ is guaranteed to be negative definite. Therefore, in order to complete

our analysis, we need to show that A is invariant, which, together with V̇ < 0, implies that the set
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{[R, φ, ψ]⊤ ∈ R
3 |V ≤ K,K > 0}∩A is a region of attraction of the origin for any K > 0. This is readily

seen by noticing that, on the boundary of A, R = 0. From (2), R = 0 implies Ṙ = 0, thus proving that

no trajectory of the system can cross the boundary of A, and therefore A is invariant. In conclusion,

given any initial condition [R(0), φ(0), ψ(0)]⊤ in A, there exists a constant K > 0 such that the initial

condition is contained in the set {[R, φ, ψ]⊤ ∈ R
3 |V ≤ K,K > 0} ∩ A, thus proving that the origin of

system (2) is an asymptotically stable equilibrium point with domain of attraction A.
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Figure 1: Comparison between the partial state feedback controller developed in [8] and the full state
feedback controller (3).

Remark 1: By using inequalities (4)-(7), it is easy to show that the only equilibrium point of the

closed-loop system on the set A is the origin, as predicted by Theorem 1. Figure 1 shows the evolution of

the closed-loop trajectories under the partial state feedback controller developed in [8] and the controller

(3) for a particular choice of the coefficients d1, d2, k1, k2. The partial state feedback controller stabilizes

an equilibrium point different from the origin (R, φ, ψ) = (0, 0, 0).

Remark 2: Inequalities (4)-(7) represent conservative bounds on k1 and k2. In practical implementa-

tion, these parameters may be chosen significantly smaller after some tuning.
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In order to complete the state feedback design, we have to add an appropriate number of integrators

at the input side of the system (see [14, 12]). Following the procedure outlined in [14, 12], we form the

observability mapping H

ye =

















y

ẏ

ÿ

















= H
(

[R, φ, ψ]⊤, u, u̇
)

=

















ψ

−1/β2(u − φ)

1/β2
(

−u̇− ψ − 3/2φ2 − 1/2φ3 − 3Rφ− 3R
)

















(13)

Notice that the observability assumption A1 in [14, 12] is satisfied, for all φ 6= −1, with nu = 2 in that

given ye, u, and u̇, one can uniquely find R, φ, ψ. The operating point φ = −1 corresponds to Φ = 0,

i.e., no mass flow through the compressor which is a condition we would like to avoid during normal

engine operation. Since nu = 2, we extend the system with two integrators ż1 = z2, ż2 = v, u = z1. To

simplify the notation in the following, define x = [R, φ, ψ]⊤, and rewrite (2) as ẋ = f(x) + g(x)z1. Next,

we find a stabilizing control law for the extended system by using the integrator backstepping lemma:

v = α̇− z̃1−k4z̃2 , ϕ(x, z), where z̃1 = z1− ū, α = −k3z̃1− ∂V
∂x

g(x)+ ∂ū
∂x

[f(x)+g(x) z1], z̃2 = z2−α, and

k3, k4 are arbitrary positive constants. This completes the design of a stabilizing state feedback for the

extended system. The Lyapunov function of the closed-loop extended system is V̄ = V + 1
2 z̃

2
1+

1
2 z̃

2
2 . Notice

that, following the same reasoning as in the proof of Theorem 1 the set {[R, φ, ψ, z1, z2]⊤ ∈ R
5 |R ≥ 0}

is invariant; hence by applying the backstepping lemma we guarantee that the origin of the extended

system is asymptotically stable with domain of attraction D = A× R
2.

3 Output Feedback Design

The validity of the observability assumption A1 in [14, 12] allows us to design a stable observer. As already

pointed out, Assumption A1 in [14, 12] is satisfied on the domain X ×U =
{

[R, φ, ψ] ∈ R
3 |φ > −1

}

×R
2.
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We first design the observer developed in [14, 12],

˙̂
R = −σR̂2 − σR(2φ̂+ φ̂2)− (l1/ρ) + β2(3φ̂+ 3R̂+ (3/2)φ̂2)(l2/ρ

2) + β2(l3/ρ
3)

3(1 + φ̂)
(ψ − ψ̂)

˙̂
φ = −ψ̂ − 3/2 φ̂2 − 1/2 φ̂3 − 3R̂φ̂− 3R̂+ β2(l2/ρ

2)(ψ − ψ̂)

˙̂
ψ = −z1 − φ̂

β2
+ (l1/ρ)(ψ − ψ̂)

(14)

where ρ is a positive design parameter and the vector L = [l1, l2, l3]
⊤ ∈ R

3 is chosen to be Hurwitz. Next,

we calculate the solution P of the Lyapunov equation P (Ac−LCc)+(Ac−LCc)
⊤P = −I, where (Ac, Cc)

is a canonical observable pair. In order to confine the observer estimates to within the observable space,

we implement the following projection,

˙̂xP =

[

∂H
∂x̂

]−1{

P
(

ξ̂,
˙̂
ξ, z, ż

)

− ∂H
∂z

ż

}

P(ξ̂,
˙̂
ξ, z, ż) =























˙̂
ξ − Γ

N(ξ̂)
(

N(ξ̂, z)⊤
˙̂
ξ +Nz(ξ̂, z)

⊤ż
)

N(ξ̂, z)⊤ΓN(ξ̂, z)
if N(ξ̂, z)⊤

˙̂
ξ +Nz(ξ̂, z)

⊤ż ≥ 0 and ξ̂ ∈ ∂Cξ(z)

˙̂
ξ otherwise

where Γ = (SE ′)−1(SE ′)−1, S = S⊤ denotes the matrix square root of P , ξ̂ = H(x̂, z),
˙̂
ξ =

{

∂H
∂x̂

˙̂x+ ∂H
∂z

ż
}

,

and Cξ(z) is the cube

Cξ(z) =

{

ξ ∈ R
3 | ξ1 ∈ [a1, b1], ξ2 ∈

[

− 1

β2
(z1 + a2),−

1

β2
(z1 − b2)

]

, ξ3 ∈
[

1

β2
(−z2 − a3),

1

β2
(−z2 + b3)

]}

which, when a2 < 1, is contained in H(X , z), for all z (the scalars ai, bi, i = 1, 2, 3 have to be chosen to

satisfy Assumption A3 in [14, 12]). Finally, N(ξ̂, z) and Nz(ξ̂, z) are the normal vectors to the boundary

of Cξ(z) with respect to ξ and z, respectively, and are given by

N(ξ̂, z) =







































[1, 0, 0]⊤ if ξ̂1 = b1 [−1, 0, 0]⊤ if ξ̂1 = a1

[0, 1, 0]⊤ if ξ̂2 = − 1
β2 (z1 − b2) [0,−1, 0]⊤ if ξ̂2 = − 1

β2 (z1 + a2)

[0, 0, 1]⊤ if ξ̂3 = 1
β2 (−z2 + b3) [0, 0,−1]⊤ if ξ̂3 = 1

β2 (−z2 − a3)
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Nz(ξ̂, z) =







































[0, 0]⊤ if ξ̂1 = b1 or ξ̂1 = a1

[

1
β2 , 0

]⊤

if ξ̂2 = − 1
β2 (z1 − b2)

[

− 1
β2 , 0

]⊤

if ξ̂2 = − 1
β2 (z1 + a2)

[

0, 1
β2

]⊤

if ξ̂3 = 1
β2 (−z2 + b3)

[

0,− 1
β2

]⊤

if ξ̂3 = 1
β2 (−z2 − a3)

Thus, the output feedback controller design is completed by letting v̂ = ϕ(x̂P , z), and Theorem 2 in

[14, 12] guarantees that the origin of the closed-loop system , controlled by v̂, is asymptotically stable

with domain of attraction D′ × Ωx
c2
, where Ωx

c2

△
= {[R, φ, ψ]⊤ | V̄ ≤ c2, and R ≥ 0}, c2 > 0 is the largest

scalar such that Ωx
c2

⊂ {[R, φ, ψ]⊤ ∈ R
3 |φ > −1}, and D′ ⊂ Ωx

c2
can be made arbitrarily close to Ωx

c2
by

choosing ρ in (14) small enough (see Theorem 2 in [14, 12]).

4 Simulation Results

Here we present the simulation results when the output feedback controller developed in the previous

section is applied to system (2). We choose k1 = 25 and k2 = 1.1 · 105 to fulfill inequalities (4)-(7) in

Theorem 1. In order to choose the size of the compact set Cξ(z) so that Assumption A3 in [14, 12] is

satisfied, we may use the Lyapunov function V̄ to calculate Ωx
c2
, choose c2 small enough to guarantee

that Ωx
c2

⊂ X , and use H to calculate bounds on ξ when x ∈ Ωx
c2
. However, a more practical way to

address the design of Cξ(z) consists of running a number of simulations for the closed-loop system under

state feedback corresponding to several initial conditions [R(0), φ(0), ψ(0)]⊤, and calculating upper and

lower bounds for ψ, φ, and −ψ − 3/2φ2 − 1/2φ3 − 3Rφ − 3R: these will provide the values of ai, bi,

i = 1, 2, 3, respectively. By doing that, we found that whenever [R(0), φ(0), ψ(0)]⊤ ∈ Ω0
△
= {[R, φ, ψ]⊤ ∈

R
3 |R ∈ [0, 0.1], φ ∈ [−0.1, 0.1], ψ ∈ [−0.5, 0.5]}, we have that a1 = −2, b1 = 1, a2 = −0.5, b2 = 1,

a3 = −0.5, b3 = 0.3 satisfy Assumption A3 in [14, 12]. We must point out that our choice of Ω0 is rather

conservative and is made primarily for the sake of illustration. The actual domain of attraction D′ under

output feedback control is larger that Ω0. In Figure 2 system and controller states, together with the

control input, are plotted for two decreasing values of ρ confirming the theoretical predictions about the

arbitrary fast rate of convergence of the observer found in Theorem 1 in [14]. Furthermore, the figures
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Figure 2: Output feedback trajectories.

also show the operation of the projection which prevents the observer from peaking and guarantees that

φ̂ > −0.5. Finally, note that the output feedback trajectories approach the state feedback ones, as showed

in Figure 3.
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