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Abstract

A Lax pair for the 2D Euler equation is found.
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1. A Lax Pair for the 2D Euler Equation

This is to report that a Lax pair for the 2D Euler equation is found. We write the 2D Euler
equation in the vorticity form,

∂Ω

∂t
+ {Ψ,Ω} = 0 , (1.1)

where Ω is the vorticity, Ψ is the stream function, and the bracket { } is defined as

{f, g} = (∂xf)(∂yg)− (∂yf)(∂xg) .

Let us denote the x-directional and the y-directional velocities by u and v respectively. Then

u = −
∂Ψ

∂y
, v =

∂Ψ

∂x
, Ω =

∂v

∂x
−

∂u

∂y
, ∆Ψ = Ω .

The Lax pair is given as
{

Lϕ = λϕ ,

∂tϕ+ Aϕ = 0 ,
(1.2)

where
Lϕ = {Ω, ϕ} , Aϕ = {Ψ, ϕ} ,

and λ is a complex constant, and ϕ is a complex-valued function. The compatibility condition
of the Lax pair (1.2) gives the 2D Euler equation (1.1), i.e.

∂tL = [L,A] ,

where [L,A] = LA− AL, gives the Lax representation of the 2D Euler equation (1.1).

Remark 1.1 With the recent development on chaos in partial differential equations [1] [2]
[3], I am interested in building a dynamical system theory for 2D Euler equation under pe-
riodic boundary condition [4] [5]. In particular, I am investigating the existence v.s. nonex-
istence of homoclinic structure. For such studies, it will be fundamentally important to find
a Lax pair (if it exists) for the 2D Euler equation. Then I started with Vladimir Zakharov’s
paper [6]. Zakharov proposed the Lax pair

{

λD1ϕ+ {Ω, ϕ} = 0 ,

∂tϕ+ λD2ϕ+ {S, ϕ} = 0 ,
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where

D1 = α
∂

∂x
+ β

∂

∂y
, D2 = γ

∂

∂x
+ δ

∂

∂y
,

α, β, γ, and δ are real constants, λ is a complex constant, S is a real-valued function, and ϕ

is a complex-valued function. The compatibility condition of this Lax pair gives the following
equation instead of the 2D Euler equation,











∂Ω
∂t

+ {S,Ω} = 0 ,

D1S = D2Ω .

(Notice the misprints in the English translation of the article [6].)

Remark 1.2 The author is also aware of the Lax pair in the inverse Cauchy-Green tensor
variable of the Lagrangian formulations of both 2D and 3D Euler equations found by Susan
Friedlander and Misha Vishik [7] [8].
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