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The Geometry of Relativistic Rheonomic

Lagrange Spaces

Mircea Neagu

Abstract

In this paper we shall present a geometrization of time-dependent La-
grangians. The reader is invited to compare this geometrization with that
contained in the book of Miron and Anastasiei [11]. In order to develope the
subsequent Relativistic Rheonomic Lagrange Geometry, Section 1 describes the
main geometrical aspects of the 1-jet space J1(R,M), in the sense of d-tensors,
d-connections, d-torsions and d-curvatures. Section 2 introduces the notion
of Relativistic Rheonomic Lagrange Space, which naturally generalizes that of
Classical Rheonomic Lagrange Space [11], and constructs its canonical nonlin-
ear connection Γ as well as its Cartan canonical Γ-linear connection. We point
out that our geometry gives a model for both gravitational and electromag-
netic field. From this point of view, Section 4 presents the Maxwell equations
of the relativistic rheonomic Lagrangian electromagnetism. Section 5 describes
the Einstein’s gravitational field equations of a relativistic rheonomic Lagrange
space.

Mathematics Subject Classification (2000): 53C60, 53C80, 83C22
Key Words: 1-jet fibre bundle, time dependent Lagrangian, temporal and spatial
sprays, Cartan canonical connection, Maxwell and Einstein equations.

1 The geometry of J1(R,M)

1.1 Some physical aspects

Let us consider the usual time axis represented by the set of real numbers R and a
real, smooth and n-dimensional manifold M that we regard like a ”spatial” manifold
[16]. We suppose that the temporal manifold R is coordinated by t while the spatial
manifold M is coordinated by (xi)i=1,n. Note that, throughout this paper, the latin
letters i, j, k . . . run from 1 to n.

Let J1(R,M) ≡ R×TM be the usual 1-jet vector bundle, coordinated by (t, xi, yi),
and regarded over the product manifold base R ×M . From physical point of view,
the fibre bundle

J1(R,M) → R×M, (t, xi, yi) → (t, xi),(1.1.1)

is regarded like a bundle of configurations, in mechanics terms. The gauge group of
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this bundle of configurations is











t̃ = t̃(t)
x̃i = x̃i(xj)

ỹi =
∂x̃i

∂xj

dt

dt̃
yj.

(1.1.2)

We remark that the form of this gauge group stands out by the relativistic character
of the time t. For that reason, we consider that the jet vector bundle of order one
J1(R,M) is a natural house of the relativistic rheonomic Lagrangian mechanics.

It is important to note that, in the classical rheonomic Lagrangian mechanics [11],
the bundle of configuration is the fibre bundle

π : R × TM → M, (t, xi, yi) → (xi),(1.1.3)

whose geometrical invariance group is











t̃ = t
x̃i = x̃i(xj)

ỹi =
∂x̃i

∂xj
yj .

(1.1.4)

The structure of the gauge group 1.1.4 emphasizes the absolute character of the time
t from the classical rheonomic Lagrangian mechanics. At the same time, we point out
that the gauge group 1.1.4 is a subgroup of 1.1.2. In other words, the gauge group of
the jet bundle of order one from the relativistic rheonomic Lagrangian mechanics is
more general than that used in the classical rheonomic Lagrangian mechanics, which
ignores the temporal reparametrizations.

Finally, we point out that a deeply exposition of the physical aspects of the classical
rheonomic Lagrange geometry is done by Ikeda in [6] and [12]. At the same time, we
invite the reader to compare the classical rheonomic Lagrangian mechanics [10] with
that relativistic, whose geometrical background is developed in this paper.

1.2 Time-dependent sprays. Harmonic curves

Let us consider that the temporal manifold R is endowed with a semi-Riemannian
metric h = (h11(t)). In order to develope the geometrical background of the relativis-
tic rheonomic mechanics on the 1-jet fibre bundle E = J1(R,M), we will introduce a
collection of important geometrical concepts. An important geometrical concept on
J1(R,M) is that of time-dependent spray, which naturally generalizes the notion of
time-dependent spray on R × M , used in [11] and [22]. In order to introduce this
concept, let us consider the following notions:

Definition 1.2.1 A global tensor H (resp. G) on E, locally expressed by

H = dt⊗
∂

∂t
− 2H

(j)
(1)1dt⊗

∂

∂yj
,(1.2.1)

respectively

G = yjdt⊗
∂

∂xj
− 2G

(j)
(1)1dt⊗

∂

∂yj
(1.2.2)
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is called a temporal (resp. spatial) spray on E.

Because the sprays H and G are global tensors, using the coordinate transforma-
tions 1.1.2 on the 1-jet space E, it is easy to deduce the following [16]

Theorem 1.2.1 To give a temporal (spatial) spray on E is equivalent to give a set

of local functions H = (H
(j)
(1)1) (resp. G = (G

(j)
(1)1)) which transform by the rules

2H̃
(k)
(1)1 = 2H

(j)
(1)1

(

dt

dt̃

)2
∂x̃k

∂xj
−

dt

dt̃

∂ỹk

∂t
,(1.2.3)

respectively

2G̃
(k)
(1)1 = 2G

(j)
(1)1

(

dt

dt̃

)2
∂x̃k

∂xj
−

∂xi

∂x̃j

∂ỹk

∂xi
ỹj .(1.2.4)

The previous theorem allows us to offer the following important examples of tem-
poral and spatial sprays. The importance of these sprays comes from their using in
the description of the local equations of harmonic maps between two semi-Riemannian
manifolds [4].

Example 1.2.1 Let h = (h11) (resp. ϕ = (ϕij)) be a semi-Riemannian metric on R
(resp. M) and H1

11 (resp. γi
jk) its Christoffel symbols. In this context, taking into

account the transformation rules of the Christoffel symbols H1
11 and γi

jk, we deduce

that the components 2H
(j)
(1)1 = −H1

11y
j (resp. 2G

(j)
(1)1 = γj

kly
kyl) represent a temporal

(resp. spatial) spray which is called the canonical temporal (resp. spatial) spray as-
sociated to the metric h (resp. ϕ).

Definition 1.2.2 A pair (H,G), which consists of a temporal spray and a spatial
one, is called a time-dependent spray on J1(R,M).

Follwing the geometrical development of the classical rheonomic Lagrange mechan-
ics, we introduce a natural generalization of the notion of path of a time-dependent
spray, used in [11].

Definition 1.2.3 A curve c ∈ C∞(R,M) is called a harmonic curve of the time-
dependent spray (H,G) on J1(R,M), with respect to the semi-Riemannian temporal
metric h = (h11(t)) on R, if c is a solution of the DEs system of order two

h11

{

d2xi

dt2
+ 2G

(i)
(1)1 + 2H

(i)
(1)1

}

= 0,(1.2.5)

where h11h11 = 1 and the curve c is locally expressed by R ∋ t → (xi(t))i=1,n ∈ M .

Remarks 1.2.1 i) Under the coordinate transformations of J1(R,M), the left term
of the equations 1.2.5 modifies like a d-tensor, that is,

[

h11

{

d2xi

dt2
+ 2G

(i)
(1)1 + 2H

(i)
(1)1

}]

=
∂xi

∂x̃j

[

h̃11

{

d2x̃j

dt̃2
+ 2G̃

(j)
(1)1 + 2H̃

(j)
(1)1

}]

.(1.2.6)

Consequently, the equations 1.2.5 are global on J1(R,M) ≡ R × TM (i. e. their
geometrical invariance group is 1.1.2).
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ii) Comparatively, the equations of a path onR×TM (see [11]), that we generalized
by 1.2.5, are invariant only under the gauge group 1.1.4.

Example 1.2.2 Let us consider the canonical sprays asociated to the metrics h and
ϕ, which are locally expressed by











H
(i)
(1)1 = −

1

2
H1

11y
i

G
(i)
(1)1 =

1

2
γi
jky

jyk.

(1.2.7)

The equations of the harmonic curves attached to these sprays, with respect to the
semi-Riemannian temporal metric h, reduce to

h11

{

d2xi

dt2
−H1

11

dxi

dt
+ γi

jk

dxj

dt

dxk

dt

}

= 0,(1.2.8)

that is, exactly the equations whose solutions are the well known classical harmonic
maps between the semi-Riemannian manifolds (R, h) and (M,ϕ) [4]. Particularly,
if we regard the temporal manifold R endowed with the euclidian metric h = δ,
we recover the classical equations of geodesics on the semi-Riemannian manifold M .
These facts emphasize the naturalness of our previous definition.

1.3 Nonlinear connections. Adapted bases.

It is well known the importance of the nonlinear connections in the study of the
geometry of a fibre bundle E. A nonlinear connection (i. e. a supplementary horizon-
tal distribution of the vertical distribution of E) offers the possibility of construction
of the vector or covector adapted bases. These allow to write, in a simple form, the
geometrical objects or properties of the total space E. In this sense, considering the
particular case E = J1(R,M), we proved in [16],

Theorem 1.3.1 A nonlinear connection Γ on the jet fibre bundle of order one E

is determined by a pair of local function sets M
(i)
(1)1 and N

(i)
(1)j which modify by the

transformation laws

M̃
(j)
(1)1

dt̃

dt
= M

(k)
(1)1

dt

dt̃

∂x̃j

∂xk
−

∂ỹj

∂t
,(1.3.1)

Ñ
(j)
(1)k

∂x̃k

∂xi
= N

(k)
(1)i

dt

dt̃

∂x̃j

∂xk
−

∂ỹj

∂xi
.(1.3.2)

Definition 1.3.1 A set of local functions M
(i)
(1)1 (resp. N

(i)
(1)j) on J1(R,M), which

transform by the rules 1.3.1 (resp. 1.3.2) is called a temporal nonlinear connection
(resp. spatial nonlinear connection) on E = J1(R,M).

Example 1.3.1 Studying the transformation rules of the local components







M
(i)
(1)1 = −H1

11y
i

N
(i)
(1)j = γi

jky
k,

(1.3.3)
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where H1
11 (resp. γi

jk) are the Christoffel symbols of a temporal (resp. spatial) semi-

Riemannian metric h (resp. ϕ), we conclude that Γ0 = (M
(i)
(1)1, N

(i)
(1)j) represents a

nonlinear connection on E, which is called the canonical nonlinear connection attached
to the metric pair (h, ϕ).

Taking into account the transformation laws 1.2.3, 1.2.4 and 1.3.1, 1.3.2, we deduce
without difficulties that the notion of temporal (resp. spatial) spray is intimately
connected to the notion of temporal (resp. spatial) nonlinear connection.

Theorem 1.3.2 i) If M
(i)
(1)1 are the components of a temporal nonlinear connection,

then the components

H
(i)
(1)1 =

1

2
M

(i)
(1)1(1.3.4)

represent a temporal spray.

ii) Conversely, if H
(i)
(1)1 are the components of a temporal spray, then

M
(i)
(1)1 = 2H

(i)
(1)1(1.3.5)

are the components of a temporal nonlinear connection.

Theorem 1.3.3 i) If G
(i)
(1)1 are the components of a spatial spray, then the compo-

nents

N
(i)
(1)j =

∂Gi
(1)1

∂yj
(1.3.6)

represent a spatial nonlinear connection.

ii) Conversely, the spatial nonlinear connection N
(i)
(1)j induces the spatial spray

2G
(i)
(1)1 = N

(i)
(1)jy

j.(1.3.7)

Remark 1.3.1 The previous theorems allow us to conclude that a time-dependent
spray (H,G) induces naturally a nonlinear connection Γ on E, which is called the
canonical nonlinear connection associated to the time-dependent spray (H,G). We
point out that the canonical nonlinear connection Γ attached to the time-dependent
spray (H,G) is a natural generalization of the canonical nonlinear connection N in-
duced by a time-dependent sprayG from the classical rheonomic Lagrangian geometry
[11].

Let Γ = (M
(i)
(1)1N

(i)
(1)j) be a nonlinear connection on the 1-jet fibre bundle E. Let

us consider the geometrical objects,































δ

δt
=

∂

∂t
−M

(j)
(1)1

∂

∂yj

δ

δxi
=

∂

∂xi
−N

(j)
(1)i

∂

∂yj

δyi = dyi +M
(i)
(1)1dt+N

(i)
(1)jdx

j .

(1.3.8)
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One easily deduces that the set of vector fields

{

δ

δt
,

δ

δxi
,
∂

∂yi

}

⊂ X (E) and of cov-

ector fields {dt, dxi, δyi} ⊂ X ∗(E) are dual bases.

Definition 1.3.2 The basis

{

δ

δt
,

δ

δxi
,
∂

∂yi

}

⊂ X (E) and its dual basis

{dt, dxi, δyi} ⊂ X ∗(E) are called the adapted bases on E, determined by the non-
linear connection Γ.

The big advantage of the adapted bases is that the transformation laws of its
elements are simple and natural.

Proposition 1.3.4 The transformation laws of the elements of the adapted bases
attached to the nonlinear connection Γ are







































δ

δt
=

dt̃

dt

δ

δt̃

δ

δxi
=

∂x̃j

∂xi

δ

δx̃j

∂

∂yi
=

∂x̃j

∂xi

dt

dt̃

δ

δỹj
,

(1.3.9)







































dt =
dt

dt̃
dt̃

dxi =
∂xi

∂x̃j
dx̃j

δyi =
∂xi

∂x̃j

dt̃

dt
δỹj.

(1.3.10)

Remark 1.3.2 The simple transformation rules 1.3.9 and 1.3.10 determine us to de-
scribe the objects with geometrical and physical meaning from the subsequent rheo-
nomic Lagrange theory of physical fields, in adapted components.

1.4 Γ-linear connections

In order to develope the theory of Γ-linear connections on the 1-jet space E, we
need the following

Proposition 1.4.1 i) The Lie algebra X (E) of vector fields decomposes as

X (E) = X (HT )⊕X (HM )⊕X (V),

where

X (HT ) = Span

{

δ

δtα

}

, X (HM ) = Span

{

δ

δxi

}

, X (V) = Span

{

∂

∂xi
α

}

.

ii) The Lie algebra X ∗(E) of covector fields decomposes as

X ∗(E) = X ∗(HT )⊕X ∗(HM )⊕X ∗(V),
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where

X ∗(HT ) = Span{dtα}, X ∗(HM ) = Span{dxi}, X ∗(V) = Span{δxi
α}.

Let us consider hT , hM (horizontal) and v (vertical) as the canonical projections
of the above decompositions.

Definition 1.4.1 A linear connection ∇ : X (E)×X (E) → X (E) is called a Γ-linear
connection on E if ∇hT = 0, ∇hM = 0 and ∇v = 0.

In order to describe in local terms a Γ-linear connection ∇ on E, we need nine
unique local components,

∇Γ = (Ḡ1
11, G

k
i1, G

(k)(1)
(1)(i)1, L̄

1
1j , L

k
ij , L

(k)(1)
(1)(i)j, C̄

1(1)
1(j) , C

k(1)
i(j) , C

(k)(1)(1)
(1)(i)(j) ),(1.4.1)

which are locally defined by the relations

∇ δ
δt

δ

δt
= Ḡ1

11

δ

δt
, ∇ δ

δt

δ

δxi
= Gk

i1

δ

δxk
, ∇ δ

δt

∂

∂yi
= G

(k)(1)
(1)(i)1

∂

∂yk
,

∇ δ

δxj

δ

δt
= L̄1

1j

δ

δt
, ∇ δ

δxj

δ

δxi
= Lk

ij

δ

δxk
, ∇ δ

δxj

∂

∂yi
= L

(k)(1)
(1)(i)j

∂

∂yk
,

∇ ∂

∂yj

δ

δt
= C̄

1(1)
1(j)

δ

δt
, ∇ ∂

∂yj

δ

δxi
= C

k(1)
i(j)

δ

δxk
, ∇ ∂

∂yj

∂

∂yi
= C

(k)(1)(1)
(1)(i)(j)

∂

∂yk
.

Now, using the transformation laws 1.3.9 of the elements

{

δ

δt
,

δ

δxi
,
∂

∂yi

}

together

with the properties of the Γ-linear connection ∇, we obtain by computations

Theorem 1.4.2 i) The coefficients of the Γ-linear connection ∇ modify by the rules

(hT )











































Ḡ1
11

dt̃

dt
= ˜̄G

1

11

(

dt̃

dt

)2

+
d2t̃

dt2

Gk
i1 = G̃m

j1

∂xk

∂x̃m

∂x̃j

∂xi

dt̃

dt

G
(k)(1)
(1)(i)1 = G̃

(m)(1)
(1)(j)1

∂xk

∂x̃m

∂x̃j

∂xi

dt̃

dt
+ δki

(

dt̃

dt

)2
d2t

dt̃2
,

(hM )







































L̄1
1j

∂xj

∂x̃l
= ˜̄L

1

1l

Lm
ij

∂x̃r

∂xm
= L̃r

pq

∂x̃p

∂xi

∂x̃q

∂xj
+

∂2x̃r

∂xi∂xj

L
(m)(1)
(1)(i)j

∂x̃r

∂xm
= L̃

(r)(1)
(1)(p)q

∂xp

∂x̃i

∂x̃q

∂xj
+

∂2x̃r

∂xi∂xj
,
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(v)







































C̄
1(1)
1(i) = ˜̄C

1(1)

1(j)

∂x̃j

∂xi

dt

dt̃

C
k(1)
i(j) = C̃

s(1)
p(r)

∂xk

∂x̃s

∂x̃p

∂xi

∂x̃r

∂xj

dt

dt̃

C
(k)(1)(1)
(1)(i)(j) = C̃

(r)(1)(1)
(1)(p)(q)

∂xk

∂x̃r

∂x̃p

∂xi

∂x̃q

∂xj

dt

dt̃
.

ii) Conversely, to give a Γ-linear connection ∇ on the 1-jet space E is equivalent to
give a set of nine local coefficients 1.4.1 whose local transformations laws are described
in i.

The previous theorem allows us to offer an important example of Γ-linear connec-
tion on J1(R,M).

Example 1.4.1 Let h11 (resp. ϕij) be a semi-Riemannian metric on the temporal
(resp. spatial) manifold R (resp. M) and H1

11 (resp. γk
ij) its Christoffel symbols. Let

us consider Γ0 = (M
(i)
(1)1, N

(i)
(1)j), where M

(i)
(1)1 = −H1

11y
i, N

(i)
(1)j = γi

jky
k, the canonical

nonlinear connection on E attached to the metric pair (h11, ϕij). Using the trans-
formation rules of the Christoffel symbols, we deduce that the following set of local
coefficients [15]

BΓ0 = (Ḡ1
11, 0, G

(k)(1)
(1)(i)1, 0, L

k
ij, L

(k)(1)
(1)(i)j , 0, 0, 0),(1.4.2)

where Ḡ1
11 = H1

11, G
(k)(1)
(1)(i)1 = −δki H

1
11, Lk

ij = γk
ij and L

(k)(1)
(1)(i)j = δ11γ

k
ij , is a

Γ0-linear connection. This is called the Berwald Γ0-linear connection of the metric
pair (h11, ϕij).

Note that a Γ-linear connection ∇ on E, defined by the local coefficients 1.4.1, in-
duces a natural linear connection on the d-tensors set of the jet fibre bundle J1(R,M),
in the following fashion. Starting with X ∈ X (E) a d-vector field and a d-tensor field
D locally expressed by

X = X1 δ

δt
+Xm δ

δxm
+X

(m)
(1)

∂

∂ym
,

D = D
1i(j)(1)...
1k(1)(l)...

δ

δt
⊗

δ

δxi
⊗

∂

∂yj
⊗ dt⊗ dxk ⊗ δyl . . . ,

we introduce the covariant derivative

∇XD = X1∇ δ
δt
D +Xp∇ δ

δxp
D +X

(p)
(1)∇ ∂

∂yp
D =

{

X1D
1i(j)(1)...
1k(1)(l).../1 +Xp

D
1i(j)(1)...
1k(1)(l)...|p +X

(p)
(1)D

1i(j)(1)...
1k(1)(l)...|

(1)
(p)

} δ

δt
⊗

δ

δxi
⊗

∂

∂yj
⊗ dt⊗ dxk ⊗ δyl . . . ,

where

(hT )



























D
1i(j)(1)...
1k(1)(l).../1 =

δD
1i(j)(1)...
1k(1)(l)...

δt
+D

1i(j)(1)...
1k(1)(l)...Ḡ

1
11+

+D
1m(j)(1)...
1k(1)(l)... G

i
m1 +D

1i(m)(1)...
1k(1)(l)... G

(j)(1)
(1)(m)1 + . . .−

−D
1i(j)(1)...
1k(1)(l)...Ḡ

1
11 −D

1i(j)(1)...
1m(1)(l)...G

m
k1 −D

1i(j)(1)...
1k(1)(m)...G

(m)(1)
(1)(l)1 − . . . ,
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(hM )



























D
1i(j)(1)...
1k(1)(l)...|p =

δD
1i(j)(1)...
1k(1)(l)...

δxp
+D

1i(j)(1)...
1k(1)(l)...L̄

1
1p+

+D
1m(j)(1)...
1k(1)(l)... L

i
mp +D

1i(m)(1)...
1k(1)(l)... L

(j)(1)
(1)(m)p + . . .−

−D
1i(j)(1)...
1k(1)(l)...L̄

1
1p −D

1i(j)(1)...
1m(1)(l)...L

m
kp −D

1i(j)(1)...
1k(1)(m)...L

(m)(1)
(1)(l)p − . . . ,

(v)































D
1i(j)(1)...
1k(1)(l)...|

(1)
(p) =

∂D
1i(j)(1)...
1k(1)(l)...

∂yp
+D

1i(j)(1)...
1k(1)(l)...C̄

1(1)
1(p)+

+D
1m(j)(1)...
1k(1)(l)... C

i(1)
m(p) +D

1i(m)(1)...
1k(1)(l)... C

(j)(1)(1)
(1)(m)(p) + . . .−

−D
1i(j)(1)...
1k(1)(l)...C̄

1(1)
1(p) −D

1i(j)(1)...
1m(1)(l)...C

m(1)
k(p) −D

1i(j)(1)...
1k(1)(m)...C

(m)(1)(1)
(1)(l)(p) − . . . .

The local operators ”/1”, ”|p” and ”|
(1)
(p)” are called the HR-horizontal covariant

derivative, hM -horizontal covariant derivative and v-vertical covariant derivative of
the Γ-linear connection ∇.

The study of the torsion T and curvature R d-tensors of an arbitrary Γ-linear
connection ∇ was made in [18]. In this context, we proved that the torsion
d-tensor is determined by twelve effective local torsion d-tensors, while the curva-
ture d-tensor of ∇ is determined by eighteen local d-tensors.

1.5 h-Normal Γ-linear connections

Let h11 be a fixed pseudo-Riemannian metric on the temporal manifold R, H1
11

its Christoffel symbols and J = J
(i)
(1)1j

∂
∂yi ⊗dt⊗dxj , where J

(i)
(1)1j = h11δ

i
j, the normal-

ization d-tensor [16] attached to the metric h11. In order to reduce the big number of
torsion and curvature d-tensors which characterize a general Γ-linear connection on
E, we consider the following

Definition 1.5.1 A Γ-linear connection ∇ on E, defined by the local coefficients

∇Γ = (Ḡ1
11, G

k
i1, G

(k)(1)
(1)(i)1, L̄

1
1j , L

k
ij , L

(k)(1)
(1)(i)j, C̄

1(1)
1(j) , C

k(1)
i(j) , C

(k)(1)(1)
(1)(i)(j) ),

that verify the relations Ḡ1
11 = H1

11, L̄1
1j = 0, C̄

1(1)
1(j) = 0 and ∇J = 0, is called a

h-normal Γ-linear connection.

Remark 1.5.1 Taking into account the local covariant hR-horizontal ”/1”, hM -

horizontal ”|k” and v-vertical ”|
(1)
(k)” covariant derivatives induced by ∇, the condition

∇J = 0 is equivalent to

J
(i)
(1)1j/1 = 0, J

(i)
(1)1j|k = 0, J

(i)
(1)1j |

(1)
(k) = 0.(1.5.1)

In this context, we can prove the following

Theorem 1.5.1 The coefficients of a h-normal Γ-linear connection ∇ verify the iden-
tities

Ḡ1
11 = H1

11, L̄1
1j = 0, C̄

1(1)
1(j) = 0,

G
(k)(1)
(1)(i)1 = Gk

i1 − δki H
1
11, L

(k)(1)
(1)(i)j = Lk

ij , C
(k)(1)(1)
(1)(i)(j) = C

k(1)
i(j) .

(1.5.2)

9



Proof. The first three relations come from the definiton of a h-normal Γ-linear
connection.

The condition ∇J = 0 implies locally that


























h11G
(i)(1)
(1)(j)1 = h11G

i
j1 + δij

[

−
∂h11

∂t
+H111

]

h11L
(i)(1)
(1)(j) = h11L

i
jk

h11C
(i)(1)(1)
(1)(j)(k) = h11C

i(1)
j(k),

(1.5.3)

where H111 = H1
11h11 represent the Christoffel symbols of the first kind attached to

the semi-Riemannian metric h11. Contracting the above relations by h11, one obtains
the last three identities of the theorem.

Remarks 1.5.2 i) The preceding theorem implies that a h-normal Γ-linear on E is
determined just by four effective coefficients

∇Γ = (H1
11, G

k
i1, L

k
ij , C

k(1)
i(j) ).

ii) Considering the particular case of the temporal metric h = δ, we remark that
a δ-normal Γ-linear connection on J1(R,M) is a natural generalization of the notion
of N -linear connection used in the [11].

Example 1.5.1 Using the previous theorem, we deduce that the canonical Berwald
Γ0-linear connection associated to the metric pair (h11, ϕij) is a h-normal Γ0-linear
connection, defined by the local coefficients BΓ0 = (H1

11, 0, γ
k
ij , 0).

1.6 d-Torsions and d-Curvatures

The study of the torsion T and curvature R d-tensors of an arbitrary h-normal Γ-
linear connection ∇ was made in [15]. We proved there that the adapted components

T̄ 1
11, T̄ 1

1j , P̄
1(1)
1(j) and R

(m)
(1)11 of the torsion d-tensor T of ∇ vanish. Consequently, we

obtain the following [15]

Theorem 1.6.1 The torsion d-tensor T of the h-normal Γ-linearconnection ∇ is
determined by eight local d-tensors

hT hM v
hThT 0 0 0

hMhT 0 Tm
1j R

(m)
(1)1j

hMhM 0 Tm
ij R

(m)
(1)ij

vhT 0 0 P
(m) (1)
(1)1(j)

vhM 0 P
m(1)
i(j) P

(m) (1)
(1)i(j)

vv 0 0 S
(m)(1)(1)
(1)(i)(j)

(1.6.1)

where P
(m) (1)
(1)1(j) =

∂M
(m)
(1)1

∂yj
−Gm

j1 + δmj H1
11, P

(m) (1)
(1)i(j) =

∂N
(m)
(1)i

∂yj
− Lm

ji ,
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R
(m)
(1)1j =

δM
(m)
(1)1

δxj
−

δN
(m)
(1)j

δt
, R

(m)
(1)ij =

δN
(m)
(1)i

δxj
−

δN
(m)
(1)j

δxi
, S

(m)(1)(1)
(1)(i)(j) = C

m(1)
i(j) − C

m(1)
j(i) ,

Tm
1j = −Gm

j1, Tm
ij = Lm

ij − Lm
ji , P

m(1)
i(j) = C

m(1)
i(j) .

Remark 1.6.1 For the Berwald Γ0-linear connection associated to the metrics h11

and ϕij , all torsion d-tensors vanish, except R
(m)
(µ)ij = rmijlx

l
µ, where (resp. r

m
ijl) are the

curvature tensors of the metric ϕij .

In the same context, following the paper [15], we deduce that the number of the
effective adapted components of the curvature d-tensor R of an h-normal Γ-linear
connection ∇ is five.

Theorem 1.6.2 The curvature d-tensor R of ∇ is determined by the following ef-
fective local d-curvatures

hT hM v
hThT 0 0 0

hMhT 0 Rl
i1k R

(l)(1)
(1)(i)1k = Rl

i1k

hMhM 0 Rl
ijk R

(l)(1)
(1)(i)jk = Rl

ijk

vhT 0 P
l (1)
i1(k) P

(l)(1) (1)
(1)(i)1(k) = P

l (1)
i1(k)

vhM 0 P
l (1)
ij(k) P

(l)(1) (1)
(1)(i)j(k) = P

l (1)
ij(k)

vv 0 S
l(1)(1)
i(j)(k) S

(l)(1)(1)(1)
(1)(i)(j)(k) = S

l(1)(1)
i(j)(k)

(1.6.2)

where

Rl
i1k =

δGl
i1

δxk
−

δLl
ik

δt
+Gm

i1L
l
mk − Lm

ikG
l
m1 + C

l(1)
i(m)R

(m)
(1)1k,

Rl
ijk =

δLl
ij

δxk
−

δLl
ik

δxj
+ Lm

ijL
l
mk − Lm

ikL
l
mj + C

l(1)
i(m)R

(m)
(1)jk,

P
l (1)
i1(k) =

∂Gl
i1

∂yk
− C

l(1)
i(k)/1 + C

l(1)
i(m)P

(m) (1)
(1)1(k) ,

P
l (1)
ij(k) =

∂Ll
ij

∂yk
− C

l(1)
i(k)|j + C

l(1)
i(m)P

(m) (1)
(1)j(k) ,

S
l(1)(1)
i(j)(k) =

∂C
l(1)
i(j)

∂yk
−

∂C
l(1)
i(k)

∂yj
+ C

m(1)
i(j) C

l(1)
m(k) − C

m(1)
i(k) C

l(1)
m(j).

Remark 1.6.2 In the case of the Berwald Γ0-linear connection associated to the
metric pair (h11, ϕij), all curvature d-tensors vanish, except Rl

ijk = rlijk , where rlijk
are the curvature tensors of the metric ϕij .
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2 Relativistic rheonomic Lagrange geometry

2.1 Some aspects of classical rheonomic Lagrange geometry

A lot of geometrical models in Mechanics, Physics or Biology are based on the
notion of ordinary Lagrangian. Thus, the concept of Lagrange space which generalizes
that of Finsler space was introduced. In order to geometrize the fundamental concept
in mechanics, that of Lagrangian, we recall that a Lagrange space Ln = (M,L(x, y))
is defined as a pair which consists of a real, smooth, n-dimensional manifold M and
a regular Lagrangian L : TM → R, not necessarily homogenous with respect to the
direction (yi)i=1,n. The differential geometry of Lagrange spaces is now considerably
developped and used in various fields to study natural process where the dependence
on position, velocity or momentum is involved [11]. Also, the geometry of Lagrange
spaces gives a model for both the gravitational and electromagnetic field, in a very
natural blending of the geometrical structure of the space with the characteristic
properties of these physical fields.

At the same time, there are many problems in Physics and Variational calculus
in which time dependent Lagrangians (i. e., a smooth real function on R × TM)
are involved. A geometrization of a such time dependent Lagrangian is sketched
in [11]. This is called the ”Rheonomic Lagrange Geometry”. On the one hand, it is
remarkable that this geometrical model is the house of the development of the classical
rheonomic Lagrangian mechanics. On the other hand, from our point of view, this
time dependent Lagrangian geometrization has an important inconvenience that we
will describe.

In the context exposed in the book [11], the energy action functional E , attached
to a given time dependent Lagrangian,

L : R × TM → R, (t, xi, yi) → L(t, xi, yi),

not necessarily homogenous with respect to the direction (yi)i=1,n, is of the form

E(c) =

∫ b

a

L(t, xi(t), ẋi(t)) dt,(2.1.1)

where [a, b] ⊂ R, and c : [a, b] → M is a smooth curve, locally expressed by t → (xi(t)),
and having the velocity ẋ = (ẋi(t)). It is obvious that the non-homogeneity of the
Lagrangian L, regarded as a smooth function on the product manifold R × TM ,
implies that the energy action functional E is dependent of the parametrizations of
every curve c. In order to remove this difficulty, the authors regard the space R×TM
like a fibre bundle overM . In this context, the geometrical invariance group ofR×TM
is given by 1.1.4. In other words, to remove the parametrization dependence of E ,
they ignore the temporal repametrizations on R×TM . Naturally, in these conditions,
their energy functional becomes a well defined one, but their approach stands out by
the ”absolute” character of the time t.

In our geometrical approach, we try to remove this inconvenience. For that reason
we regard the space R × TM ≡ J1(R,M) like a fibre bundle over R × M . The
gauge group of this bundle of configurations is given by 1.1.2. Consequently, our
gauge group does not ignore the temporal reparametrizations, hence, it stands out

12



by the relativistic character of the time t. In these conditions, using a given semi-
Riemannian metric h11(t) on R, we construct the more general and natural energy
action functional, setting

E(c) =

∫ b

a

L(t, xi(t), ẋi(t))
√

|h11| dt.(2.1.2)

Obviously, E is well defined and is independent of the curve parametrizations.
In conclusion, we consider that the difficulty arised in the classical rheonomic

geometry, comes from a puzzling utilization of the notion of Lagrangian. From this
point of view, we point out that, in our geometrical development, we use the distinct
notions:

i) time dependent Lagrangian function − A smooth function on J1(R,M);
ii) time dependent Lagrangian (Olver’s terminology) − A local function L on

J1(R,M), which transforms by the rule L̃ = L|dt/dt̃|. If L is a Lagrangian func-
tion on 1-jet fibre bundle, then L = L

√

|h11| represents a Lagrangian on J1(R,M).
Finally, we point out that the geometrization attached to a time-dependent La-

grangian function that we will construct, can be called ”Relativistic Rheonomic La-
grange Geometry”. From our point of view, this geometry becomes a natural instru-
ment in the development of the relativistic rheonomic Lagrangian mechanics.

2.2 Relativistic rheonomic Lagrange spaces

In order to develope our time-dependent Lagrange geometry, we start the study
considering L : E → R a smooth Lagrangian function on E = J1(R,M), which
is locally expressed by E ∋ (t, xi, yi) → L(t, xi, yi) ∈ R. The vertical fundamental
metrical d-tensor of L is defined by

G
(1)(1)
(i)(j) =

1

2

∂2L

∂yi∂yj
.(2.2.1)

Let h = (h11) be a semi-Riemannian metric on the temporal manifold R.

Definition 2.2.1 A Lagrangian function L : E → R whose vertical fundamental
metrical d-tensor is of the form

G
(1)(1)
(i)(j) (t, x

k, yk) = h11(t)gij(t, x
k, yk),(2.2.2)

where gij(t, x
k, yk) is a d-tensor on E, symmetric, of rank n and having a constant

signature on E, is called a Kronecker h-regular Lagrangian function, with respect to
the temporal semi-Riemannian metric h = (h11).

In this context, we can introduce the following

Definition 2.2.2 A pair RLn = (J1(R,M), L), where n = dimM , which con-
sists of the 1-jet fibre bundle and a Kronecker h-regular Lagrangian function
L : J1(T,M) → R is called a relativistic rheonomic Lagrange space.

Remark 2.2.1 In our geometrization of the time-dependent Lagrangian function L
that we will construct, all entities with geometrical or physical meaning will be di-

rectly arised from the vertical fundamental metrical d-tensor G
(1)(1)
(i)(j) . This fact points
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out the metrical character (see [5]) and the naturalness of the subsequent relativistic
rheonomic Lagrangian geometry.

Examples 2.2.1 i) Suppose that the spatial manifold M is also endowed with a
semi-Riemannian metric g = (gij(x)). Then, the time dependent Lagrangian func-
tion L1 : J1(R,M) → R defined by

L1 = h11(t)gij(x)y
iyj(2.2.3)

is a Kronecker h-regular time dependent Lagrangian function. Consequently, the pair
RLn = (J1(R,M), L1) is a relativistic rheonomic Lagrange space. We underline that
the Lagrangian L1 = L1

√

|h11| is exactly the energy Lagrangian whose extremals are
the harmonic maps between the semi-Riemannian manifolds (R, h) and (M, g). At
the same time, this Lagrangian is a basic object in the physical theory of bosonic
strings.

ii) In above notations, taking U
(1)
(i) (t, x) as a d-tensor field on E and F : R×M → R

a smooth map, the more general Lagrangian function L2 : E → R defined by

L2 = h11(t)gij(x)y
iyj + U

(1)
(i) (t, x)y

i + F (t, x)(2.2.4)

is also a Kronecker h-regular Lagrangian. The relativistic rheonomic Lagrange space
RLn = (J1(R,M), L2) is called the autonomous relativistic rheonomic Lagrange space
of electrodynamics because, in the particular case h11 = 1, we recover the classical
Lagrangian space of electrodynamics [11] which governs the movement law of a particle
placed concomitantly into a gravitational field and an electromagnetic one. From a
physical point of view, the semi-Riemannian metric h11(t) (resp. gij(x)) represents

the gravitational potentials of the space R (resp. M), the d-tensor U
(1)
(i) (t, x) stands for

the electromagnetic potentials and F is a function which is called potential function.
The non-dynamical character of spatial gravitational potentials gij(x) motivates us
to use the term of ”autonomous”.

iii) More general, if we consider gij(t, x) a d-tensor field on E, symmetric, of
rank n and having a constant signature on E, we can define the Kronecker h-regular
Lagrangian function L3 : E → R, setting

L3 = h11(t)gij(t, x)y
iyj + U

(1)
(i) (t, x)y

i + F (t, x).(2.2.5)

The pair RLn = (J1(R,M), L3) is a relativistic rheonomic Lagrange space which is
called the non-autonomous relativistic rheonomic Lagrange space of electrodynamics.
Physically, we remark that the gravitational potentials gij(t, x) of the spatial manifold
M are dependent of the temporal coordinate t, emphasizing their dynamic character.

2.3 Canonical nonlinear connection

Let us consider h = (h11) a fixed semi-Riemannian metric on R and a rheonomic
Lagrange space RLn = (J1(R,M), L), where L is a Kronecker h-regular Lagrangian
function. Let [a, b] ⊂ R be a compact interval in the temporal manifold R. In this
context, we can define the energy action functional of RLn, setting

E : C∞(R,M) → R, E(c) =

∫ b

a

L(t, xi, yi)
√

|h|dt,
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where the smooth curve c is locally expressed by (t) → (xi(t)) and yi =
dxi

dt
.

The extremals of the energy functional E verifies the Euler-Lagrange equations

2G
(1)(1)
(i)(j)

d2xj

dt2
+

∂2L

∂xj∂yi
dxj

dt
−

∂L

∂xi
+

∂2L

∂t∂yi
+

∂L

∂yi
H1

11 = 0, ∀ i = 1, n,(2.3.1)

where H1
11 are the Christoffel symbols of the semi-Riemannian metric h11.

Taking into account the Kronecker h-regularity of the Lagrangian function L,
it is possible to rearrange the Euler-Lagrange equations 2.3.1 of the Lagrangian
L = L

√

|h|, in the Poisson form [16]

∆hx
k + 2Gk(t, xm, ym) = 0, ∀ k = 1, n,(2.3.2)

where

∆hx
k = h11

{

d2xk

dt2
−H1

11

dxk

dt

}

, ym =
dxm

dt
,

2Gk =
gki

2

{

∂2L

∂xj∂yi
yj −

∂L

∂xi
+

∂2L

∂t∂yi
+

∂L

∂yi
H1

11 + 2gijh
11H1

11y
j

}

.

(2.3.3)

Theorem 2.3.1 Denoting G
(r)
(1)1 = h11G

r, the geometrical object G = (G
(r)
(1)1) is a

spatial spray on the 1-jet space E.

Proof. By a direct calculation, we deduce that the local geometrical entities of the
1-jet space J1(R,M)

2Sk =
gki

2

{

∂2L

∂xj∂yi
yj −

∂L

∂xi

}

2Hk =
gki

2

{

∂2L

∂t∂yi
+

∂L

∂yi
H1

11

}

2J k = h11H1
11y

j

(2.3.4)

verify the following transformation rules

2Sp = 2S̃r ∂x
p

∂x̃r
+ h11 ∂x

p

∂x̃l

dt̃

dt

∂x̃l
γ

∂xj
yj

2Hp = 2H̃r ∂x
p

∂x̃r
+ h11 ∂x

p

∂x̃l

dt̃

dt

∂ỹl

∂t

2J p = 2J̃ r ∂x
p

∂x̃r
− h11 ∂x

p

∂x̃l

dt̃

dt

∂ỹl

∂t
.

(2.3.5)

Consequently, the local entities 2Gp = 2Sp+2Hp+2J p modify by the transformation
laws

2G̃r = 2Gp ∂x̃
r

∂xp
− h11 ∂x

p

∂x̃j

∂x̃r
µ

∂xp
ỹj .(2.3.6)

Hence, multiplying the relation 2.3.6 by h11 and regarding the equations 1.2.4, we
obtain what we were looking for.

Taking into account the harmonic curve equations 1.2.5 of a time-dependent spray
on E, we can give the following natural geometrical interpretation of the Euler-
Lagrange equations 2.3.2 attached to the Lagrangian L:

15



Theorem 2.3.2 The extremals of the energy functional attached to a Kronecker
h-regular Lagrangian function L on J1(R,M) are harmonic curves of the time-
dependent spray (H,G), with respect to the semi-Riemannian metric h, defined by
the temporal components

H
(i)
(1)1 = −

1

2
H1

11(t)y
i(2.3.7)

and the local spatial components

G
(i)
(1)1 =

h11g
ik

4

[

∂2L

∂xj∂yk
yj −

∂L

∂xk
+

∂2L

∂t∂yk
+

∂L

∂xk
H1

11 + 2h11H1
11gkly

l

]

.(2.3.8)

Definition 2.3.1 The time-dependent spray (H,G) constructed from the previous
theorem is called the canonical time-dependent spray attached to the relativistic rheo-
nomic Lagrange space RLn.

Remark 2.3.1 In the particular case of an autonomous electrodynamics relativistic
rheonomic Lagrange space (i. e., gij(t, x

k, yk) = gij(x
k)), the canonical spatial spray

G is given by the components

G
(i)
(1)1 =

1

2
γi
jky

jyk +
h11g

li

4



U
(1)
(l)jy

j +
∂U

(1)
(l)

∂t
+ U

(1)
(l) H

1
11 −

∂F

∂xl



 ,(2.3.9)

where U
(1)
(i)j =

∂U
(1)
(i)

∂xj
−

∂U
(1)
(j)

∂xi
.

In the sequel, using the theorems 1.3.2 and 1.3.3, we obtain the following

Theorem 2.3.3 The pair of local functions Γ = (M
(i)
(1)1, N

(i)
(1)j), which consists of the

temporal components

M
(i)
(1)1 = 2H

(i)
(1)1 = −H1

11y
i,(2.3.10)

and the spatial components

N
(i)
(1)j =

∂Gi
(1)1

∂yj
,(2.3.11)

where H
(i)
(1)1 and G

(i)
(1)1 are the components of the canonical time-dependent spray of

RLn, represents a nonlinear connection on J1(R,M).

Definition 2.3.2 The nonlinear connection Γ = (M
(i)
(1)1, N

(i)
(1)j) from the preceding

theorem is called the canonical nonlinear connection of the relativistic rheonomic
Lagrange space RLn.

Remark 2.3.2 i) In the case of an autonomous electrodynamics relativistic rheonomic
Lagrange space (i. e., gij(t, x

k, yk) = gij(x
k)), the canonical nonlinear connection

becomes Γ = (M
(i)
(1)1, N

(i)
(1)j), where

M
(i)
(1)1 = −H1

11y
i, N

(i)
(1)j = γi

jky
k +

h11g
ik

4
U

(1)
(k)j .(2.3.12)
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2.4 Cartan canonical metrical connection

The main theorem of this paper is the theorem of existence of the Cartan canon-
ical h-normal linear connection CΓ which allow the subsequent development of the
relativistic rheonomic Lagrangian geometry of physical fields, which will be exposed
in the next Sections.

Theorem 2.4.1 (of existence and uniqueness of Cartan canonical connection)
On the relativistic rheonomic Lagrange space RLn = (J1(R,M), L) endowed with its
canonical nonlinear connection Γ there is a unique h-normal Γ-linear connection

CΓ = (H1
11, G

k
j1, L

i
jk, C

i(1)
j(k))

having the metrical properties

i) gij|k = 0, gij |
(1)
(k) = 0,

ii) Gk
j1 =

gki

2

δgij
δt

, Lk
ij = Lk

ji, C
i(1)
j(k) = C

i(1)
k(j).

Proof. Let CΓ = (Ḡ1
11, G

k
j1, L

i
jk, C

i(1)
j(k)) be a h-normal Γ-linear connection whose

coefficients are defined by Ḡ1
11 = H1

11, G
k
j1 =

gki

2

δgij
δt

, and

Li
jk =

gim

2

(

δgjm
δxk

+
δgkm
δxj

−
δgjk
δxm

)

,

C
i(1)
j(k) =

gim

2

(

∂gjm
∂yk

+
∂gkm
∂yj

−
∂gjk
∂ym

)

.

(2.4.1)

By computations, one easily verifies that CΓ satisfies the conditions i and ii.

Conversely, let us consider C̃Γ = ( ˜̄G
1

11, G̃
k
j1, L̃

i
jk, C̃

i(1)
j(k)) a h-normal Γ-linear con-

nection which satisfies i and ii. It follows directly that

˜̄G
1

11 = H1
11, and G̃k

j1 =
gki

2

δgij
δt

.

The condition gij|k = 0 is equivalent with

δgij
δxk

= gmjL̃
m
ik + gimL̃m

jk.

Applying a Christoffel process to the indices {i, j, k}, we find

L̃i
jk =

gim

2

(

δgjm
δxk

+
δgkm
δxj

−
δgjk
δxm

)

.

By analogy, using the relations C
i(1)
j(k) = C

i(1)
k(j) and gij |

(1)
(k) = 0, following a Christoffel

process applied to the indices {i, j, k}, we obtain

C̃
i(1)
j(k) =

gim

2

(

∂gjm
∂yk

+
∂gkm
∂yj

−
∂gjk
∂ym

)

.
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In conclusion, the uniqueness of the Cartan canonical connection CΓ is clear.

Remarks 2.4.1 i) Replacing the canonical nonlinear connection Γ by a general one,
the previous theorem holds good.

ii) As a rule, the Cartan canonical connection of a relativistic rheonomic Lagrange
space RLn verifies also the properties

h11/1 = h11|k = h11|
(1)
(k) = 0 and gij/1 = 0.(2.4.2)

iii) Particularly, the coefficients of the Cartan connection of an autonomous rela-
tivistic rheonomic Lagrange space of electrodynamics (i. e., gij(t, x

k, yk) = gij(x
k))

are the same with those of the Berwald connection, namely, CΓ = (H1
11, 0, γ

i
jk, 0).

Note that the Cartan connection is a Γ-linear connection, where Γ is the canonical
nonlinear connection of the relativistic rheonomic Lagrangian space while the Berwald
connection is a Γ0-linear connection, Γ0 being the canonical nonlinear connection asso-
ciated to the metric pair (h11, gij). Consequently, the Cartan and Berwald connections
are distinct.

iv) The torsion d-tensorT of the Cartan canonical connection of a relativistic rheo-
nomic Lagrange space is determined by only six local components, because the proper-

ties of the Cartan canonical connection imply the relations Tm
ij = 0 and S

(i)(1)(1)
(1)(j)(k) = 0.

At the same time, we point out that the number of the curvature local d-tensors of
the Cartan canonical connection not reduces. In conclusion, the curvature d-tensor
R of the Cartan canonical connection is determined by five effective local d-tensors.
Their expressions was described in Section 1.

Definition 2.4.1 The torsion and curvature d-tensors of the Cartan canonical con-
nection of an RLn are called the torsion and curvature of RLn.

By a direct calculation, we obtain

Theorem 2.4.2 i) All torsion d-tensors of an autonomous relativistic rheonomic
Lagrange space of electrodynamics vanish, except























R
(m)
(1)1j = −

h11g
mk

4



H1
11U

(1)
(k)j +

∂U
(1)
(k)j

∂t



 ,

R
(m)
(1)ij = rmijky

k +
h11g

mk

4

[

U
(1)
(k)i|j + U

(1)
(k)j|i

]

,

(2.4.3)

where rmijk are the curvature tensors of the semi-Riemannian metric gij.

ii) All curvature d-tensors of an autonomous relativistic rheonomic Lagrange space
of electrodynamics vanish, except Rl

ijk = rlijk.

3 Relativistic rheonomic Lagrangian electromag-

netism
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3.1 Electromagnetic field

Let us consider RLn = (J1(R,M), L) a relativistic rheonomic Lagrange space and

Γ = (M
(i)
(1)1, N

(i)
(1)j) its canonical nonlinear connection. At the same time, we denote

CΓ = (H1
11, G

k
i1, L

k
ij , C

k(1)
i(j) ) the Cartan canonical connection of RLn.

Using the canonical Liouville d-tensor field C= yi
∂

∂yi
, we can introduce the de-

flection d-tensors

D̄
(i)
(1)1 = yi/1, D

(i)
(1)j = yi|j , d

(i)(1)
(1)(j) = yi|

(1)
(j) ,(3.1.1)

where ”/1”, ”|j” and ”|
(1)
(j)” are the local covariant derivatives induced by CΓ.

By a direct calculation, we find

Proposition 3.1.1 The deflection d-tensors of the rheonomic Lagrange space RLn

have the expressions

D̄
(i)
(1)1 =

gik

2

δgkm
δt

ym,

D
(i)
(1)j = −N

(i)
(1)j + Li

jmym,

d
(i)(1)
(1)(j) = δij + C

i(1)
m(j)y

m.

(3.1.2)

Remark 3.1.1 For an autonomous relativistic rheonomic Lagrange space of electro-
dynamics (i. e., gij = gij(x

k)), the deflection d-tensors reduce to

D̄
(i)
(1)1 = 0, D

(i)
(1)j = −

1

4
gikh11U

(1)
(k)j , d

(i)(1)
(1)(j) = δij .(3.1.3)

Using the vertical fundamental metrical d-tensor G
(1)(1)
(i)(k) = h11gij of the relativistic

rheonomic Lagrange space RLn we construct the metrical deflection d-tensors,

D̄
(1)
(i)1 = G

(1)(1)
(i)(k) D̄

(k)
(1)1 = yi/1

D
(1)
(i)j = G

(1)(1)
(i)(k)D

(k)
(1)j = yi|j

d
(1)(1)
(i)(j) = G

(1)(1)
(i)(k)d

(k)(1)
(1)(j) = yi|

(1)
(j) ,

(3.1.4)

where yi = G
(1)(1)
(i)(k)y

k = h11giky
k. Using the expressions 3.1.2 of the deflection d-

tensors, it follows

Proposition 3.1.2 The metrical deflection d-tensors of the relativistic rheonomic
Lagrange space RLn are given by the formulas

D̄
(1)
(i)1 =

h11

2

δgim
δt

ym,

D
(1)
(i)j = h11gik

[

−N
(k)
(1)j + Lk

jmym
]

,

d
(1)(1)
(i)(j) = h11

[

gij + gikC
k(1)
m(j)y

m
]

.

(3.1.5)
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Remark 3.1.2 In the particular case of an autonomous relativistic rheonomic La-
grange space of electrodynamics (i. e., gij = gij(x

k)), we have

D̄
(1)
(i)1 = 0, D

(1)
(i)j = −

1

4
U

(1)
(i)j , d

(1)(1)
(i)(j) = h11gij .(3.1.6)

In order to construct the relativistic rheonomic Lagrangian theory of electromag-
netism, we introduce the following

Definition 3.1.1 The distinguished 2-form on E = J1(R,M)

F = F
(1)
(i)jδy

i ∧ dxi + f
(1)(1)
(i)(j) δy

i ∧ δyj,(3.1.7)

where

F
(1)
(i)j =

1

2

[

D
(1)
(i)j −D

(1)
(j)i

]

, f
(1)(1)
(i)(j) =

1

2

[

d
(1)(1)
(i)(j) − d

(1)(1)
(j)(i)

]

,(3.1.8)

is called the electromagnetic d-form of the relativistic rheonomic Lagrange space RLn.

Using the above definition, by a direct calculation, we obtain

Proposition 3.1.3 The expressions of the electromagnetic components










F
(1)
(i)j =

h11

2

[

gjmN
(m)
(1)i − gimN

(m)
(1)j + (gikL

k
jm − gjkL

k
im)ym

]

,

f
(1)(1)
(i)(j) = 0

(3.1.9)

hold good.

Remark 3.1.3 We emphasize that, in the particular case of an autonomous rela-
tivistic rheonomic Lagrange space (i. e. gij = gij(x

k)), the electromagnetic local
components get the following form











F
(1)
(i)j =

1

8

[

U
(1)
(j)i − U

(1)
(i)j

]

f
(1)(1)
(i)(j) = 0.

(3.1.10)

3.2 Maxwell equations

The main result of the electromagnetic relativistic rheonomic Lagrangian geom-
etry is the following

Theorem 3.2.1 The electromagnetic local components F
(1)
(i)j of a relativistic rheo-

nomic Lagrange space RLn = (J1(R,M), L) are governed by the Maxwell equations

F
(1)
(i)k/1 =

1

2
A{i,k}

{

D̄
(1)
(i)1|k +D

(1)
(i)mTm

1k + d
(1)(1)
(i)(m)R

(m)
(1)1k −

[

T p
1i|k + C

p(1)
k(m)R

(m)
(1)1i

]

yp

}

,

∑

{i,j,k}

F
(1)
(i)j|k = −

1

2

∑

{i,j,k}

C
(1)(1)(1)
(i)(l)(m)R

(m)
(1)jky

l,
∑

{i,j,k}

F
(1)
(i)j |

(1)
(k) = 0,

where yp = G
(1)(1)
(p)(q)y

q and C
(1)(1)(1)
(i)(l)(m) = G

(1)(1)
(l)(q)C

q(1)
i(m) =

h11

2

∂3L

∂yi∂yl∂ym
.
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Proof. Firstly, we point out that the Ricci identities [18] applied to the spatial
metrical d-tensor gij imply that the following curvature d-tensor identities

Rmi1k +Rim1k = 0, Rmijk +Rimjk = 0, P
(1)

mij(k) + P
(1)

imj(k) = 0,

where Rmi1k = gipR
p
m1k, Rmijk = gipR

p
mjk and P

(1)
mij(k) = gipP

p (1)
mj(k) , are true.

Now, let us consider the following general deflection d-tensor identities [18]

d1) D̄
(p)
(1)1|k −D

(p)
(1)k/1 = ymRp

m1k −D
(p)
(1)mTm

1k − d
(p)(1)
(1)(m)R

(m)
(1)1k,

d2) D
(p)
(1)j|k −D

(p)
(1)k|j = ymRp

mjk − d
(p)(1)
(1)(m)R

(m)
(1)jk,

d3) D
(p)
(1)j |

(1)
(k) − d

(p)(1)
(1)(k)|j = ymP

p (1)
mj(k) −D

(p)
(1)mC

m(1)
j(k) − d

(p)(1)
(1)(m)P

(m) (1)
(1)j(k) .

Contracting these deflection d-tensor identities by G
(1)(1)
(i)(p) and using the above curva-

ture d-tensor equalities, we obtain the following metrical deflection d-tensors identi-
ties:

d′1) D̄
(1)
(i)1|k −D

(1)
(i)k/1 = −ymRm

i1k −D
(1)
(i)mTm

1k − d
(1)(µ)
(i)(m)R

(m)
(1)1k,

d′2) D
(1)
(i)j|k −D

(1)
(i)k|j = −ymRm

ijk − d
(1)(µ)
(i)(m)R

(m)
(1)jk,

d′3) D
(1)
(i)j |

(1)
(k) − d

(1)(1)
(i)(k)|j = −ymP

m (1)
ij(k) −D

(1)
(i)mC

m(1)
j(k) − d

(1)(1)
(i)(m)P

(m) (1)
(1)j(k) .

At the same time, we recall that the following Bianchi identities [15]

b1) A{j,k}

{

Rl
j1k + T l

1j|k + C
l(1)
k(m)R

(m)
(1)1j

}

= 0,

b2)
∑

{i,j,k}

{

Rl
ijk − C

l(1)
k(m)R

(m)
(1)ij

}

= 0,

b3) A{j,k}

{

P
l (1)
jk(p) + C

l(1)
j(p)|k + C

l(1)
k(m)P

(m) (1)
(1)j(p)

}

= 0,

where A{j,k} means alternate sum and
∑

{i,j,k} means cyclic sum, hold good.

In order to obtain the first Maxwell identity, we permute i and k in d′1 and we
subtract the new identity from the initial one. Finally, using the Bianchi identity b1,
we obtain what we were looking for.

Doing a cyclic sum by the indices {i, j, k} in d′2 and using the Bianchi identity b2,
it follows the second Maxwell equation.

Applying a Christoffel process to the indices {i, j, k} id d′3 and combining with

the Bianchi identity b3 and the relation P
(m) (1)
(1)j(p) = P

(m) (1)
(1)p(j) , we get a new identity.

The cyclic sum by the indices {i, j, k} applied to this last identity implies the third
Maxwell equation.

Remark 3.2.1 In the case of an autonomous relativistic rheonomic Lagrange space
of electrodynamics (i. e., gij = gij(x

k)), the Maxwell equations take the simple form

F
(1)
(i)k/1 =

1

2
A{i,k}h

11gimR
(m)
(1)1k,

∑

{i,j,k}

F
(1)
(i)j|k = 0,

∑

{i,j,k}

F
(1)
(i)j |

(1)
(k) = 0.(3.2.1)
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4 Relativistic rheonomic Lagrangian gravitational

theory

4.1 Gravitational field

Let h = (h11) be a fixed semi-Riemannian metric on the temporal manifold R

and Γ = (M
(i)
(1)1, N

(i)
(1)j) a fixed nonlinear connection on the 1-jet space J1(R,M). In

order to develope a relativistic rheonomic Lagrange theory of gravitational field on
J1(R,M), we introduce the following

Definition 4.1.1 From physical point of view, an adapted metrical d-tensor G on
J1(R,M), expressed locally by

G = h11dt⊗ dt+ gijdx
i ⊗ dxj + h11gijδy

i ⊗ δyj ,

where gij = gij(t, x
k, yk) is a d-tensor on J1(R,M), symmetric, of rank n = dimM

and having a constant signature on E, is called a gravitational h-potential on E.

Now, taking RLn = (J1(R,M), L) a relativistic rheonomic Lagrange space, via
its vertical fundamental metrical d-tensor

G
(1)(1)
(i)(j) =

1

2

∂2L

∂yi∂yj
= h11(t)gij(t, x

k, yk),

and its canonical nonlinear connection Γ = (M
(i)
(1)1, N

(i)
(1)j), one induces a natural

gravitational h-potential on J1(R,M), setting

G = h11dt⊗ dt+ gijdx
i ⊗ dxj + h11gijδy

i ⊗ δyj .(4.1.1)

4.2 Einstein equations and conservation laws

Let us consider CΓ = (H1
11, G

k
j1, L

i
jk, C

i(1)
j(k)) the Cartan canonical connection of

the relativistic rheonomic Lagrange space RLn.

We postulate that the Einstein equations which govern the gravitational h-
potential G of the relativistic rheonomic Lagrange space RLn are the Einstein equa-
tions attached to the Cartan canonical connection of RLn and the adapted metric G
on J1(R,M), that is,

Ric(CΓ)−
Sc(CΓ)

2
G = KT ,(4.2.1)

where Ric(CΓ) represents the Ricci d-tensor of the Cartan connection, Sc(CΓ) is its
scalar curvature, K is the Einstein constant and T is an intrinsec tensor of matter
which is called the stress-energy d-tensor.

In the adapted basis (XA) =

(

δ

δt
,

δ

δxi
,
∂

∂yi

)

, the curvature d-tensor R of the

Cartan connection is expressed locally by R(XC , XB)XA = RD
ABCXD. Hence, it

follows that we have RAB = Ric(CΓ)(XA, XB) = RD
ABD and Sc(CΓ) = GABRAB,
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where

GAB =



























h11, for A = 1, B = 1

gij , for A = i, B = j

h11g
ij , for A = (i)

(1)
, B = (j)

(1)

0, otherwise.

(4.2.2)

Taking into account the expressions of the local curvature d-tensors of the Cartan
connection and the form of the vertical fundamental metrical d-tensorGAB, we deduce

Proposition 4.2.1 The Ricci d-tensor of the Cartan canonical connection of RLn

is determined by the following six effective local Ricci d-tensors,

R11
not
= H11 = H1

111 = 0, Ri1 = Rm
i1m, Rij = Rm

ijm, R
(1)
i(j)

not
= P

(1)
i(j) = −P

m (1)
im(j) ,

R
(1)
(i)1

not
= P

(1)
(i)1 = P

m (1)
i1(m) , R

(1)
(i)j

not
= P

(1)
(i)j = P

m (1)
ij(m) , R

(1)(1)
(i)(j)

not
= S

(1)(1)
(i)(j) = S

m(1)(1)
i(j)(m) .

Consequently, denoting H = h11H11, R = gijRij and S = h11g
ijS

(1)(1)
(i)(j) , we

obtain

Proposition 4.2.2 The scalar curvature of the Cartan canonical connection of RLn

has the expression
Sc(C) = H +R+ S = R+ S.(4.2.3)

Remark 4.2.1 In the particular case of an autonomous relativistic rheonomic La-
grange space of electrodynamics (i. e., gij = gij(x

k)), all Ricci d-tensors vanish, except
Rij = rij , where rij are the Ricci tensors associated to the semi-Riemannian metric
gij . It follows that the scalar curvatures of a such space are H = 0, R = r, S = 0,
where H and r are the scalar curvatures of the semi-Riemannian metrics h11 and gij .

Using the above results, we can establish the following

Theorem 4.2.3 The Einstein equations which govern the gravitational h-potential
G induced by the Kronecker h-regular Lagrangian function of a relativistic rheonomic
Lagrange space RLn, have the form

(E1)



































−
R+ S

2
h11 = KT11

Rij −
R+ S

2
gij = KTij

S
(1)(1)
(i)(j) −

R+ S

2
h11gij = KT

(1)(1)
(i)(j) ,

(E2)







0 = T1i, Ri1 = KTi1, P
(1)
(i)1 = KT

(1)
(i)1

0 = T
(1)

1(i) , P
(1)

i(j) = KT
(1)

i(j) , P
(1)
(i)j = KT

(1)
(i)j ,
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where TAB, A,B ∈ {1, i, (1)
(i)

} are the adapted local components of the stress-energy

d-tensor T .

Remark 4.2.2 i) Note that, in order to have the compatibility of the Einstein equa-
tions, it is necessary that the certain adapted local components of the stress-energy
d-tensor vanish ”a priori”.

ii) In the particular case of an autonomous relativistic rheonomic Lagrange space
of electrodynamics (i. e., gij = gij(x

k)), using preceding notations, the following
Einstein equations of gravitational field,

(E1)











rij −
r

2
gij = KTij

−
r

2
h11gij = KT

(1)(1)
(i)(j) ,

(E2)







0 = T1i, 0 = Ti1, 0 = T
(1)
(i)1

0 = T
(1)

1(i) , 0 = T
(1)

i(j) , 0 = T
(1)
(i)j ,

hold good.

It is well known that, from physical point of view, the stress-energy d-tensor
T must verifies the local conservation laws T B

A|B = 0, ∀ A ∈ {1, i, (1)
(i)

}, where

T B
A = GBDTDA.

Theorem 4.2.4 In the relativistic rheonomic Lagrangian geometry, the conservation
laws of the Einstein equations are











































[

R+ S

2

]

/1

= Rm
1|m − P

(m)
(1)1 |

(1)
(m)

[

Rm
j −

R+ S

2
δmj

]

|m

= −P
(m)
(1)j |

(1)
(m)

[

S
(m)(1)
(1)(j) −

R+ S

2
δmj

]

∣

∣

∣

(1)
(m) = −P

m(1)
(j)|m,

(4.2.4)

where Ri
1 = gimRm1, P

(i)
(1)1 = h11g

imP
(1)
(m)1, Ri

j = gimRmj , P
(i)
(1)j = h11g

imP
(1)
(m)j ,

P
i(1)
(j) = gimP

(1)
m(j) and S

(i)(1)
(1)(j) = h11g

imS
(1)(1)
(m)(j).
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