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QUADRATURE DOMAINS AND KERNEL FUNCTION ZIPPING

Steven R. Bell∗

Abstract. It is proved that quadrature domains are ubiquitous in a very strong

sense in the realm of smoothly bounded multiply connected domains in the plane. In

fact, they are so dense that one might as well assume that any given smooth domain
one is dealing with is a quadrature domain, and this allows access to a host of strong

conditions on the classical kernel functions associated to the domain. Following this

string of ideas leads to the discovery that the Bergman kernel can be “zipped” down
to a strikingly small data set.

It is also proved that the kernel functions associated to a quadrature domain must
be algebraic.

1. Introduction. In this paper, we will refine results of B. Gustafsson in light of
recent results in [8] about the complexity of the classical kernels functions to show
that quadrature domains in the plane are so dense that one cannot possibly devise a
test to determine if a given smooth domain is a quadrature domain. The combined
methods of Gustafsson [12] and [8] will also yield a method to “zip” the Bergman
kernel down to a very small data set consisting of finitely many complex numbers
plus the boundary values of a single holomorphic function, which I would venture
to christen a Gustafsson function. These results are all a natural outgrowth of the
work of Aharonov and Shapiro [1] and Shapiro [15], and one consequence of the
Aharonov-Shapiro theorem that Ahlfors maps associated to quadrature domains are
algebraic will be that the Bergman and Szegő kernels associated to a quadrature
domain are algebraic functions.

For the purposes of this paper, we shall call an n-connected domain Ω in the
plane such that no boundary component is a point a quadrature domain if there
exist finitely many points {wj}Nj=1 in the domain and non-negative integers nj such
that complex numbers cjk exist satisfying

(1.1)

∫

Ω

f dA =

N∑

j=1

nj∑

k=0

cjkf
(k)(wj)

for every function f in the Bergman space of square integrable holomorphic func-
tions on Ω. Here, dA denotes Lebesgue area measure. Many of our results require
the function h(z) ≡ 1 to be in the Bergman space, and so we shall often also as-
sume that the domain under study has finite area. We remark that there are results
of Sakai that show that, under certain weaker assumptions, a quadrature domain
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∗Research supported by NSF grant DMS-0305958

Typeset by AMS-TEX

1

http://arxiv.org/abs/math/0401264v1


does have finite area, so some of our results could be stated with weaker hypotheses.
(See [12] for an explanation of how Sakai’s results relate to the type of quadrature
domains we study here.)

The Ahlfors map associated to a point a in an n-connected domain Ω such that
no boundary component is a point is the holomorphic function fa such that fa maps
Ω into the unit disc maximizing the quantity |f ′

a(a)| with f ′

a(a) real and positive.
This map is an n-to-one (counting multiplicities) proper holomorphic mapping of
Ω onto the unit disc.

Quadrature domains have particularly simple kernel functions, as our first the-
orem shows.

Theorem 1.1. Suppose that Ω is an n-connected quadrature domain of finite area
in the plane such that no boundary component is a point. Then the Bergman kernel
function K(z, w) associated to Ω is a rational combination of two Ahlfors maps fa
and fb in the sense that K(z, w) is a rational combination of fa(z), fb(z), fa(w),

and fb(w). The same can be said of the square S(z, w)2 of the Szegő kernel. Fur-
thermore, the classical functions F ′

j are rational functions of fa and fb.

The functions F ′

j are defined precisely in §2.
Aharonov and Shapiro [1] proved that Ahlfors maps associated to quadrature

domains are algebraic. Hence, Theorem 1.1 yields that quadrature domains also
have algebraic kernel functions.

Theorem 1.2. Suppose that Ω is an n-connected quadrature domain in the plane
of finite area such that no boundary component is a point. The Bergman and Szegő
kernel functions associated to Ω are algebraic functions. The classical functions F ′

j

are also algebraic.

Similar statements to Theorems 1.1 and 1.2 hold for the Poisson kernel and first
derivative of the Green’s function. These results follow from formulas appearing in
[6] and we do not spell them out here.

Ahlfors maps extend to the double (as described in §2 of this paper), and it
follows that, under the hypotheses of Theorem 1.1, the Bergman kernel function

extends meromorphically to the double Ω̂ of Ω, and is therefore a rational combina-
tion of any two functions that generate the meromorphic functions on the double,
i.e., any two functions that form a primitive pair for the double. The Bergman ker-
nel always extends to the double as a meromorphic differential, but extending as
a meromorphic functions is rather unusual behavior for the kernel. This condition
leads to a number of other strong conclusions that we now begin to enumerate.

Theorem 1.3. Suppose that Ω is an n-connected quadrature domain of finite area
in the plane such that no boundary component is a point. If f is any proper holo-
morphic mapping of Ω onto the unit disc, then f ′ extends to the double of Ω as a
meromorphic function.

Under the assumptions of Theorem 1.3, since both f and f ′ extend to the double,
they are algebraically dependent, i.e., there exists an irreducible polynomial P (z, w)
on C2 such that P (f ′, f) ≡ 0 on Ω. This was proved by other means by Aharonov
and Shapiro in [1]. It is proved in [8] that the condition P (f ′, f) = 0 has a number
of implications, two of which are that the kernel functions are generated by only
two functions and that the kernel functions extend to a compact Riemann surface.
In the setting of Theorem 1.3, however, we have the stronger conclusion that the
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Bergman kernel extends to the compact Riemann surface which is the double of
Ω, and that it is generated by any two functions that form a primitive pair for the
double.

When combined with the main theorem of [9], Theorem 1.3 yields that the
infinitesimal Carathéodory metric associated to an n-connected quadrature domain
of finite area such that no boundary component is a point is a real algebraic function
which is a rational combination of two Ahlfors maps and their conjugates.

It is shown in [7] that, under the assumptions of Theorem 1.3, if f is any proper
holomorphic map of Ω onto the unit disc, then it is possible to find an Ahlfors
map fb such that f and fb extend to the double and generate the meromorphic
functions on the double. Hence, it follows that f ′ = R(f, fb) for some rational
function. Also, we may conclude that, given a proper map f , the Bergman kernel
is a rational combination of f and some other Ahlfors map. Furthermore, since
both f ′ and f ′

b extend meromorphically to the double, we deduce the next rather
odd sounding theorem.

Theorem 1.4. Suppose that Ω is an n-connected quadrature domain of finite area
in the plane such that no boundary component is a point. If H is any meromorphic
function on Ω that extends meromorphically to the double of Ω, then H ′ also extends
meromorphically to the double of Ω. Furthermore, H is algebraic.

Of course if H is meromorphic on Ω, then H ′ is meromorphic on Ω. The content
of the theorem is that H ′ extends meromorphically to the double if H does.

The property in Theorem 1.4 turns out to characterize a class of generalized
quadrature domains, and we explore this line of reasoning in §5.

When we combine the ideas used in the proofs of the results above with those
of Aharonov and Shapiro [1] and Gustafsson [12], we can show that the kernel
functions associated to quadrature domains are particularly simple when restricted
to the boundary.

Theorem 1.5. Suppose that Ω is an n-connected quadrature domain in the plane
of finite area such that no boundary component is a point. The Bergman kernel
K(z, w) and the square S(z, w)2 of the Szegő kernel are rational functions of z,
z̄, w, and w̄ on bΩ × bΩ minus the boundary diagonal. The functions Fj(z) are
rational functions of z and z̄ when restricted to the boundary. Furthermore, the
unit tangent vector function T (z) is such that T (z)2 is a rational function of z and
z̄ for z ∈ bΩ.

I had conjectured in [5] that every n-connected domain in the plane such that no
boundary component is a point is conformally equivalent to a domain with algebraic
kernel functions. Jeong and Taniguchi [14] recently verified this conjecture. Since
Gustafsson proved in [12] that every such domain is conformally equivalent to a
quadrature domain of finite area, Theorem 1.2 gives an alternate way of seeing that
every n-connected domain in the plane such that no boundary component is a point
is conformally equivalent to a domain with algebraic kernel functions.

We remark here that, although the last part of Theorem 1.5 might seem to
suggest that the Bergman kernel associated to a quadrature domain could be a
simple rational function of some kind, it can never happen that the Bergman kernel
is a rational function in the setting of multiply connected domains (see [4]).

The main results of this paper together with Gustafsson’s theorem that any
finitely connected domain in the plane such that no boundary component is a point
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is conformally equivalent to a smoothly bounded quadrature domain suggests that
quadrature domains might serve to play a role in the multiply connected setting
similar to that played by the unit disc for simply connected regions.

Quadrature domains with smooth boundaries are particularly appealing and we
can refine arguments of Gustafsson to prove the next theorem, which shows that
very fine modifications can be made to any smoothly bounded domain to make it
a quadrature domain.

Theorem 1.6. Suppose that Ω is a bounded n-connected domain whose boundary
consists of n non-intersecting C∞ smooth simple closed curves. There is a mero-
morphic function g on the double of Ω which has no poles on Ω such that g is as
close to the identity map in C∞(Ω) as desired. The domain given by g(Ω) is a
quadrature domain which is C∞ close to Ω and conformally equivalent to Ω.

The analytic objects attached to the quadrature domain g(Ω) have the strong
extension properties given in the preceding theorems and they are C∞ close to the
analytic objects attached to Ω. In particular, Aharonov and Shapiro [1] (with some
refinements by Gustafsson [12]) showed that the boundary of g(Ω) is an algebraic
curve minus perhaps finitely many points. Thus, the proof of Theorem 1.6 will yield
a concrete method to approximate in C∞ a non-intersecting group of n simple closed
C∞ curves by an algebraic curve. In fact, the algebraic curve can be described by
|f(z)|2 = 1 where f is any Ahlfors map.

We describe in §4 how the Bergman kernel can be recovered from the boundary
values of g in a very simple and efficient manner.

Gustafsson proved that the function g in Theorem 1.6 maps Ω to a quadrature
domain. We shall show that g(z) can be taken to be a linear combination of
functions of the form S(z, b)/L(z, a) where S(z, b) is the Szegő kernel and L(z, a) is
the Garabedian kernel, and b ranges over a small open subset of Ω while a is fixed.
Consequently, we shall be able to restrict the points wj in the defining property (1.1)
of the quadrature domain g(Ω) to a small set. We shall also be able to specify the
numbers nj in rather surprising ways. In particular, we shall be able to stipulate
that nj = 1 for each j. Thus, any smooth domain is conformally equivalent to
a nearby quadrature domain where the simple point masses are contained in an
arbitrarily small arbitrary disc that is compactly contained in Ω. Another way to
state this is to say that it is possible to strongly approximate the two dimensional
field generated by a uniform charge density on a smoothly bounded plate with holes
by point charges at finitely many points in an arbitrarily small open subset of the
plate. This result is stated precisely in the following theorem.

Theorem 1.7. Suppose that Ω is a bounded n-connected domain whose boundary
consists of n non-intersecting C∞ smooth simple closed curves. Let Dǫ(w0) be any
disc which is compactly contained in Ω. There is a quadrature domain which is C∞

close to Ω and conformally equivalent to Ω such that the point masses appearing in
(1.1) all fall in Dǫ(w0) and have weight nj = 1. Furthermore, given w0 in Ω, there
is a quadrature domain which is C∞ close to Ω and conformally equivalent to Ω
such that w0 is the only point mass appearing in (1.1), i.e., N = 1 in (1.1).

In §6 of this paper, we show how many of the same ideas can be extended to
quadrature domains with respect to boundary arc length measure.

2. Preliminaries. It is a standard construction in the theory of conformal map-
ping to show that an n-connected domain Ω in the plane such that no boundary
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component is a point is conformally equivalent via a map Φ to a bounded domain

Ω̃ whose boundary consists of n simple closed C∞ smooth real analytic curves.

Since such a domain Ω̃ is a bordered Riemann surface, the double of Ω̃ is an easily
realized compact Riemann surface. We shall say that an analytic or meromorphic
function h on Ω extends meromorphically to the double of Ω if h ◦ Φ−1 extends

meromorphically to the double of Ω̃. Notice that whenever Ω is itself a bordered
Riemann surface, this notion is the same as the notion that h extends meromor-
phically to the double of Ω. We shall say that two functions G1 and G2 extend to
the double and generate the meromorphic functions on the double of Ω, and that
they therefore form a primitive pair for the double of Ω, if G1 ◦Φ−1 and G2 ◦ Φ−1

extend to the double of Ω̃ and form a primitive pair for the double of Ω̃ (see Farkas
and Kra [11] for the definition and basic facts about primitive pairs).

It is proved in [7] that if Ω is an n-connected domain in the plane such that no
boundary component is a point, then almost any two distinct Ahlfors maps fa and
fb generate the meromorphic functions on the double of Ω. It is also proved that
any proper holomorphic mapping from Ω to the unit disc extends to the double of
Ω.

Suppose that Ω is a bounded n-connected domain whose boundary consists of
n non-intersecting C∞ smooth simple closed curves. The Bergman kernel K(z, w)
associated to Ω is related to the Szegő kernel via the identity

(2.1) K(z, w) = 4πS(z, w)2 +

n−1∑

i,j=1

AijF
′

i (z)F
′

j(w),

where the functions F ′

i (z) are well known classical functions of potential theory
described as follows. The harmonic function ωj which solves the Dirichlet problem
on Ω with boundary data equal to one on the boundary curve γj and zero on γk
if k 6= j has a multivalued harmonic conjugate. Let γn denote the outer boundary
curve. The function F ′

j(z) is a single valued holomorphic function on Ω which is
locally defined as the derivative of ωj + iv where v is a local harmonic conjugate
for ωj . The Cauchy-Riemann equations reveal that F ′

j(z) = 2(∂ωj/∂z).
The Bergman and Szegő kernels are holomorphic in the first variable and anti-

holomorphic in the second on Ω×Ω and they are hermitian, i.e., K(w, z) = K(z, w).
Furthermore, the Bergman and Szegő kernels are in C∞((Ω×Ω)−{(z, z) : z ∈ bΩ})
as functions of (z, w) (see [2, page 100]).

We shall also need to use the Garabedian kernel L(z, w), which is related to the
Szegő kernel via the identity

(2.2)
1

i
L(z, a)T (z) = S(a, z) for z ∈ bΩ and a ∈ Ω

where T (z) represents the complex unit tangent vector at z pointing in the direc-
tion of the standard orientation of bΩ. For fixed a ∈ Ω, the kernel L(z, a) is a
holomorphic function of z on Ω− {a} with a simple pole at a with residue 1/(2π).
Furthermore, as a function of z, L(z, a) extends to the boundary and is in the space
C∞(Ω−{a}). In fact, L(z, w) is in C∞((Ω×Ω)−{(z, z) : z ∈ Ω}) as a function of
(z, w) (see [2, page 102]). Also, L(z, a) is non-zero for all (z, a) in Ω×Ω with z 6= a
and L(a, z) = −L(z, a) (see [2, page 49]).
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For each point a ∈ Ω, the function of z given by S(z, a) has exactly (n−1) zeroes
in Ω (counting multiplicities) and does not vanish at any points z in the boundary
of Ω (see [2, page 49]).

Given a point a ∈ Ω, the Ahlfors map fa associated to the pair (Ω, a) is a
proper holomorphic mapping of Ω onto the unit disc. It is an n-to-one mapping
(counting multiplicities), it extends to be in C∞(Ω), and it maps each boundary
curve γj one-to-one onto the unit circle. Furthermore, fa(a) = 0, and fa is the
unique function mapping Ω into the unit disc maximizing the quantity |f ′

a(a)| with
f ′

a(a) > 0. The Ahlfors map is related to the Szegő kernel and Garabedian kernel
via (see [2, page 49])

(2.3) fa(z) =
S(z, a)

L(z, a)
.

Note that f ′

a(a) = 2πS(a, a) 6= 0. Because fa is n-to-one, fa has n zeroes. The
simple pole of L(z, a) at a accounts for the simple zero of fa at a. The other n− 1
zeroes of fa are given by the (n− 1) zeroes of S(z, a) in Ω− {a}.

When Ω does not have smooth boundary, we define the kernels and domain
functions above as in [6] via a conformal mapping to a domain with real analytic
boundary curves.

3. Proofs of the theorems. If Ω is an n-connected quadrature domain of finite
area in the plane such that no boundary component is a point, then the Bergman
kernel function associated to Ω satisfies an identity of the form

(3.1) 1 ≡
N∑

j=1

nj∑

m=0

cjmK(m)(z, wj)

where K(m)(z, w) denotes (∂m/∂w̄m)K(z, w) and the points wj are the points that
appear in the characterizing formula (1.1) of quadrature domains. This observation
is usually attributed to Avci in his unpublished Stanford PhD thesis. It can be
seen by noting that the inner product of an analytic function against the function
h(z) ≡ 1 and against the sum on the right hand side of (3.1) agree for all functions
in the Bergman space. Hence the two functions must be equal. Note that we must
assume that Ω has finite area here just so that h(z) ≡ 1 is in the Bergman space.

Proof of Theorem 1.1. Since the Bergman kernel is equal to (∂2/∂z∂w̄) of the
Green’s function, functions that are of the form of the right hand side of (3.1)
belong to the the class A of [8, p. 20]. Hence, the function A(z) ≡ 1 belongs to
A. Theorem 2.3 of [8] states that if G1 and G2 are any two meromorphic functions
on Ω that extend to the double of Ω to form a primitive pair and if A(z) is any
function from the class A other than the zero function, then the Bergman kernel
associated to Ω can be expressed as

K(z, w) = A(z)A(w)R1(G1(z), G2(z), G1(w), G2(w))

where R1 is a complex rational function of four complex variables. Similarly, the
Szegő kernel can be expressed as

S(z, w)2 = A(z)A(w)R2(G1(z), G2(z), G1(w), G2(w))
6



where R2 is rational, and the functions F ′

j can be expressed

F ′

j(z) = A(z)R3(G1(z), G2(z))

where R3 is rational. Furthermore, every proper holomorphic mapping of Ω onto
the unit disc is a rational combination of G1 and G2. It therefore follows now that
the Bergman kernel is a rational combination of any two meromorphic functions on
Ω that extend to the double to form a primitive pair. Since almost any two distinct
Ahlfors maps form a primitive pair (see [7]), the proof of Theorem 1.1 is complete.

Proof of Theorem 1.3. Suppose that Ω is an n-connected quadrature domain in the
plane such that no boundary component is a point and suppose that f is a proper
holomorphic mapping of Ω onto the unit disc. We may compose f with a Möbius
transformation ϕ so that F = ϕ ◦ f has only simple zeroes at, say a1, a2, . . . , aN ,
where N is the order of the proper map f . It is proved in [2, p. 65] that the Bergman
kernel transforms under this proper map according to

F ′(z)KD(F (z), 0) =

N∑

n=1

K(z, an)/F ′(an)

where KD(z, w) = π−1(1− zw̄)−2 is the Bergman kernel for the unit disc. Notice
that KD(z, 0) ≡ π−1, and so it follows that F ′(z) is given by a linear combination
of functions of the form K(z, an), and thus F ′ extends to the double of Ω by
Theorem 1.1. But F ′(z) = f ′(z)ϕ′(f(z)), and since ϕ is rational and f extends to
the double of Ω, it now follows that f ′(z) extends to the double of Ω. The proof is
complete.

Proof of Theorem 1.5. In the setting of Theorem 1.5, Gustafsson [12] generalized
a result of Aharonov and Shapiro [1] to prove that the boundary of Ω is given by
an algebraic curve and that there exists a function H(z) which is meromorphic
on Ω with continuous boundary values such that H(z) = z̄ on bΩ. Let G(z) =
z. Gustafsson proved that H(z) and G(z) extend to the double of Ω to form a
primitive pair. Hence, there exists an irreducible polynomial P (z, w) on C2 such
that P (H(z), G(z)) ≡ 0 on Ω. This shows that H(z) is an algebraic function of z.
We know that the Bergman kernel is generated by z and H(z). Hence, this gives
another way to see that the Bergman kernel is algebraic. It is proved in [5] that if
the Bergman kernel is algebraic, then so is the Szegő kernel, all proper holomorphic
maps onto the unit disc, and the classical functions F ′

j .

Now since the kernels K(z, w) and S(z, w)2 and the proper holomorphic maps
to the unit disc and the functions Fj are all generated by G(z) and H(z), and since
these functions are equal to z and z̄, respectively on the boundary, we may deduce
most of the rest of the claims made in Theorem 1.5. To finish the proof, note that
identity (2.2) yields that

T (z)2 = −S(a, z)2

L(z, a)2

where a is an arbitrary point chosen and fixed in Ω. The function S(z, a)2 is a
rational function of z and z̄ on the boundary. Identity (2.3) yields that L(z, a)2 =
S(z, a)2/fa(z)

2, and so L(z, a)2 is also a rational function of z and z̄ on the bound-
ary. Finally, it follows that T (z)2 is a rational function of z and z̄.
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We remark that, since the antiholomorphic Schwarz reflection function S(z)

across a real analytic boundary curve of Ω satisfies f(S(z)) = 1/f(z) when f is
a proper holomorphic mapping onto the unit disc, it follows that S(z) is algebraic
whenever proper holomorphic maps to the disc are.

Proof of Theorem 1.6. Suppose that Ω is a bounded n-connected domain whose
boundary consists of n non-intersecting C∞ smooth simple closed curves. I proved
in [10] (see also [2, p. 29]) that the complex linear span of the set of functions of
z given by {S(z, b) : b ∈ Ω} is dense in A∞(Ω), the subset of C∞(Ω) consisting of
holomorphic functions on Ω. The proof given there is constructive. It is proved in
[3] that there is a dense open set of points a in Ω such that S(z, a) has n−1 simple
zeroes as a function of z. Fix such a point a and let a1, a2, . . . , an−1 denote the ze-
roes of S(z, a). The functions of z given by S(z, b)/L(z, a) extend meromorphically

to the double Ω̂ of Ω because identity (2.2) shows that S(z, b)/L(z, a) agrees with
the conjugate of L(z, b)/S(z, a) on the boundary of Ω. Let R(z) denote the anti-
holomorphic reflection function which maps Ω to its reflected copy in the double.
Notice that the extended function has no poles in Ω and, if b is not equal to any of
the zeroes aj, then it has simple poles at R(b) and the points {R(aj)}n−1

j=1 .

The function H(z) which is equal to (z−a)L(z, a) for z ∈ Ω, z 6= a, and equal to
1/2π at z = a is in A∞(Ω). Hence, we may find finitely many points bj in Ω such

that a linear combination
∑N

j=1 cjS(z, bj) is as close to H(z) in A∞(Ω) as desired.

Now the function g(z) given by

a+
N∑

j=1

cjS(z, bj)/L(z, a)

extends to be a meromorphic function on the double of Ω which is close in C∞(Ω)
to the identity function. It is this function g that we wish to call a Gustafsson
function. We shall use it in the next section to zip the Bergman kernel.

Gustafsson proved in [12] that the poles of the function g on the reflected copy
of Ω in the double of Ω reflect back to the points in Ω that map under g to points
that appear in the quadrature identity for g(Ω). Hence, the points in g(Ω) that
would appear in the quadrature identity (1.1) for g(Ω) are among the images under
g of the points a1, . . . , an−1 and b1, . . . , bN . We shall refine the proof above to get
more control over these points momentarily.

Proof of Theorem 1.7. The proof just given of Theorem 1.6 can be altered so that
the points bj fall in a very small set and so that all the integers nj in the quadrature
identity for g(Ω) are equal to one. Indeed, letDǫ(w0) be any disc which is compactly
contained in Ω. Choose a in Ω such that S(z, a) has n−1 simple zeroes as a function
of z. Let a1, a2, . . . , an−1 denote the zeroes of S(z, a) and let a0 = a. We shall now
repeat the argument above, but we shall restrict the points b to be in Dǫ(w0).
Indeed, we now claim that the complex linear span L of {S(z, b) : b ∈ Dǫ(w0)}
is dense in A∞(Ω). The dual space A−∞(Ω) of A∞(Ω) is described in [2, p. 117]
(see also [10]). If L were not dense in A∞(Ω), then there would be a function
h ∈ A−∞(Ω) which is not the zero function, but which is orthogonal to L with
respect to the non-degenerate pairing which extends the usual L2 inner product
on Ω. But the function H(b) given as 〈h, S(·, b)〉 is a holomorphic function of b on
Ω. Thus, if h is orthogonal to L, then H(b) vanishes on Dǫ(w0), and is therefore
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zero on all of Ω. This shows that h is orthogonal to S(z, b) for all b in Ω, and we
know that these functions span a dense subset of A∞(Ω). Hence, h ≡ 0, and this
contradiction yields that L must be dense.

The function H(z) given by

H(z) = zfa(z)L(z, a)

for z ∈ Ω, z 6= a, and equal to af ′

a(a)/2π at z = a is in A∞(Ω). Hence, we
may find finitely many points bj in Dǫ(w0) such that a linear combination L(z) =∑N

j=1 cjS(z, bj) is as close to H(z) in A∞(Ω) as desired. Now the function g(z)
given by

fa(z)
−1

N∑

j=1

cjS(z, bj)/L(z, a)

extends to be a meromorphic function on the double of Ω which is C∞ close to
the identity function near and up to the boundary of Ω. We shall now make some
adjustments to this function to eliminate any poles that might occur at the zeros
of fa. Since the complex span {S(z, b) : b ∈ Dǫ(w0)} is dense in A∞(Ω), there
exist points Bk in Dǫ(w0) such that det[Mjk] 6= 0 where [Mjk] is the n× n matrix
given by Mjk = S(aj, Bk) in which the indices range over j = 0, 1, . . . n − 1 and
k = 0, 1, . . . , n − 1. Since H(z) vanishes at the zeroes aj, j = 0, 1, . . . n − 1, of fa,
the complex numbers L(aj) are small, and the closer L(z) is to H(z) in A∞(Ω),
the smaller they are. Let µjk solve the system

L(aj) =

n−1∑

k=0

µjkS(aj, Bk),

for j = 0, 1, . . . n− 1. Note that the complex numbers µjk are small and that they
go to zero as L tends to H in A∞(Ω). We now revise the definition of the function
g(z) to be

fa(z)
−1




N∑

j=1

cjS(z, bj)/L(z, a)−
n−1∑

k=0

µjkS(z, Bk)/L(z, a)


 .

This function has the virtue that it has no poles at the zeroes of fa, and because
it is C∞ close to the identity near the boundary of Ω, it is close to the identity
in C∞(Ω). Furthermore, the extension of this function to the reflected side in the
double is given by the conjugate of

fa(z)




N∑

j=1

cjL(z, bj)/S(z, a)−
n−1∑

k=0

µjkL(z, Bk)/S(z, a)


 ,

(where we are thinking z = R(ζ) where R is the reflection function on the double).
This function has only simple poles at the points bj and Bk in Dǫ(w0). This
completes the first part of the proof of Theorem 1.7. To prove the last assertion in
the statement of Theorem 1.7, repeat the argument above, noting that the same
reasoning shows that the complex linear span of {S(m)(z, w0), m = 0, 2, . . .} where
S(m)(z, w) = (∂m/∂w̄m)S(z, w) is also dense in A∞(Ω), and also observing that
identity (2.2) can be used in the same way to show that S(m)(z, w0)/L(z, a) extends
meromorphically to the double.
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4. How to zip the Bergman kernel. Suppose that Ω is a bounded n-connected
domain whose boundary consists of n non-intersecting C∞ smooth simple closed
curves. Let g(z) denote a Gustafsson function as constructed in the proofs of

Theorems 1.6 or 1.7. Let Ω̂ denote the double of Ω and let R(z) denote the an-

tiholomorphic reflection function which maps Ω to its reflected copy Ω̃. Let G(z)
denote the meromorphic extension of g(z) to the double. Gustafsson [12] proved

that G(z) and G(R(z)) form a primitive pair for the field of meromorphic functions

on Ω̂. Now g(Ω) is a quadrature domain and the function g(z) transforms to be

the function z on g(Ω). Hence, z and G(R(g−1(z))) extend meromorphically to
the double of g(Ω) and form a primitive pair. Let h(z) denote the meromorphic

function G(R(g−1(z))). Notice that h(z) is equal to z̄ on bΩ and that h extends
C∞ smoothly up to the boundary.

Let {wj}Nj=1 denote the finitely many poles of h(z) in Ω and let nj be equal to the
order of the pole at wj . The numbers N , wj , and nj are exactly the numbers that
appear in (1.1) in the quadrature identity for g(Ω). Let Pj(z) denote the principal
part of h(z) at wj . Theorem 1.1 yields that the Bergman kernel associated to g(Ω)
is a rational combination of z and h(z). We don’t need to zip the function z. Recall
that h(z) = z̄ on the boundary of g(Ω), and so the function h(z) can be zipped via
the formula

h(z) −
N∑

j=1

Pj(z) =
1

2πi

∫

bΩ

ζ̄ −
∑N

j=1 Pj(ζ)

ζ − z
dζ.

But
∫
bΩ

1
(ζ−wj)k(ζ−z)

dζ is zero for positive integers k. Hence

h(z) =

N∑

j=1

Pj(z) +
1

2πi

∫

bΩ

ζ̄

ζ − z
dζ.

Define Q via

(4.1) Q(z) =
1

2πi

∫

bΩ

ζ̄

ζ − z
dζ.

Wemay state thatQ is a holomorphic function on Ω which extends meromorphically
to the double of Ω without poles in Ω and that Q is an algebraic function. We have
just proved that the Bergman kernel associated to g(Ω) is a rational combination

of z, Q(z), w̄, and Q(w). A rational function is encoded by finitely many complex
coefficients and a few positive integers. These numbers carry all the information
that is needed to unzip the Bergman kernel for the quadrature domain g(Ω) via
formula (4.1). (Gustafsson [12] proved that any quadrature domain of finite area
can be expressed as g(Ω) for some such g and smooth Ω, and so this result can be
easily generalized.)

We now turn to zipping the Bergman kernel K(z, w) for Ω. Let H(z) denote

the function G(R(z)), which is meromorphic on Ω and extends C∞ smoothly up

to bΩ and has boundary values equal to g(z). The transformation formula for the
Bergman kernel under biholomorphic maps together with the form of the Bergman
kernel for g(Ω) reveals that K(z, w) is equal to g′(z)g′(w) times a rational function

of g(z), H(z), g(w), and H(w). The Cauchy integral formula

g′(w) =
1

2πi

∫

bΩ

g(z)

(z − w)2
dz
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allows us to obtain g′ inside Ω from the boundary values of g, and of course g can
be unzipped in the same manner. The function H(z) = G(R(z)) can be recovered
in a way to similar to how we handled h above. Let P (z) denote the sum of the
principal parts of H(z). Then, as above,

H(z) = P (z) +
1

2πi

∫

bΩ

g(ζ)

ζ − z
dζ.

Hence we see that the Bergman kernel can be recovered from the boundary values
of the single function g, assuming that finitely many coefficients from two rational
functions are known.

5. Generalized quadrature domains. We shall call an n-connected domain Ω
in the plane such that no boundary component is a point a generalized quadrature
domain if there exist finitely many points {wj}Nj=1 in the domain, non-negative
integers nj , and finitely many continuous closed curves or curve segments σm in Ω
such that complex numbers cjk and bm exist satisfying

(5.1)

∫

Ω

f dA =
N∑

j=1

nj∑

k=0

cjkf
(k)(wj) +

M∑

m=1

bm

∫

σm

f(z) dz

for every function f in the Bergman space of square integrable holomorphic func-
tions on Ω. Here, dA denotes Lebesgue area measure. As before, we shall also need
to assume that the domain under study has finite area. The property of being a
generalized quadrature domain and the conditions mentioned in Theorems 1.1-1.4
are tied together nicely in the following theorem.

Theorem 5.1. Suppose that Ω is an n-connected domain in the plane of finite
area such that no boundary component is a point. The following conditions are
equivalent.

(1) Ω is a generalized quadrature domain.
(2) The Bergman kernel extends to the double of Ω as a meromorphic function,

i.e., the Bergman kernel is generated by the restriction of two functions of
one variable that form a primitive pair for the field of meromorphic func-
tions on the double of Ω.

(3) There exists a proper holomorphic mapping f of Ω onto the unit disc such
that f ′ extends to the double of Ω as a meromorphic function.

(4) The derivative of every proper holomorphic mapping of Ω onto the unit disc
extends to the double of Ω as a meromorphic function.

(5) Every function H on Ω that extends meromorphically to the double of Ω is
such that H ′ also extends to the double of Ω.

We have proved most of the equivalences in Theorem 5.1 in the proofs of The-
orems 1.1-1.4. To finish the proof, we need only show that if f is a proper holo-
morphic mapping of Ω onto the unit disc such that f ′ extends meromorphically to
the double of Ω, then Ω is a generalized quadrature domain. The condition that f ′

extends to the double means that there is a conformal map Φ from Ω to a bounded

domain Ω̃ whose boundary consists of n simple closed real analytic curves, and
11



f ′ ◦Φ−1 extends to the double of Ω̃. Let ϕ denote the inverse of Φ. Since f ◦ϕ is a

proper holomorphic mapping of Ω̃ onto the unit disc, and since these two domains
have real analytic boundary, the mapping f ◦ ϕ extends holomorphically past the

boundary of Ω̃. Hence, the derivative ϕ′ ·(f ′◦ϕ) extends holomorphically also. Fur-
thermore, the derivative of the extension does not vanish on the boundary. Since

f ′ ◦ϕ extends to the double of Ω̃, and since Ω̃ has real analytic boundary, it follows

that f ′ ◦ ϕ extends holomorphically past the boundary of Ω̃. We conclude that ϕ′

extends past the boundary of Ω̃ at all but the finitely many boundary points where

f ‘ ◦ ϕ might vanish, and at the vanishing points, ϕ maps the boundary of Ω̃ to a
cusp-like boundary point of Ω. Thus we conclude that Ω must have piecewise real
analytic boundary.

Next, to see that Ω is a generalized quadrature domain, let z(t) parameterize
one of the boundary curve segments of Ω. Since ln |f(z(t))| ≡ 1, it follows by
differentiating with respect to t that

(5.2)
f ′(z(t))

f(z(t))
z′(t) = −

(
f ′(z(t))/ f(z(t))

)
z′(t).

Let fb be an Ahlfors map such that f and fb generate the meromorphic functions
on the double of Ω. Since f ′ extends to the double as a meromorphic functions,
we know that f ′ = R(f, fb) for some rational function R. Now f = 1/f on the
boundary of Ω since f maps the boundary into the unit circle. The same is true
for fb. Hence, (5.2) yields that

z′(t) = −1/R
(
1/ f(z(t)) , 1/fb(z(t))

)(
f ′(z(t))/ f(z(t))2

)
z′(t),

i.e., that dz = H(z)dz̄ on bΩ where H extends meromorphically to Ω. Following
Aharonov and Shapiro [1], Gustafsson shows in [12, p. 223] that this condition is
equivalent to being a generalized quadrature domain. This completes the proof.

6. Quadrature domains with respect to arc length measure. An analogous
theorem to Theorem 1.5 can be proved for smooth quadrature domains with respect
to boundary arc length measure. Suppose Ω is a bounded n-connected domain in
the plane bounded by n non-intersecting C∞ simple closed curves. We say that
Ω is a quadrature domain with respect to arc length measure if there exist finitely
many points {wj}Nj=1 in the domain and non-negative integers nj such that complex
numbers cjk exist satisfying

(6.1)

∫

bΩ

f ds =
N∑

j=1

nj∑

k=0

cjkf
(k)(wj)

for every function f in the Hardy space H2(bΩ) of holomorphic functions on Ω with
square integrable boundary values on bΩ with respect to arc length measure ds (see
[2] for basic facts about H2(bΩ)). The techniques used in the previous sections can
be adapted to replace the Runge theorems used by Gustafsson in the proofs of his
more general results by density theorems in A∞ for the Szegő kernel. Indeed, we can
follow Gustafsson’s argument in [13, p. 76] to the letter, noting that Gustafsson’s
function h can be taken to be a complex linear combination of functions of the
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form S(z, b) where b ranges over an open subset of Ω. This is because identity (2.2)

shows that S(z, b)2dz = −L(z, b)2dz̄, and hence, h
√
dz is a “half-order differential”

where h(z) = S(z, b). Similar reasoning reveals the same thing about complex
linear combinations of such functions. We may now follow Gustafsson’s argument,
using the fact that the complex linear span of {S(z, b) : b ∈ Ω} is dense in A∞(Ω)
in place of the Runge-type approximation theorem he uses. Gustafsson’s functions
fj on page 77 can also be approximated in A∞(Ω) by functions in this linear span.
In this way, we may construct a function h in A∞(Ω) such that h2 has a single
valued antiderivative g which is as close to the identity map in C∞(Ω) as we desire.
This yields a quadrature domain with respect to arc length measure g(Ω) which is
conformally equivalent to Ω and as C∞ close to Ω as we desire.
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