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Abstract

We identify the representation of the square of white noise obtained by L. Ac-
cardi, U. Franz and M. Skeide in [Comm. Math. Phys. 228 (2002), 123–150] with
the Jacobi field of a Lévy process of Meixner’s type.
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1 Formulation of the result

The problem of developing a stochastic calculus for higher powers of white noise, i.e.,
“nonlinear stochastic calculus”, was first stated by Accardi, Lu, and Volovich in [4].
Since the white noise is an operator-valued distribution, in order to solve this problem
one needs an appropriate renormalization procedure. In [5, 6], it was proposed to renor-
malize the commutation relations and then to look for Hilbert space representations of
them. Let us shortly discuss this approach.

We will use Rd, d ∈ N, as an underlying space. Let b(x), x ∈ Rd, be an operator-
valued distribution satisfying the canonical commutation relations:

[b(x), b(y)] = [b†(x), b†(y)] = 000,

[b(x), b†(y)] = δ(x− y)111. (1)

Here, [A,B]:=AB − BA and b†(x) is the dual operator of b(x). Denote

Bx:=b(x)
2, B†

x:=b
†(x)2, Nx:=b

†(x)b(x), x ∈ R
d. (2)

One wishes to derive from (1) the commutation relations satisfied by the operators
Bx, B

†
x, Nx. To this end, one needs to make sense of the square of the delta function,

δ(x)2. But it is known from the distribution theory that

δ(x)2 = cδ(x), (3)

http://arxiv.org/abs/math/0401370v1


where c ∈ C is an arbitrary constant (see [5] for a justification of this formula and
bibliographical references).

Thus, using (1) and formula (3) as a renormalization, we get

[Bx, B
†
y] = 2cδ(x− y)111 + 4δ(x− y)Ny,

[Nx, B
†
y] = 2δ(x− y)B†

y,

[Nx, By] = −2δ(x− y)By,

[Nx, Ny] = [Bx, By] = [B†
x, B

†
y] = 000 (4)

(see [1, Lemma 2.1]).
Let S(Rd) denote the Schwartz space of rapidly decreasing functions on Rd. For

each ϕ ∈ S(Rd), we introduce

B(ϕ):=

∫

Rd

ϕ(x)Bx dx, B†(ϕ):=

∫

Rd

ϕ(x)B†
x dx, N(ϕ):=

∫

Rd

ϕ(x)Nx dx. (5)

By (4),

[B(ϕ), B†(ψ)] = 2c〈ϕ, ψ〉111 + 4N(ϕψ),

[N(ϕ), B†(ψ)] = 2B†(ϕψ),

[N(ϕ), B(ψ)] = −2B(ϕψ),

[N(ϕ), N(ψ)] = [B(ϕ), B(ψ)] = [B†(ϕ), B†(ψ)] = 000, φ, ψ ∈ S(Rd). (6)

Here, 〈·, ·〉 denotes the scalar product in L2(Rd, dx). The Lie algebra with generators
B(ϕ), B†(ϕ), N(ϕ), ϕ ∈ S(Rd), and a central element 111 with relations (6) is called the
square of white noise (SWN) algebra.

Now, one is interested in a Hilbert space representation of the SWN algebra with
a cyclic vector Φ satisfying B(ϕ)Φ = 0 (which is called a Fock representation). In
[5], it was shown that a Fock representation of the SWN algebra exists if and only if
the constant c is strictly positive. In what follows, we will suppose, for simplicity of
notations that c = 2.

Let us now recall the Fock representation of the SWN algebra constructed in [3]
(see also references therein).

For a real separable Hilbert space H, denote by F(H) the symmetric Fock space
over H:

F(H) =
∞⊕

n=0

H⊗̂nn!,

where ⊗̂ stands for the symmetric tensor product. Thus, each f ∈ F(H) is of the
form f = (f (n))∞n=0, where f

(n) ∈ H⊗̂n and ‖f‖2F(H) =
∑∞

n=0 ‖f (n)‖2
H⊗̂n

n! . Now take
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H to be L2(Rd, dx) ⊗ ℓ2, where the ℓ2 space has the orthonormal basis (en)
∞
n=1, en =

(0, . . . , 0, 1︸︷︷︸
nth place

, 0, . . . ).

Denote by F the linear subspace of F(L2(Rd, dx)⊗ ℓ2) that is the linear span of the
vacuum vector Ω = (1, 0, 0, . . . ) and vectors of the form (ϕ ⊗ ξ)⊗n, where ϕ ∈ S(Rd)
and ξ ∈ ℓ2,0, n ∈ N. Here, ℓ2,0 denotes the linear subspace of ℓ2 consisting of finite
vectors, i.e., vectors of the form ξ = (ξ1, ξ2, . . . , ξm, 0, 0, . . . ), m ∈ N. The set F is
evidently a dense subset of F(L2(Rd, dx)⊗ ℓ2).

Denote by J+, J0, J− the linear operators in ℓ2 with domain ℓ2,0 defined by the
following formulas:

J+en =
√
n(n + 1) en+1,

J0en = nen,

J−en =
√
(n− 1)n en−1, n ∈ N. (7)

Now, for each ϕ, ψ ∈ S(Rd) and ξ ∈ ℓ2,0, we set

B†(ϕ)(ψ ⊗ ξ)⊗n = 2(ϕ⊗ e1)⊗̂(ψ ⊗ ξ)⊗n + 2n((ϕψ)⊗ (J+ξ))⊗n,

N(ϕ)(ψ ⊗ ξ)⊗n = 2n((ϕψ)⊗ J0ξ)⊗n,

B(ϕ)(ψ ⊗ ξ)⊗n = 2n〈ϕ, ψ〉ξ1(ψ ⊗ ξ)⊗(n−1) + 2n((ϕψ)⊗ (J−ξ))⊗n, (8)

where n ∈ N, and (ψ ⊗ ξ)⊗0:=Ω. Thus,

B†(ϕ) = 2A+(ϕ⊗ e1) + 2A0(ϕ⊗ J+),

N(ϕ) = 2A0(ϕ⊗ J0),

B(ϕ) = 2A−(ϕ⊗ e1) + 2A0(ϕ⊗ J−), (9)

where A+(·), A0(·), and A−(·) are the creation, neutral, and annihilation operators in
F(L2(Rd, dx) ⊗ ℓ2), respectively. The operator B†(ϕ) is the restriction of the adjoint
operator of B(ϕ) to F, while the operator N(ϕ) is Hermitian. It is easy to see that
the operators B†(ϕ), N(ϕ), B(ϕ), ϕ ∈ S(Rd), constitute a representation of the SWN
algebra.

In what follows, the closure of a closable operator A will be denoted by Ã. Since
the adjoint operators of B†(ϕ), N(ϕ), B(ϕ) are densely defined, they are closable.

The last part of [3] is devoted to studying those classical infinitely divisible processes
which are built from the SWN in a similar way as the Wiener and Poisson processes
are built from the usual white noise. So, for each parameter β ≥ 0, we define

Xβ(x):=B
†
x +Bx + βNx, x ∈ R

d. (10)

Notice that we want a formally self-adjoint process, so the parameter β must be real
(we also exclude from consideration the case β < 0, since it may be treated by a trivial
transformation of the case β > 0).
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In view of (1) and (2), the only privileged parameter is β = 2, when Xβ(x) becomes
the renormalized square of the classical white noise b†(x) + b(x), see [1, Section 3].

Analogously to (5), we introduce, for each ϕ ∈ S(Rd),

Xβ(ϕ):=

∫

Rd

ϕ(x)Xβ(x) dx = B†(ϕ) +B(ϕ) + βN(ϕ). (11)

As easily seen, X̃β(ϕ) is a self-adjoint operator.

In the case d = 1, it was shown in [3] that the quantum process (X̃β(χ[0,t]))t≥0 (χ∆

denoting the indicator function of a set ∆) is associated with a classical Lévy process
(Yβ(t))t≥0, which is a gamma process for β = 2, a Pascal process for β > 2, and a
Meixner process for 0 ≤ β < 2. (One has, of course, to extend the SWN algebra in
order to include the operators indexed by the indicator functions, for example, to take
the set L2(R, dx) ∩ L∞(R, dx) instead of S(R).)

We also refer to [1, 2, 3] and references therein for a discussion of other aspects of
the SWN.

On the other hand, in papers [16, 19, 20, 11] (see also [17, 12, 10, 13]), the Jacobi
field of the Lévy processes of Meixner’s type, i.e., the gamma, Pascal, and Meixner
processes, was studied. Let us shortly explain this approach.

Let S ′(Rd) be the Schwartz space of tempered distributions. The S ′(Rd) is the
dual space of S(Rd) and the dualization between S ′(Rd) and S(Rd) is given by the
scalar product in L2(Rd, dx). We will preserve the symbol 〈·, ·〉 for this dualization.
Let C(S ′(Rd)) denote the cylinder σ-algebra on S ′(Rd).

For each β ≥ 0, we define a probability measure µβ on (S ′(Rd)), C(S ′(Rd)) by its
Fourier transform
∫

S′(Rd)

ei〈ω,ϕ〉 µβ(dω) = exp

[ ∫

R×Rd

(eisϕ(x) − 1− isϕ(x)) νβ(ds) dx

]
, ϕ ∈ S(Rd),

(12)
where the measure νβ on R is specified as follows.

Let ν̃β denote the probability measure on (R,B(R)) whose orthogonal polynomials

(P̃β, n)
∞
n=0 with leading coefficient 1 satisfy the recurrence relation

sP̃β, n(s) = P̃β, n+1(s) + β(n+ 1)P̃β, n(s) + n(n + 1)P̃β, n−1(s), (13)

n ∈ Z+, P̃β,−1(s):=0.

By [14, Ch. VI, sect. 3], (P̃β, n)
∞
n=0 is a system of polynomials of Meixner’s type, the

measure ν̃β is uniquely determined by the above condition and is given as follows. For
β ∈ [0, 2),

ν̃β(ds) =

√
4− β2

2π

∣∣Γ
(
1+i(4−β2)−1/2s

)∣∣2 exp
[
−s2(4−β2)−1/2 arctan

(
β(4−β2)−1/2

)]
ds
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(ν̃β is a Meixner distribution), for β = 2

ν̃2(ds) = χ(0,∞)(s)e
−ss ds

(ν̃2 is a gamma distribution), and for β > 2

ν̃β(ds) = (β2 − 4)

∞∑

k=1

pkβ k δ
√

β2−4 k
, pβ:=

β −
√
β2 − 4

β +
√
β2 − 4

(ν̃β is now a Pascal distribution).
Notice that, for each β ≥ 0, ν̃({0}) = 0, and hence, we may define

νβ(ds):=
1

s2
ν̃β(ds). (14)

Then, µβ is the measure of gamma noise for β = 2, Pascal noise for β > 2, and Meixner
noise for β ∈ [0, 2). Indeed, for each β ≥ 0, µβ is a generalized process on S ′(Rd) with
independent values (cf. [15]). Next, for each ϕ ∈ S(Rd), we have

∫

S′(Rd)

〈ω, ϕ〉2 µβ(dω) =

∫

Rd

ϕ(x)2 dx. (15)

Hence, for each f ∈ L2(Rd, dx), we may define, in a standard way, the random variable
〈·, f〉 from L2(S ′(Rd), dµβ) satisfying (15) with ϕ = f .

Then, for each open, bounded set ∆ ⊂ R
d, the distribution µβ,∆ of the random

variable 〈·, χ∆〉 under µβ is given as follows. For β > 2, µβ,∆ is the negative binomial
(Pascal) distribution

µβ,∆ = (1− pβ)
|∆|

∞∑

k=0

(
|∆|

)
k

k!
pkβ δ

√
β2−4 k−2|∆|/(β+

√
β2−4)

,

where for r > 0 (r)0:=1, (r)k:=r(r + 1) · · · (r + k − 1), k ∈ N. For β = 2, µ2,∆ is the
Gamma distribution

µ2,∆(ds) =
(s+ |∆|)|∆|−1e−(s+|∆|)

Γ(|∆|) χ(0,∞)(s+ |∆|) ds.

Finally, for β ∈ [0, 2),

µβ,∆(ds) =
(4− β2)(|∆|−1)/2

2πΓ(|∆|)
∣∣Γ
(
|∆|/2 + i(4− β2)−1/2(s+ β|∆|/2

)∣∣2

× exp
[
− (2s+ β|∆|)(4− β2)−1/2 arctan

(
β(4− β2)−1/2

)]
ds.

Here, |∆|:=
∫
∆
dx.
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We denote by P(S ′(Rd)) the set of continuous polynomials on S ′(Rd), i.e., functions
on S ′(Rd) of the form

F (ω) =
n∑

i=0

〈ω⊗i, f (i)〉, ω⊗0:=1, f (i) ∈ S(Rd)⊗̂i, i = 0, . . . , n, n ∈ Z+.

The greatest number i for which f (i) 6= 0 is called the power of a polynomial. We
denote by Pn(S ′(Rd)) the set of continuous polynomials of power ≤ n.

The set P(S ′(Rd)) is a dense subset of L2(S ′(Rd), dµβ). Let P∼
n (S ′(Rd)) denote the

closure of Pn(S ′(Rd)) in L2(S ′(Rd), dµβ), let Pn(S ′(Rd)), n ∈ N, denote the orthogonal
difference P∼

n (S ′(Rd))⊖P∼
n−1(S ′(Rd)), and let P0(S ′(Rd)):=P∼

0 (S ′(Rd)). We evidently
have the orthogonal decomposition

L2(S ′(Rd), dµβ) =

∞⊕

n=0

Pn(S ′(Rd)). (16)

For a monomial 〈ω⊗n, f (n)〉, f (n) ∈ S(Rd)⊗̂n, we denote by :〈ω⊗n, f (n)〉: the orthogo-
nal projection of 〈ω⊗n, f (n)〉 onto Pn(S ′(Rd)). The set {:〈ω⊗n, f (n)〉:, f (n) ∈ S(Rd)⊗̂n}
is dense in Pn(S ′(Rd)).

Denote by Z∞
+, 0 the set of all sequences α of the form α = (α1, α2, . . . , αn, 0, 0, . . . ),

αi ∈ Z+, n ∈ N. Let |α|:=∑∞
i=1 αi, evidently |α| ∈ Z+. For each α ∈ Z∞

+, 0, 1α1 +

2α2 + · · · = n, n ∈ N, and for any function f (n) : (Rd)n → R we define a function
Dαf

(n) : (Rd)|α| → R by setting

(Dαf
(n))(x1, . . . , x|α|):=f

(n)(x1, . . . , xα1 , xα1+1, xα1+1︸ ︷︷ ︸
2 times

, xα1+2, xα1+2︸ ︷︷ ︸
2 times

, . . . , xα1+α2 , xα1+α2︸ ︷︷ ︸
2 times

,

xα1+α2+1, xα1+α2+1, , xα1+α2+1︸ ︷︷ ︸
3 times

, . . . ).

We define a scalar product on S(Rd)⊗̂n by setting for any f (n), g(n) ∈ S(Rd)⊗̂n

(f (n), g(n))
F

(n)
Ext(L

2(Rd,dx))
:=

∑

α∈Z∞
+, 0: 1α1+2α2+···=n

Kα

∫

X|α|

(Dαf
(n))(x1, . . . , x|α|)

×(Dαg
(n))(x1, . . . , x|α|) dx1 · · · dx|α|, (17)

where

Kα =
n!

α1! 1α1α2! 2α2 · · · . (18)

Let F (n)
Ext(L

2(Rd, dx)) be the closure of S(Rd)⊗̂n in the norm generated by (17), (18).
The extended Fock space FExt(L

2(Rd, dx)) over L2(Rd, dx) is defined as

FExt(L
2(Rd, dx)):=

∞⊕

n=0

F (n)
Ext(L

2(Rd, dx))n!, (19)
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where F (n)
Ext(L

2(Rd, dx)):=R. We also denote by Ω the vacuum vector in FExt(L
2(Rd, dx)):

Ω = (1, 0, 0, . . . ).
For any f (n), g(n) ∈ S(Rd)⊗̂n, n ∈ N, we have

∫

S′(Rd)

:〈ω⊗n, f (n)〉: :〈ω⊗n, g(n)〉:µβ(dω) = (f (n), g(n))
F

(n)
Ext(L

2(Rd,dx))
n! . (20)

Therefore, for each f (n) ∈ F (n)
Ext(L

2(Rd, dx)), we can define, a random variable :〈·⊗n, f (n)〉:
from L2(S ′(Rd), dµβ) such that equality (20) remains true for any

f (n), g(n) ∈ F (n)
Ext(L

2(Rd, dx)), and furthermore

FExt(L
2(Rd, dx)) ∋ f = (f (n))∞n=0 7→

7→ Uβf = (Uβf)(ω) =
∞∑

n=0

:〈ω⊗n, f (n)〉: ∈ L2(S ′(Rd), dµβ) (21)

is unitary.
We denote by Ffin(S(Rd)) the dense subset of FExt(L

2(Rd, dx)) consisting of vectors
of the form (f (0), f (1), . . . , f (n), 0, 0, . . . ), where f (i) ∈ S(Rd)⊗̂i. For each β ≥ 0 and
each ϕ ∈ S(Rd), we define an operator aβ(ϕ) on Ffin(S(Rd)) by the following formula:

aβ(ϕ) = a+(ϕ) + βa0(ϕ) + a−(ϕ).

Here, a+(ξ) is the standard creation operator:

a+(ϕ)f (n):=ϕ⊗̂fn, f (n) ∈ S(Rd)⊗̂n, n ∈ Z+, (22)

a0(ϕ) is the standard neutral operator:

(a0(ϕ)f (n))(x1, . . . , xn) =
(
ϕ(x1) + · · ·+ ϕ(xn)

)
fn(x1, . . . , xn), (23)

and
a−(ϕ) = a−1 (ϕ) + a−2 (ϕ), (24)

where a−1 (ϕ) is the standard annihilation operator:

(a−1 (ϕ)f
(n))(x1, . . . , xn−1) = n

∫

Rd

ϕ(x)f (n)(x, x1, . . . , xn−1) dx, (25)

and

(a−2 (ϕ)f
(n))(x1, . . . , xn−1) = n(n− 1)(ϕ(x1)f

(n)(x1, x1, x2, x3, . . . , xn−1))
∼, (26)

(·)∼ denoting symmetrization of a function.
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Denote by ∂†x, ∂x the standard creation and annihilation operators at point x ∈ Rd:

∂†xf
(n) = δx⊗̂f (n), ∂xf

(n)(x1, . . . , xn−1) = nf (n)(x, x1, . . . , xn−1).

Then, at least formally, we have the following representation:

a+(ϕ) =

∫

Rd

ϕ(x)∂†x dx, a0(ϕ) =

∫

Rd

ϕ(x)∂†x∂x dx, a−(ϕ) =

∫

Rd

ϕ(x)(∂x + ∂†x∂
2
x) dx,

(27)
so that

aβ(ϕ) =

∫

Rd

ϕ(x)(∂†x + β∂†x∂x + ∂x + ∂†x∂
2
x) dx. (28)

(In fact, equalities (27), (28) may be given a precise meaning, cf. [16, 19].)
The operators aβ(ϕ), ϕ ∈ S(Rd), are essentially self-adjoint on Ffin(S(Rd)) and the

image of any ãβ(ϕ), ϕ ∈ S(Rd), under the unitary Uβ is the operator of multiplication
by the random variable 〈·, ϕ〉. Thus, (ã(ϕ))ϕ∈S(Rd) is the Jacobi field of µβ, see [8, 9,
18, 11] and the references therein.

The functional realization of the operators a+(ϕ), a0(ϕ), a−(ϕ), i.e., the explicit
action of the the image of these operators under the unitary Uβ is discussed in [16, 19].

A direct computation shows that the operators 2a+(ϕ), 2a0(ϕ), 2a−(ϕ), ϕ ∈ S(Rd),
satisfy the commutation relations (6), and hence generate a SWN algebra. In fact, we
have the following result:

Theorem 1 For each β ≥ 0, there exists a unitary operator

Iβ : F(L2(Rd, dx)⊗ ℓ2) → FExt( L2(Rd, dx))

such that IβΩ = Ω and the operators X̃β(ϕ), B̃
†(ϕ), Ñ(ϕ), B̃(ϕ), ϕ ∈ S(Rd), are

unitarily isomorphic under Iβ to two times the operators ã(ϕ), ã+(ϕ), ã0(ϕ), ã−(ϕ),
respectivlely.

Notice that the unitary operator

Uβ:=UβIβ : F(L2(Rd, dx)⊗ ℓ2) → L2(S ′(Rd), dµβ)

has the following properties: UβΩ = 1 and

UβX̃β(ϕ)U−1
β = 2〈·, ϕ〉· , ϕ ∈ S(Rd)

(compare with [3])
By virtue of (5), (10), (27), and (28), we get from Theorem 1:

Bx = 2(∂x + ∂†x∂
2
x), Nx = 2∂†x∂x, B†

x = 2∂†x, (29)

and
Xβ(x) = 2(∂†x + β∂†x∂x + ∂x + ∂†x∂

2
x), x ∈ R

d

(where the equalities are to be understood in the sense of the unitary isomorphism).
The reader is advised to compare (29) with the informal representation (2).
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2 Proof of the theorem

The proof of Theorem 1 is essentially based on the results of [20]. By (9) and (11), we
get, for each ϕ ∈ S(Rd),

Xβ(ϕ) = 2(A+(ϕ⊗ e1) + A0(ϕ⊗ Jβ) + A−(ϕ⊗ e1)),

where
Jβ:=J

+ + βJ0 + J−.

By (7), the operator Jβ is given by a Jacobi matrix (see e.g. [7]). Furthermore, Jβ is

essentially self-adjoint on ℓ2,0 and, by (13), ν̃β is the spectral measure of J̃β . The latter
means that there exists a unitary operator

I
(1)
β : ℓ2 → L2(R, dν̃β)

such that I
(1)
β e1 = 1 and, under I

(1)
β , the operator J̃β goes over into the operator of

multiplication by s.
Next, by (14), the operator

L2(R, dν̃β) ∋ f 7→ I
(2)
β f = (I

(2)
β f)(s):=f(s)s ∈ L2(R, dνβ)

is unitary. Setting
I
(3)
β :=I

(2)
β I

(1)
β : ℓ2 → L2(R, dνβ),

we get a unitary operator such that I
(3)
β e1 = (I

(3)
β e1)(s) = s and, under I

(3)
β , J̃β goes

over into the operator of multiplication by s.
Using I

(3)
β , we can naturally construct a unitary operator

I
(4)
β : F(L2(Rd, dx)⊗ ℓ2) → F(L2(Rd, dx)⊗ L2(R, dνβ))

such that I
(4)
β Ω = Ω and, under I

(4)
β , the operator Xβ(ϕ) goes over into the operator

Xβ(ϕ) = 2(A+(ϕ⊗ s) + A0(ϕ⊗ s) + A−(ϕ⊗ s)).

It follows from [20] that there exists a unitary operator

I
(5)
β : F(L2(Rd, dx)⊗ L2(R, dνβ)) → L2(S ′(Rd), dµβ)

such that I
(5)
β Ω = 1 and, under I

(5)
β , the operator X̃β(ϕ) goes over into the operator of

multiplication by 2〈·, ϕ〉.
We define the unitary

Iβ :=U
−1
β I

(5)
β I

(4)
β : F(L2(Rd, dx)⊗ ℓ2) → FExt(L

2(Rd, dx)),

9



where Uβ is given by (21). We evidently get IβΩ = Ω and ã(ϕ) = I−1
β X̃β(ϕ)I

−1
β ,

ϕ ∈ S(Rd).
Next, we denote by G the subset of FExt(L

2(Rd, dx)) defined as the linear span of
Ω and the vectors of the form ϕ⊗n, where ϕ ∈ S(Rd) and n ∈ N. We note:

(I
(3)
β en)(s) = Pβ,n(s), n ∈ N,

where
Pβ,n(s):=sP̃β,n−1(s), n ∈ N,

and (P̃β,n)
∞
n=0 are defined by (13). Hence, by [20, Sect. 4 and Corollary 5.1],

G ⊂ IβF.

Furthermore, by (7), (8), (22)–(26) and by [20, Corollary 5.1], we get:

IβB
†(ϕ)I−1

β ↾ G = a+(ϕ) ↾ G,

IβN(ϕ)I−1
β ↾ G = a0(ϕ) ↾ G,

IβB(ϕ)I−1
β ↾ G = a−(ϕ) ↾ G, ϕ ∈ S(Rd). (30)

We now endow Ffin(S(Rd)) with the topology of the topological direct sum of the
spaces Fn(S(Rd)). Thus, the convergence in Ffin(S(Rd)) means the uniform finiteness
and the coordinate-wise convergence in each Fn(S(Rd)). As easily seen, G is a dense
subset of Ffin(S(Rd)). Since the operators a+(ϕ), a0(ϕ), and a−(ϕ) act continuously
on Ffin(S(Rd)) and since Ffin(S(Rd)) is continuously embedded into FExt(L

2(Rd, dx))
(cf. [16, p. 37]), the closure of the operators a+(ϕ), a0(ϕ), and a−(ϕ) restricted to G

coincides with ã+(ϕ), ã0(ϕ), and ã−(ϕ), respectively. Hence, by (30), B̃†(ϕ), Ñ(ϕ),

and Ñ(ϕ) are extensions of the operators ã+(ϕ), ã0(ϕ), and ã−(ϕ), respectively.
Finally, analogously to the proof of [20, Theorem 6.1], we conclude that IβF is a

subset of the domain of ã+(ϕ), respectively ã0(ϕ), respectively ã−(ϕ), and furthermore

IβB
†(ϕ)I−1

β = ã+(ϕ) ↾ IβF,

IβN(ϕ)I−1
β = ã0(ϕ) ↾ IβF,

IβB(ϕ)I−1
β = ã−(ϕ) ↾ IβF, ϕ ∈ S(Rd).

This yields:

IβB̃
†(ϕ)I−1

β = ã+(ϕ),

IβÑ(ϕ)I−1
β = ã0(ϕ),

IβB̃(ϕ)I−1
β = ã−(ϕ), ϕ ∈ S(Rd),

which concludes the proof.
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