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Abstract: This paper considers systems subject to nonholonomic constraints
which are not uniform on the whole configuration manifold. When the con-
straints change, the system undergoes a transition in order to comply with the
new imposed conditions. Building on previous work on the Hamiltonian the-
ory of impact, we tackle the problem of mathematically describing the classes
of transitions that can occur. We propose a comprehensive formulation of the
Transition Principle that encompasses the various impulsive regimes of Hamil-
tonian systems. Our formulation is based on the partial symplectic formalism,
which provides a suitable framework for the dynamics of nonholonomic systems.
We pay special attention to mechanical systems and illustrate the results with
several examples.
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1. Introduction

In this paper we consider the problem of mathematically describing impulsive
motions (impacts, collisions, reflection, refractions) of Hamiltonian systems sub-
ject to nonholonomic constraints. An impulsive behavior takes place when one
or more of the basic ingredients of the Hamiltonian dynamical picture undergoes
a drastic change. As an example, one may consider the instant of time when the
configuration space of the system collapses instantaneously because of an inelas-
tic collision. Another example is given by a ray of light that splits into reflected
and refracted rays when passing from one optical media to another, and so on. In
situations like these, the phase trajectory of the system becomes discontinuous
and the problem of how to describe this discontinuity arises.

The problem of describing impulsive motion has been extensively studied in
classical books such as [2,27,29,30,33]. In these references, the emphasis is put
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on the analysis of mechanical systems subject to impulsive forces, and in par-
ticular, the study of rigid body collisions by means of Newton and Poisson laws
of impact. Impulsive nonholonomic constraints (i.e. constraints whose reaction
force is impulsive) are also considered in [28,33], and, from a geometric per-
spective, in more recent works such as [12,17,20]. If impulsive constraints and
impulsive forces are present at the same time, Newton and Poisson approaches
have been revealed to be physically inconsistent in certain cases [8,35]. This sur-
prising consequence of the impact laws is only present when the velocity along
the impact surface stops or reverses during collision due to the friction. En-
ergetically consistent hypothesis for rigid body collisions with slip and friction
are proposed in [34,35]. From a design point of view, the interest in systems
subject to impulsive forces is linked to the emergence of nonsmooth and hybrid
dynamical systems in Control Theory, i.e., systems where continuous and dis-
crete dynamics coexist, see [7,8,9,37] and references therein. Hybrid mechanical
systems that locomote by switching between different constraint regimes and
are subject to elastic impacts are studied in [10]. Hyper-impulsive control of
mechanical systems is analyzed in [16].

Here, we aim at a comprehensive analysis of the various situations which can
occur concerning impulsive regimes of nonholonomic Hamiltonian systems. In
particular, we focus on two different but complementary cases. The first one
deals with a drastic change in the nonholonomic constraints imposed on the sys-
tem. The second one concerns a drastic change of the Hamiltonian function and
includes, in particular, collisions and impacts of nonholonomic systems. The
proposed solution is given in terms of a generalized version of the Transition
Principle. This principle, sketched for the first time in a series of lectures of
the second author [6] for discontinuous Hamiltonians, was recently extended to
other non-constrained situations in [31,32] (see also [15] for a related discussion
in an optimal control setting). By its very nature, the Transition Principle is a
direct dynamic interpretation of the geometric data of the problem. This feature
distinguishes it from other approaches. For instance, in Classical Mechanics, the
velocity jumps caused by an impact are traditionally derived from some assump-
tions on the nature of the impulsive forces (see, for instance, [2,22]). However,
these assumptions are not logical consequences of the fundamental dynamical
principles and therefore one should really consider them as additional principles
for impulsive problems. The distinguishing feature of the Transition Principle
is that it gives full credit to the geometry of the nonholonomic Hamiltonian
system. This seems reasonable for the impulsive regime, keeping in mind the
perfect adequacy of the Hamiltonian description to the dynamical behavior of
the system in the absence of impulsive motions. In addition, there are some
noticeable advantages deriving from the Transition Principle. First of all, its ap-
plication gives an exact and direct description of the post-impact state which is
of immediate use for both theoretical and computational purposes. Secondly, it
is still valid in some situations where standard methods can be hardly applied.
In particular, this is the case of Hamiltonian systems describing the propaga-
tion of singularities of solutions of partial differential equations (consider, for
instance, the example of geometrical optics) [24,25,38]. Clearly, no variational
or traditional approach can be applied to this very important class of systems.

A second contribution of this paper concerns the formulation of the dynamics
of nonholonomic Hamiltonian systems. We make use of the notion of partial
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symplectic structures introduced in [6] and relate this framework with other
modern approaches to nonholonomic systems (see [3,4,5,13,19,21,26,36] and
references therein). One advantage of the partial symplectic formalism is that
it allows us to draw clear analogies between the unconstrained and constrained
situations. Another advantage is that the treatment of nonlinear constraints can
be easily incorporated.

The paper is organized as follows. Section 2 introduces some geometric pre-
liminaries on distributions, constraint submanifolds and partial symplectic struc-
tures. In Section 3, we show how any nonholonomic Hamiltonian system pos-
sesses an associated partial symplectic structure, and we use this fact to in-
trinsically formulate the dynamics. We also analyze systems with instantaneous
nonholonomic constraints and systems exhibiting discontinuities. In Section 4,
we develop a new formulation of the Transition Principle for systems with con-
straints. We present the novel notion of focusing points with respect to a con-
straint submanifold and we also introduce the concept of constrained character-
istic. Decisive points are defined for each impulsive regime resorting to in, out
and trapping points. Section 5 presents a detailed study of the concepts intro-
duced in the previous sections in the case of mechanical systems. We compute
the focusing points and the characteristic curves, and present various results con-
cerning the decisive points. We also prove an appropriate version for generalized
constraints of the classical Carnot’s theorem for systems subject to impulsive
forces: if the constraints are linear, we show that the Transition Principle always
implies a loss of energy. We conclude this section by showing that if the con-
straints are integrable, then our formulation of the Transition Principle recovers
the solution for completely inelastic collisions [32]. Finally, Section 6 presents
various examples of the application of the above-developed theory.

To ease the exposition, below we make use of the standard notation concerning
differential geometry and the Hamiltonian formalism without making explicit
reference to any work. In particular, we denote by Λi (resp., D(M)) the C∞(M)-
module of ith order differential forms (resp., of vector fields) on a manifold M .
We use F ∗(ϕ) to denote the pullback with respect to a smooth map F of a
function or differential form ϕ. If x is a point of M , then the subscript x refers
to the value of the corresponding geometric object at x. For instance, Xx stands
for the vector field vector X ∈ D(M) evaluated at x. The interested reader may
consult classical books such as [1,18,23] for further reference. We also assume
smoothness of all the objects we are dealing with.

2. Preliminaries

In this paper we deal with Hamiltonian systems defined on the cotangent bundle
T ∗M of an n-dimensional manifold M . In the particular case of a mechanical
system, M and T ∗M are, respectively, the configuration space and the phase
space of the system. As usual, πM : T ∗M → M (or simply π) stands for the
canonical projection from T ∗M to M , H ∈ C∞(T ∗M) for the Hamiltonian
function and XH ∈ D(M) for the corresponding Hamiltonian vector field. The
canonical symplectic structure on T ∗M is denoted by Ω = ΩM . In canonical
coordinates (qa, pa), a = 1, . . . , n of T ∗M , the symplectic form reads Ω = dqa ∧
dpa.
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We say that the Hamiltonian system (M,H) comes from a Lagrangian system
(M,L) on TM if H = (L∗

L)
−1(EL), where EL ∈ C∞(TM) is the energy function

corresponding to the (hyper-regular) Lagrangian function L ∈ C∞(TM) and
LL : TM → T ∗M is the associated Legendre map.

If X is a vector field on T ∗M , then the map αX : T ∗M → TM defined by

αX(θ) = dθπ(Xθ) ∈ Tπ(θ)M , θ ∈ T ∗M ,

denotes the anti-Legendre map associated with X . In standard coordinates, if
X = Aa(q, p) ∂

∂qa
+ Ba(q, p) ∂

∂pa
, then αX reads αX(qa, pa) = (qa, Aa(q, p)). For

the Hamiltonian vector field X = XH , we write αH instead of αXH
, so that

αH : (q, p) 7→

(

q, v =
∂H

∂p

)

.

It is not difficult to see that if the Hamiltonian system (M,H) comes from a
Lagrangian system (M,L), then αH = L−1

L .

2.1. Distributions and codistributions. Recall that a distribution (resp., codistri-
bution) on a manifold M is a vector subbundle of TM (resp., of T ∗M). The
annihilator of a distribution D on M is the codistribution Ann(D) defined by

Ann(D)x = {θ ∈ T ∗
xM | θ(ξ) = 0, ∀ξ ∈ Dx} , x ∈M .

If D is (n −m)-dimensional, the codistribution Ann(D) is m-dimensional. The
dual bundle D∗ of D is canonically identified with the cotangent bundle T ∗M
modulo Ann(D). We will also denote by D⊥ the orthogonal complement of a
distribution D on T ∗M with respect to the symplectic form Ω, i.e.,

D⊥
y = {ξ ∈ Ty(T

∗M) | Ωy(ξ, η) = 0 , ∀η ∈ Dy} , y ∈ T ∗M .

A vector field X ∈ D(M) belongs to D if Xx ∈ Dx for all x ∈M . Vector fields
belonging to D constitute a C∞(M)-module, denoted by DD(M), which is a
submodule of D(M). In the partial symplectic formalism (see Section 2.3 below),
they are interpreted as “constrained” vector fields. Dually, denote by Λ1

D(M)
the C∞(M)-module of sections of the bundle D∗ and by Λi

D(M) its ith exterior
product. These are interpreted as “constrained” differential i-forms. We denote
the natural restriction map from Λi(M) to Λi

D(M) by rD : Λi(M) → Λi
D(M).

The geometric description of nonholonomic systems in the framework of the
partial symplectic formalism [6] requires a slight “affine” generalization of these
standard notions. Namely, an affine distribution on a manifold M is an affine
subbundle ∆ of TM . This means that the fiber ∆x of ∆ over x ∈M is an affine
subspace in TxM . Therefore, ∆x can be represented in the form ∆x = v +∆0

x

with v ∈ TxM and ∆0
x being the vector subspace of TxM canonically associated

with ∆x. In this representation, the displacement vector v is unique modulo
∆0

x. The union ∪x∈M∆
0
x constitutes a linear distribution of the tangent bundle

TM , denoted by ∆0, canonically associated with ∆. It is not difficult to see
that there always exist a vector field Y ∈ D(M) such that Yx is a displacement
vector for ∆x. Such vector fields are called displacement vector fields of ∆. Ob-
viously, displacement vector fields differ by another vector field belonging to ∆.
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In coordinate terms, an (n − m)-dimensional affine codistribution is described
by a system of linear equations Φi = 0 with respect to the variables pa, i.e.,
Φi(q, p) = Φia(q)pa + Φi0(q), i = 1, . . . ,m.

Similarly, an affine codistribution on M is an affine subbundle C ⊂ T ∗M
of the cotangent bundle. As above, one has C = Υ + C0, where C0 is the
unique codistribution on M canonically associated with C, and Υ ∈ Λ1(M) is a
displacement form. Point-wisely this means that Cx = Υx + C0

x, for all x ∈M .

2.1.1. Linear constraints. In the case of linear constraints, the analogy between
free and constrained systems is particularly clear. In fact, it is natural to in-
terpret an affine distribution (resp., codistribution) on a manifold M as the
“constrained” tangent (resp., cotangent) bundle of M . A linearly constrained
Hamiltonian system is then a triple (M,H,C), with H ∈ C∞(T ∗M) and C an
affine codistribution on M . Similarly, a triple (M,L,∆), with L ∈ C∞(TM)
and ∆ an affine distribution on M , is a linearly constrained Lagrangian system.
The anti-Legendre map allows one to pass from a constrained Hamiltonian sys-
tem to the corresponding Lagrangian system and vice versa. More precisely, if
(M,H,C) is a linearly constrained Hamiltonian system, the map αH is linear
and (M,H) comes from a Lagrangian system (M,L), then the corresponding
linearly constrained Lagrangian system is (M,L,∆), with ∆ = αH(C). To go in
the opposite direction, one must use the Legendre map LL instead of αH .

Throughout the paper, we distinguish the class of mechanical systems subject
to linear constraints because of two reasons. First, classically they have been
intensively studied. Second, one can extract from them the motivations for the
basic constructions which will be discussed below.

2.1.2. Nonlinear constraints. In the Hamiltonian setting, the nonholonomic con-
straints are given by a submanifold (not necessarily a vector subbundle) C ⊂
T ∗M . Similarly, nonholonomic Lagrangian or kinematic constraints are given
by a submanifold C′ ⊂ TM . If the Hamiltonian system (M,H) comes from
a Lagrangian system (M,L), then C = LL(C

′) if and only if C′ = αH(C).
In mechanics, these two approaches correspond to two possible descriptions of
nonholonomic constraints: either as limitations imposed on the momenta or as
limitations imposed on the velocities, respectively. The fact that C (resp., C′)
represents limitations imposed only on the momenta (resp., velocities), but not
on the configurations of the system, implies that the projection π must send
C (resp., C′) surjectively onto M . However, the assumption of “infinitesimal
surjectivity” of π|C is more adequate in this context. This means that π|C is a
submersion, i.e., dy(π|C) : TyC → Tπ(y)M is surjective for all y ∈ C. With this
motivation, we adopt the following definition.

Definition 1. A set of nonholonomic constraints imposed on a Hamiltonian
system (M,H) is a submanifold C ⊂ T ∗M such that π|C is a submersion. The
constrained Hamiltonian system is denoted by (M,H,C).

Since C and αH(C) are, respectively, interpreted as the constrained cotangent
and tangent bundle of the system (M,H,C), we will always assume that they
have equal dimensions. It is worth stressing that the above definition makes also
sense for manifolds with boundary. In such a case, the boundary of T ∗M is
π−1(∂M) and the boundary of C is ∂C = C ∩ π−1(∂M).
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Remark 1. Similarly, nonholonomic Lagrangian constraints are represented by
submanifolds of TM that project regularly onto M .

In what follows, Φi(q, p) = 0, i = 1, ...,m, will denote a set of local equations
defining C. For a point x ∈M , we denote by Cx the fiber of C at x,

Cx = C ∩ T ∗
xM = {y ∈ C | π(y) = x} = (π|C)

−1(x) .

2.1.3. Instantaneous nonholonomic constraints. Let N be a hypersurface in M .
Consider the induced hypersurface T ∗

NM = π−1(N) of T ∗M . Let C ⊂ T ∗M
be a set of nonholonomic constraints on M . Instantaneous constraints may be
thought as limitations on the momenta (resp., velocities) of the system that
are imposed only at the instant when a trajectory passes through a point of
N . Therefore, they are represented by a submanifold C inst of C ∩ T ∗

NM . These
constraints are assumed to be additional to the ones already prescribed by C. In
order to admit an adequate mechanical interpretation, we also assume that the
projection π restricted to C inst is a submersion onto N . From the Lagrangian
point of view, instantaneous kinematic constraints are naturally interpreted as a

submanifold C inst′ of TN . Based on these considerations, we take the following
definition.

Definition 2. Let (M,H,C) be a constrained Hamiltonian system and let N be
a hypersurface of M . A set of instantaneous constraints along N imposed on
(M,H,C) is a submanifold Cinst of C ∩ T ∗

NM such that π restricted to Cinst is
a submersion onto N .

It is worth stressing that, in some cases, a set of instantaneous constraints
alongN additionally verifies the condition C inst ⊂ α−1

H (TN) (here TN is thought
to be naturally embedded into TM). In an inelastic scenario, where the non-
holonomic motion in M is forced to take place in N after the impact, this latter
condition formalizes the parity between the Hamiltonian and Lagrangian ap-
proaches: if the Hamiltonian system in question comes from a Lagrangian one,

then C inst = LL(C
inst′), with C inst′ being the instantaneous kinematic con-

straints.

2.2. Dynamics of Hamiltonian systems. As is well-known, in the absence of con-
straints, the dynamics of the Hamiltonian system (M,H) is given by the Hamil-
tonian vector field XH , whose coordinate description is

dqa

dt
=
∂H

∂pa
,

dpa
dt

= −
∂H

∂qa
, a = 1, . . . , n .

In the presence of constraints, the “free” Hamiltonian vector field XH must be
modified along the constraint manifold C in order to become tangent to C. In
the traditional approach this goal is achieved by adding to XH another vector
field along C, say, R, interpreted as the reaction of constraints. From a purely
geometrical point of view, the choice of a vector field that makes XH tangent to
C is far from being unique. Therefore, a new principle must be invoked to select
the one that merits to be called the “reaction of constraints”. The history of this
problem (see, for instance, [28]) shows that its solution is not straightforward.
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By applying, for instance, the Lagrange-d’Alembert principle (see [4,13,28]), one
gets the following equations of motion

dqa

dt
=
∂H

∂pa
,

dpa
dt

= −
∂H

∂qa
+ λi

∂Φi

∂pa
, Φi(q

a, pa) = 0 ,

a = 1, . . . , n, i = 1, . . . ,m, where the “Lagrange multipliers” λi’s are to be
duly determined. Shortcomings of such an approach are that it is not manifestly
intrinsic and does not reveal clearly the geometric background of the situation.
This is why in our further exposition we shall follow a purely geometric approach,
which does not require any discussion of reactions of constraints. It is based
on the concept of partial symplectic formalism, which also appears to be more
concise from an algorithmic point of view.

2.3. Partial symplectic structures. The following elementary facts from linear
algebra will be most useful. Let V be a vector space, W ⊂ V a subspace and
b : V ×V → R a bilinear form on V . Denote byW⊥

b the b-orthogonal complement
of W ,

W⊥
b = {v ∈ V | b(v, w) = 0, ∀w ∈ W} .

Note that W ∩W⊥
b = 0 if and only if the restriction b |W of b to W is non-

degenerate. The form b is said to be nondegenerate on an affine subspace U of
V , U = p0 +W , p0 ∈ V , if it is nondegenerate on its associated vector space
W . In such a case, U can be uniquely represented in the form U = p1 + W
with p1 ∈ W⊥

b due to the fact that U ∩W⊥
b = {p1}. The vector p1 is called the

canonical displacement of U with respect to b. Consider the associated map

⊤W,b :W −→W ∗, ⊤W,b(w) = b(w, ·) , w ∈W.

In other words, ⊤W,b(w)(w
′) = b(w,w′), for all w′ ∈ W . Obviously, ⊤W,b is an

isomorphism if and only if b|W is nondegenerate.
If b is skew-symmetric and nondegenerate on V , and W is a subspace of V

with codimension one, then the kernel of the restricted form b|W , ker b|W is a 1-
dimensional subspace, i.e., a line in V contained inW . Therefore, ker b|W =W⊥

b .
Let now ∆ be an affine distribution on a manifold Q. A form ω ∈ Λ2(Q)

is called nondegenerate on ∆ if b = ωx is nondegenerate on U = ∆x, for all
x ∈ Q. In such a case, there exists a unique vector field Y ∈ D(Q) such that
Yx is the canonical displacement of ∆x with respect to ωx, for all x ∈ Q. The
vector field Y = Y∆,ω is called the canonical displacement of ∆ with respect
to ω. If ω ∈ Λ2(Q) is nondegenerate on ∆, then one has the isomorphism of
vector bundles

γ = γ∆0,ω : ∆0∗ → ∆0, γx = −(⊤∆0
x,ωx

)−1 : ∆0
x

∗
→ ∆0

x.

Passing to sections of these bundles, one gets the isomorphism ofC∞(Q)-modules
Γ∆0,ω : Λ1

∆0(Q) → D∆0(Q) defined by

Γ = Γ∆0,ω(̺)(x) = γ(̺(x)), ̺ ∈ Λ1
∆0(Q). (1)

Definition 3. A partial symplectic structure on a manifold Q is a pair (∆,ω)
consisting of an affine distribution ∆ on Q and a closed 2-form ω ∈ Λ2(Q) which
is nondegenerate on ∆.
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Given a partial symplectic structure Θ = (∆,ω), we will use the subscript Θ
to denote the associated objects: ∆Θ = ∆,ωΘ = ω, YΘ = Y∆,ω and ∆0

Θ for the
distribution canonically associated to ∆. We also write

rΘ = r∆0
Θ
, DΘ = D∆0

Θ
(Q), Λ1

Θ = Λ1
∆0

Θ
(Q), ΓΘ = Γ∆0

Θ
,ω : Λ1

Θ → DΘ.

In the partial symplectic formalism, the elements of C∞(Q)-modulesDΘ and Λ1
Θ

may be viewed as “constrained” vector fields and differential forms, respectively.
The constrained Hamiltonian vector field associated with a Hamiltonian function
H ∈ C∞(Q) is defined as

XΘ
H = ΓΘ(rΘ(dH)) + YΘ. (2)

The almost-Poisson bracket associated to the partial symplectic structure Θ is

{f, g}Θ = ΓΘ(rΘ(df))(g) = XΘ
f − YΘ(g) , f, g ∈ C∞(Q) .

The wording “almost” here refers to the fact that this bracket does not satisfy
in general the Jacobi identity. However, it is still skew-symmetric and a bi-
derivation.

Definition 4. Let Θ = (∆,ω) be a partial symplectic structure on a manifold
Q. A hypersurface B ⊂ Q is transversal to Θ (or to ∆) if the affine subspaces
TyB and ∆y of TyQ are transversal for any y ∈ C.

If B is transversal to Θ, then TyB ∩∆y is of codimension 1 in ∆y. If Θ is a
partial symplectic structure on C ⊂ T ∗M , we shall extend this terminology by
saying that Θ is transversal to a hypersurface B̃ in T ∗M if B̃ is transversal to
C, so that B = B̃ ∩ C is a hypersurface in C, and B is transversal to Θ.

3. Dynamics of nonholonomic Hamiltonian systems

In this section, we formulate the dynamics of nonholonomic Hamiltonian systems
using the partial symplectic formalism. We show how, under some technical con-
ditions, any Hamiltonian system subject to nonholonomic constraints possesses
an associated partial symplectic structure. Then, we analyze the cases of systems
with instantaneous nonholonomic constraints, and systems exhibiting disconti-
nuities.

3.1. The partial symplectic structure associated with a constrained Hamiltonian
system. Let (M,H,C) be a constrained Hamiltonian system. Our goal is to as-
sociate with it a partial symplectic structure Θ on the “constrained” cotangent
bundle C in such a way the corresponding constrained Hamiltonian field XΘ

H

gives the desired nonholonomic dynamics. With this purpose, consider the con-
strained symplectic form defined by the restriction of the “free” symplectic form
ΩM to C

ωΘ = j∗(ΩM ) , (3)

with j : C →֒ T ∗M the canonical inclusion. The next step is to construct a
suitable affine distribution ∆Θ on C. A natural non-singularity requirement on
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C is asking for the regularity of the map αH |C . This is the reason why we assume
that αH |C is an immersion, i.e., that the differential dyαH is nonsingular for any
y ∈ C. Since αH : T ∗M → TM is fibered, this assumption implies that the map
(αH)x : Cx → TM is an immersion for any x ∈M and vice versa.

Let y ∈ C and x = π(y). Let Πy be the affine subspace of TxM tangent to
αH(Cx) at z = αH(y). Since by the above assumption αH |C is an immersion,
dimΠy = dimCx = n−m. Consider the affine distribution ∆Θ on C defined by

∆Θy = {ξ ∈ TyC | dyπ(ξ) ∈ Πy} ⊂ TyC. (4)

Since dy(π|C) is surjective, the codimension of ∆Θy in TyC is equal to the
codimension of Πy in TxM , i.e., to m. Therefore, dim∆Θy = 2(n−m). It is not
difficult to see now that if the form ωΘ is nondegenerate on the distribution ∆Θ,
then αH |C is an immersion.

Proposition 1. Let S = (M,H,C) be a constrained Hamiltonian system. Then,
αH |C is an immersion if the pair (∆Θ, ωΘ) defined by equations (3) and (4) is
a partial symplectic structure.

The converse, however, is in general not true. Since the partial symplectic
structure associated with S = (M,H,C) is determined by H and C, we will
simply denote it by Θ(H,C) = (∆H,C , ωC).

For most Hamiltonian systems (including those coming from Mechanics), the
anti-Legendre map αH is regular not only when restricted to C, but on the
whole space T ∗M . In this is the case, and the Hamiltonian system comes from
a Lagrangian system, one can indeed show that the condition of ωΘ being non-
degenerate on the distribution ∆Θ is equivalent to the so-called compatibility
condition [3,21]. Therefore, Proposition 1 establishes a link between the classi-
cal partial symplectic formalism introduced in [6] and more recent approaches
as explained, for instance, in [13]. Also note that the class of mechanical systems
automatically verifies the compatibility condition, therefore admitting both for-
mulations. Indeed, for mechanical systems, the conditions in Proposition 1 are
equivalent.

Definition 5. A nonholonomic Hamiltonian system on a manifold M is a con-
strained system (M,H,C), H ∈ C∞(T ∗M), C ⊂ T ∗M such that Θ(H,C) =
(∆H,C , ωC) is a partial symplectic structure.

The dynamics of a nonholonomic Hamiltonian system is given by the con-
strained Hamiltonian vector field XΘ

H with respect to the partial symplectic
structure Θ = Θ(H,C) (cf. equation (2)). This vector field will be denoted by
XH,C . Under regularity of the map αH , XH,C reads in canonical coordinates

XH,C =
∂H

∂pa

∂

∂qa
−

(

∂H

∂qa
+ Cij

(

∂H

∂pb

∂Φj

∂qb
−
∂H

∂qb
∂Φj

∂pb

)

∂Φi

∂pc
Hca

)

∂

∂pa
,

where the matrices (Hab) and (Cij) are defined by

(Hab) =

(

∂2H

∂pa∂pb

)−1

, (Cij) =

(

∂Φi

∂pa
Hab

∂Φj

∂pb

)−1

.
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Observe that the force of reaction of nonholonomic constraints (see Section 2.2)
in the partial symplectic framework is defined a posteriori as the difference
between the constrained and the free Hamiltonian vector fields, XH,C − XH .
Also, note that the almost-Poisson bracket associated with the partial symplectic
structure ΘH,C coincides with the so-called nonholonomic bracket [13,36].

Transversality. It is convenient to adapt the terminology related to the notion
of transversality discussed in Section 2.3 to the context of nonholonomic Hamil-
tonian systems. First, we shall say that a nonholonomic Hamiltonian system
S = (M,H,C) is transversal to a hypersurface B in T ∗M if the underlying
partial symplectic structure Θ(H,C) is transversal to B. Second, if N is a hy-
persurface in M , we shall say that S is transversal to N if S is transversal to
the hypersurface T ∗

NM . The following result follows from the definition of the
partial symplectic structure Θ(H,C).

Proposition 2. A nonholonomic Hamiltonian system (M,H,C) is transversal
to a hypersurface N ⊂ M if and only if Πy ⊂ Tπ(y)M , the affine subspace of
Tπ(y)M tangent to αH(Cπ(y)) at z = αH(y), is transversal to Tπ(y)N ⊂ Tπ(y)M
for all y ∈ C.

3.2. Instantaneous partial symplectic structures. It is intuitive to think that
when a trajectory of a Hamiltonian system (M,H,C) crosses a critical hyper-
surface N in the configuration manifold M , its phase space reduces to T ∗N .
Moreover, it could possibly be subject to additional instantaneous constraints
along N . In the language of our approach, this idea is naturally expressed by
saying that all such critical states constitute a nonholonomic Hamiltonian sys-
tem on N . Since T ∗N is not naturally embedded into T ∗M , a realization of
this idea is not completely straightforward. What one really needs is a partial
symplectic structure on the manifold of instantaneous constraints C inst which,
by definition, is a submanifold of T ∗M

Namely, let C inst be a set of instantaneous constraints along N imposed on
(M,H,C) (cf. Definition 2). Take y ∈ C inst. Let x = π(y) and denote by Π inst

y

the affine subspace of TxN ⊂ TxM tangent to αH(C inst
x ) at αH(y). Consider the

2-form ωΘinst and the affine distribution ∆Θinst on C inst defined by

ωΘinst = j∗(ΩM ) , ∆Θinsty = {ξ ∈ TyC
inst | dyπ(ξ) ∈ Π inst

y } ⊂ TyC
inst, (5)

with j : C inst →֒ T ∗M the canonical inclusion. We then have the following
definition.

Definition 6. Let (M,H,C) be a nonholonomic Hamiltonian system and let Cinst

be a set of instantaneous constraints along a hypersurface N ⊂ M . The pair
(∆Θinst , ωΘinst) defined by (5) is called the instantaneous partial symplectic struc-
ture alongN if ωΘinst is not degenerate on ∆Θinst . If this is the case, Cinst is called
a regular set of instantaneous constraints.

Note that this structure is defined by H , C inst and N . To highlight this fact,
we denote Θinst = Θinst(H,C inst, N). Accordingly, we denote by X(H,Cinst,N) the

constrained Hamiltonian vector field XΘinst

Hinst , with H inst = H |Cinst .
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In general, since C inst ⊂ C by definition, one has that αH |Cinst is an immer-
sion. For mechanical systems, this implies that the 2-form ωΘinst is nondegenerate
on ∆Θinst , and therefore any set of instantaneous constraints is regular.

In what follows, we shall only deal with regular instantaneous nonholonomic
constraints. A natural class of instantaneous structures arises in the following
situation of particular interest. Assume that the nonholonomic Hamiltonian sys-
tem S = (M,H,C) is transversal to N and that αH is regular. Then α−1

H (TN)
is transversal to C and, hence,

C(N,H) = α−1
H (TN) ∩C

is a submanifold of codimension 2 in C. Note that C(N,H) is a set of instantaneous
nonholonomic constraints on S along N . By construction, the codimension of
∆Ny = ∆y∩Ty(C(N,H)) in ∆y is also 2 and Ωy is nondegenerate when restricted
to ∆Ny. Therefore, the affine distribution ∆N and the 2-form Ω|N endow C(N,H)

with a partial symplectic structure, which is an instantaneous partial symplectic
structure along N . We call it the trace of S on N and denote it by S(N,H).
In the special case N = ∂M , we call it the boundary of S, and denote it by
∂S, i.e., ∂S = S(∂M,H). We will denote the constrained Hamiltonian vector field

with respect to the trace (resp., boundary) as Xtr = Xtr
(H,C,N) (resp., X∂ =

X∂
(H,C,∂M)).

3.3. Discontinuous nonholonomic systems. An impulsive behavior of a Hamil-
tonian system occurs when its trajectory “tries” to go across a critical hyper-
surface N in the configuration space M . In such an instant, the system may
be forced to drastically change its constraints, to pass under the control of an-
other Hamiltonian and/or to be eventually subject to additional instantaneous
constraints. Such situations may be interpreted as discontinuities on both the
constraints and the Hamiltonian of the system. Below, we formalize these con-
cepts properly via the notion of cutting-up.

Definition 7. Let N ⊂ M be a hypersurface of M with N ∩ ∂M = ∅. A pair
(M̂, ς), ς : M̂ →M , is called a cutting-up of M along N if

(i) N̂ = ς−1(N) ⊂ ∂M̂ ;

(ii) ς maps M̂ \ N̂ diffeomorphically onto M \N ;

(iii) ς |
N̂

: N̂ → N is a double covering of N .

Note that, by definition, ς is a local diffeomorphism. Cuttings-up for a given
N exist and are equivalent one to each other. If N divides M into two parts,
say,M+ andM−, i.e.,M =M+∪M−,M+∩M− = N , then M̂ may be viewed as
the disjoint union ofM+ andM−, and ς as the map that matches them together
along the common border N . Locally any cutting-up is of this form.

For our purposes, it is important to realize that, if (M̂, ς) is a cutting-up ofM

along N , then (T ∗M̂, T ∗ς) is a cutting-up of T ∗M along the hypersurface T ∗
NM .

Here, T ∗ς denotes the dual of the inverse of the isomorphism dzς : TzM̂ →
Tς(z)M , for all z ∈ M̂ . In the following definition, we introduce the class of
Hamiltonian systems we shall be dealing with throughout this paper.
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Definition 8. Let N ⊂ M be a hypersurface of M with N ∩ ∂M = ∅ and
let (M̂, ς) be a cutting-up of M along N . A nonholonomic Hamiltonian system
discontinuous along N , denoted S = (M,H,C | N), is the direct image with

respect to T ∗ς of a nonholonomic Hamiltonian system (M̂, Ĥ, Ĉ). Such system

is called regular if (M̂, Ĥ, Ĉ) is transversal to N̂ .
A system of instantaneous nonholonomic constraints on S along N is the

direct image with respect to T ∗ς of a set of instantaneous constraints Ĉinst along
N̂ on the associated system Ŝ = (M̂, Ĥ, Ĉ | N̂). The trace of S on N is the

direct image with respect to T ∗ς of the trace of Ŝ along N̂ .

According to Definition 8, Ĥ is a smooth function on T ∗M̂ and Ĉ is a sub-
manifold of T ∗M̂ . Therefore, the direct image of Ĥ along the matching map

T ∗ς : T ∗M̂ → T ∗M may be viewed as a function on T ∗M , which is 1-valued and
smooth outside of T ∗

NM and 2-valued and smooth on T ∗
NM . We will continue

to use the notation H for this function and will refer to it as a discontinuous
Hamiltonian along N . Similarly, the direct image C = T ∗ς(Ĉ) of Ĉ will be re-
ferred to as discontinuous nonholonomic constraints along N . Outside of T ∗

NM ,
C is a “good” smooth submanifold of T ∗M , whose boundary is an immersed
submanifold of T ∗

NM .
The previous discussion becomes particularly simple when N divides M into

two parts, M+ and M−, as mentioned above. In such a case, T ∗
NM also divides

T ∗M into two parts, T ∗M+ and T ∗M−, whose common boundary is T ∗
NM .

Then, a discontinuous Hamiltonian H along N may be naturally seen as a pair
of Hamiltonians, say, H+ and H−, defined on T ∗M+ and T ∗M−, respectively.
Similarly, a set of discontinuous nonholonomic constraints along N is regarded
as a pair of sets of nonholonomic constraints C± ⊂ T ∗M±. Since N always
divides M locally, this description constitutes a local picture of a discontinuous
nonholonomic Hamiltonian system along N .

We will continue to use the notation C inst (resp., Str) for instantaneous non-
holonomic constraints (resp., the trace of S) in the case of discontinuous non-
holonomic systems. As before, one may interpret C inst as a 2-valued system of
instantaneous nonholonomic constraints along N . In the case when N divides
M into two parts, we will distinguish between the two branches using the nota-
tion C inst

± , and write also X(H,Cinst
±

,N) (resp., X
tr
(H,C±,N)).

Remark 2. The impulsive behavior of a Hamiltonian system is not necessarily
related to some discontinuity. This type of phenomena occurs, for instance, each
time that one of its trajectories “strikes” against the boundary ∂M of the config-
uration spaceM . Various kinds of collisions, impacts, etc, in mechanical systems
are described in this way. Otherwise said, impulsive behavior is characteristic of
Hamiltonian systems with boundary. Moreover, systems with boundary may be
viewed as a “limit” case of discontinuous systems by dropping the requirement
N ∩ ∂M = ∅ and choosing N = ∂M , M− = ∅, M+ = M . This allows a unified
approach to both situations.

4. The Transition Principle

In this section we discuss the formulation of the Transition Principle for sys-
tems subject to nonholonomic constraints. We first introduce the notions of
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focusing points, constrained characteristics, and in, out and decisive points. The
Transition Principle builds on these elements to prescribe the behavior of the
Hamiltonian system when one or more of its ingredients undergoes a drastic
change.

4.1. Focusing points. The following simple linear result will be key for the sub-
sequent discussion.

Lemma 1. Let y ∈ T ∗M , and letW be an affine subspace in Ty(T
∗M) such that

Ωy is nondegenerate on W (hence, dimW = 2l for certain l) and dim dyπ(W ) =

l. Denote by W 0 ⊂ Ty(T
∗M) and dyπ(W )

0
= dyπ(W

0) ⊂ Tπ(y)M the linear
subspaces associated with the affine spaces W and dyπ(W ), respectively. Then

the affine subspaces W • = y +Ann(dyπ(W )
0
) and W• = y +W 0 ∩ Ty(T ∗

π(y)M)

in T ∗
π(y)M passing through y are transversal.

Proof. Since, by hypothesis, dim dyπ(W ) = l, one has

dimW 0 ∩ Ty(T
∗
π(y)M) = l and dim dyπ(W )0 = l .

Now, the dimension of Ann(dyπ(W )0) ⊂ T ∗
π(y)M is n − l. Moreover, W 0 ∩

Ty(T
∗
π(y)M) is transversal to Ann(dyπ(W )

0
) if one identifies the spaces T ∗

π(y)M

and Ty(T
∗
π(y)M). The result now follows. ⊓⊔

Consider now a nonholonomic Hamiltonian system (M,H,C). Let y ∈ C.
Denote by ∆ = ∆(H,C) be the affine distribution of the corresponding partial
symplectic structure Θ(H,C) (cf. Section 3.1). By Definition 5, the affine sub-
spaceW = ∆y satisfies the assumptions of Lemma 1 onW (observe that dyπ(W )
is preciselyΠy in equation (4)). Therefore, the subspaceW • = ∆•

y is well-defined
and we put

Ky = Ky(H,C) = ∆•
y ⊂ T ∗

π(y)M .

Moreover, it is not difficult to see that the subspace W• = (∆y)• is identical to
TyCπ(y). This shows that Ky is transversal to C at y, and that dimKy = m.
The crown of the nonholonomic Hamiltonian system (M,H,C) is the map

κ = κH,C : C −→ Am(T ∗M) , y 7→ Ky ,

where Ak(T
∗M) denotes the manifold whose elements are k-dimensional affine

submanifolds contained in the fibers of the cotangent bundle T ∗M . One can see
that the graph of the crown κ,

Graph(κ) = {(y, v) ∈ C × T ∗M | v ∈ Ky}

is a 2n-dimensional smooth submanifold of C × T ∗M . Note that Graph(κ) is a
fiber bundle over C with projection

p = p(H,C) : Graph(κ) −→ C , (y, v) 7→ y .

The fiber over y of this bundle is precisely Ky. Since y ∈ Ky, the map

σ : C −→ Graph(κ) , y 7→ (y, y) ,
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is a section of p(H,C). Since the fibers of p(H,C) are affine spaces, the bundle
Graph(κ) → C has a natural vector bundle structure whose zero section is σ.
Moreover, this vector bundle is canonically isomorphic to the normal bundle of
C in T ∗M . This is due to the fact that, for any y ∈ C, the fiber Ky is transversal
to C at y. The same argument also guarantees that the map

Ξ = Ξ(H,C) : Graph(κ) −→ T ∗M , (y, v) 7→ v ,

induces a diffeomorphism of a neighborhood of the “zero” section σ(C) in Graph(κ)
onto its image.

Definition 9. Let (M,H,C) be a nonholonomic Hamiltonian system. Given a
point u ∈ T ∗M , its (H,C)-focusing locus F(H,C)(u) is the set of all points y ∈ C
such that u ∈ Ky. In other words,

F(H,C)(u) = p(H,C)

(

Ξ−1
(H,C)(u)

)

⊂ Cπ(u) .

A point in F(H,C)(u) is called focusing for u.

Standard arguments show that Ξ(H,C) is regular, i.e., of maximal rank 2n
almost everywhere, that is, with the exception of a closed subset without interior
points. Therefore, for a generic point u ∈ T ∗M , the subset Ξ−1

(H,C)(u) is discrete,

and so is F(H,C)(u) as well. Note also that if u ∈ C, then u ∈ F(H,C)(u).

Remark 3. Focusing points can be understood as nonintegrable analogs of the
notion of reducing points considered in [32] in connection with the Transition
Principle for inelastic collisions.

Remark 4. It is worth noticing that the concept of a focusing point makes also
sense in the absence of constraints. Obviously, in this case F(H,C)(u) = {u}.
Therefore there is no need to distinguish between the constrained and non-
constrained cases in the statement of the Transition Principle.

If the constraints are linear, i.e., C = Υ +C0 with C0 a linear codistribution
and Υ ∈ Λ1(M) (the displacement form), then for each y ∈ T ∗M ,

T ∗
π(y)M = Co

π(y) ⊕Ann(dyπ(∆y)) ,

where ∆ = ∆(H,C). Denote the corresponding projectors by P : T ∗
π(y)M → Co

π(y)

and Q : T ∗
π(y)M → Ann(dyπ(∆y)). Given u ∈ T ∗M , one has that z ∈ F(H,C)(u)

if and only if z ∈ C and P(z) = P(u). Since z = P(z) +Q(z) = P(u) +Q(Υy),
one has the following result.

Proposition 3. Let (M,H,C) be a nonholonomic Hamiltonian system with lin-
ear constraints. Then, for u ∈ T ∗

yM , there is a unique focusing point given by
F(H,C)(u) = {P(u) +Q(Υy)}.
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4.2. Instantaneous focusing points. We will also need an instantaneous version
of the notion of a focusing point introduced in the previous section. For this
purpose, it is sufficient to apply the above construction to instantaneous con-
straints instead of to the “usual” ones. Namely, let C inst be a system of regular
instantaneous constraints along N (see Section 2.1.3) and ∆inst = ∆Θinst be the
corresponding affine distribution (see Section 3.2). Following the same reasoning
as above, the affine subspace W = ∆inst

y ⊂ Ty(T
∗M) satisfies the assumptions

of Lemma 1. Therefore, the affine subspace K inst
y = (∆inst)• of Ty(T

∗M) is well-
defined, and we have all the ingredients to define the notion of instantaneous
crown and instantaneous focusing point of a system subject to instantaneous
nonholonomic constraints. For completeness, we state the latter.

Definition 10. Let (M,H,C) be a nonholonomic Hamiltonian system and let
Cinst be a set of instantaneous constraints along a hypersurface N ⊂ M . Given
a point u ∈ T ∗

NM , its (H,Cinst, N)-instantaneous focusing locus F(H,Cinst,N)(u)

is the set of all points y ∈ Cinst such that u ∈ K inst
y . In other words,

F(H,Cinst,N)(u) = p(H,Cinst)

(

Ξ−1
(H,Cinst,N)(u)

)

⊂ Cinst
π(u) .

A point in F(H,Cinst,N)(u) is called instantaneous focusing for u.

As before, if the instantaneous nonholonomic constraints are linear C inst =
Υ inst + C insto, then for each y ∈ T ∗

NM ,

T ∗
π(y)M = Co

π(y) ⊕Ann(dyπ(∆
inst
y )) ,

where ∆inst = ∆(H,Cinst,N). Denoting the corresponding projectors by P inst :

T ∗
π(y)M → C insto

π(y) and Qinst : T ∗
π(y)M → Ann(dyπ(∆

inst
y )), one has the follow-

ing result.

Proposition 4. Let (M,H,C) be a nonholonomic Hamiltonian system and let
Cinst be a set of instantaneous affine constraints along a hypersurface N ⊂ M .
Then, for u ∈ T ∗

yM , there is a unique instantaneous focusing point given by

F(H,Cinst,N)(u) = {P inst(u) +Qinst(Υ inst
y )}.

4.3. Constrained characteristics. Consider then a partial symplectic structure
Θ = (∆,ω) on a manifold C which is transversal to a hypersurface B ⊂ C (cf.
Definition 4). Let ∆0 denote the linear distribution associated with ∆. For each
y ∈ B, consider the linear space V = ∆0

y, the hyperplane W = ∆0
y ∩ TyB of

V and the nondegenerate skew-symmetric form b = ωy|∆0
y
. The characteristic

direction at y ∈ B is defined as

ly = ly(Θ,B) = ker b|W = ker(ωy|∆0
y∩TyB) ⊂ ∆0

y ∩ TyB .

The proof of the following result is straightforward.

Lemma 2. Given a partial symplectic structure Θ = (∆,ω) on a manifold C
and a hypersurface B ⊂ C transversal to it, the distribution y 7→ ly(Θ,B) is
one-dimensional.
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Definition 11. Given a partial symplectic structure Θ = (∆,ω) on C and a
hypersurface B ⊂ C transversal to it, y 7→ ly(Θ,B) is called the characteristic
distribution with respect to (Θ,B), and its integral curves, denoted by ζ, are the
(Θ,B)-characteristics.

We are particularly interested in the case when we have a nonholonomic
Hamiltonian system S = (M,H,C), the partial symplectic structure Θ is ΘH,C ,

N is a hypersurface in M and B̃ = T ∗
NM , B = T ∗

NM ∩ C. We will use
the terminology (S|N)- or (H,C|N)-characteristic as a substitute for (Θ,B)-
characteristic. It should be emphasized that (H,C|N)-characteristics are only
defined when S is transversal to N (see Section 3.1).

In the absence of constraints, i.e., when (C = T ∗M,ω = Ω) is a symplectic
manifold, and ∆ is the trivial distribution y 7→ TyC on C, the characteristic
curves are precisely the characteristics introduced in [6]. We will refer to non-
constrained characteristics and constrained characteristics when it is necessary
to distinguish between the unconstrained and the constrained cases.

Remark 5. Just as non-constrained characteristics play a key role in describing
holonomic elastic collisions, and reflection and refraction phenomena of rays of
light [6,31], the constrained characteristics will be fundamental in describing the
“elastic part” of nonholonomic impulsive phenomena. What is meant by “elastic
part” will become clear in Section 4.5 when describing decisive points.

If the constraintsC are affine, then the (H,C|N)-characteristic passing through
a point y ∈ C, π(y) ∈ N , is described in a particularly simple way. Namely, fol-
lowing Proposition 2, it is not difficult to see that the (H,C|N)-characteristic
passing through y is given by

ζy = y + C0
π(y) ∩ Ann(dyαH(C0) ∩ Tπ(y)N) ,

with C0 being the linear codistribution associated to C. In particular, in the
absence of constraints, C = T ∗M and the characteristics are straight lines in
T ∗
xM parallel to Ann(TxN), x ∈ N .

4.4. In, out and trapping points. Here, we first introduce some concepts con-
cerning the behavior of a vector field in a neighborhood of the boundary of its
supporting manifold. We then discuss the notions in, out and trapping points.

Let Q be a manifold with boundary and X a vector field on Q. A point
y ∈ ∂Q is called a jth order in point for X if there exists a trajectory of X ,
β : [0, a] → Q, a > 0 such that

y = β(0) and β(t) /∈ ∂Q , for 0 < t ≤ a ,

and β is jth order tangent to ∂Q at y. A jth order out point for X is a jth
order in point for −X . In the dynamical context we have in mind, in and out
points of 0th order are the most important. It is easy to see that y ∈ ∂Q is a
0th order in point (resp., out point) for X if the vector Xy is transversal to ∂Q
and directed inside (resp., outside) of Q. A point that lies on a trajectory of X
which is entirely contained in ∂Q is called a trapping point for X .
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Let ∂Qj = ∂Qj(X) denote the subset of all points of ∂Q where X is jth order

tangent to ∂Q, and ∂Qj
> = ∂Qj

>(X) (resp., ∂Qj
< = ∂Qj

<(X)) the set of all jth
order in points (resp., out points) for X . Note that ∂Qj ⊃ ∂Qj+1 and

∂Qj \ (∂Qj
> ∪ ∂Qj

<) ⊂ ∂Qj+1. (6)

In a generic situation, ∂Qj is a submanifold (with singularities) of codimension j

in ∂Q, which is divided by ∂Qj+1 into two parts, ∂Qj
>\∂Qj+1

> and ∂Qj
<\∂Qj+1

< .
An analytical description of the previous discussion is obtained by choosing a
smooth function f on Q with f ≥ 0 and dzf 6= 0, for all z ∈ ∂Q such that
∂Q = {f = 0} (which always exists locally). Then

∂Qj = {z ∈ Q | f(z) = 0, X(f)(z) = 0, . . . , Xj(f)(z) = 0} ,

∂Qj
> \ ∂Qj+1

> = ∂Qj ∩ {z ∈ Q | Xj+1(f)(z) > 0} ,

∂Qj
< \ ∂Qj+1

< = ∂Qj ∩ {z ∈ Q | Xj+1(f)(z) < 0} .

The vector field X is said to be regular with respect to ∂Q when the inclusion
in equation (6) is an equality for all j ≥ 0. This is a generic property of vector
fields. In such a case, the chain of inclusions

∂Q = ∂Q0 ⊃ ∂Q1 ⊃ · · · ⊃ ∂Qj ⊃ · · · ⊃ ∂Qn

is a stratification of ∂Q whose strata are ∂Qj
> \ ∂Qj+1

> and ∂Qj
< \ ∂Qj+1

< . Note
also that the set of trapping points precisely corresponds to ∂Qn.

Consider now a discontinuous nonholonomic Hamiltonian system (M,H,C |

N) and the corresponding cutting-up (M̂, ς). Then we can resort to the previous

discussion with the manifold Q = Ĉ ⊂ T ∗M̂ and the vector field X = X
Ĥ,Ĉ

.

Recall that N̂ ⊂ ∂M̂ and ∂Ĉ = Ĉ ∩ T ∗
∂M̂

M̂ .

Definition 12. Let S = (M,H,C | N) be a discontinuous nonholonomic system

and denote by (M̂, ς) the associated cutting-up. A point y ∈ T ∗
NM is called an

in point (resp., an out point) of S if there exists z ∈ T
N̂
M̂ such that y = ς(z)

and z is an in point (resp., an out point) of X
Ĥ,Ĉ with respect to ∂Ĉ.

By definition, the map T ∗ς restricted to ∂Ĉ is an immersion. A point in T ∗
NM

may turn out to be an in and an out point at the same time. To resolve this
ambiguity, the branch of T ∗ς to which such a point belongs must be taken into
consideration. This distinction is easily described in the case when N divides M
into two parts. In fact, in this case the system (M,H,C | N) may be viewed as a
couple of nonholonomic Hamiltonian systems (M±, H±, C±), with the common
boundary ∂M± = N , and whereH± ∈ C∞(M±) and C± ⊂M± (cf. Section 3.3).
An in (resp., out, or trapping) point of the vector field XH+,C+

with respect to
the boundary ∂C+ is called an plus-in (resp., plus-out, or plus-trapping) point.
Analogous definitions are established for ε = −. In this way, the notions of plus-
in point, minus-in point, etc, introduced in [6] for the unconstrained situation are
generalized to the constrained case. Finally, we observe that N always divides
M locally, and therefore the previous discussion is always valid locally.
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4.5. Decisive points. At this point, we are ready to introduce the key notion of
decisive point corresponding to an out point. The construction of decisive points
depends on two elements: first, the mode (elastic or inelastic) in which the system
passes through the critical state and, second, the continuity and differentiability
properties of the Hamiltonian. Below, we will limit our discussion to the two
most relevant situations, just to avoid not very instructive technicalities arising
in the most general context. The first one is the case when the Hamiltonian is
smooth and only the constraints are discontinuous along the critical hypersur-
face. The second one concerns discontinuous Hamiltonians and not necessarily
discontinuous constraints. It is worth stressing that the first situation can not
be considered as a particular case of the second one, i.e., that the notion of a
decisive point is not “continuous” in this sense. In what follows, ε ∈ {+,−}
and ε̄ stands for the opposite sign to ε. Throughout the section, instantaneous
constraints are assumed to be regular.

4.5.1. Elastic mode: change of constraints. Here, we deal with a discontinuous
nonholonomic system (M,H,C|N), where the Hamiltonian function is smooth,
H ∈ C∞(M).

Definition 13 (Decisive points for smooth Hamiltonians and discontin-
uous constraints). Let (M,H,C|N) be a regular discontinuous nonholonomic
system, with H ∈ C∞(M) and consider a set of instantaneous constraints Cinst

along N . Let y be an ε-out point of the system. A sequence (yi, εi), i = 0, 1, . . . , k,
with yi ∈ C ∩ T ∗

NM is called (y, ε)-admissible if it verifies the following condi-
tions:

(i) (y0, ε0) = (y, ε);
(ii) for all i < k, yi+1 is a focusing point for yi with respect to either Cinst

εi+1
or,

if instantaneous constraints are absent, Cεi+1
;

(iii) yi is an εi-out point for all i < k and yk is either an εk-in point or an
εk-trapping point;

(iv) the sequence of signs {εi} alternates, i.e., εi+1 = ε̄i.

The end point of an (y, ε)-admissible sequence, (yk, εk), is called (y, ε)-decisive
and the constrained Hamiltonian vector field XH,Cεk

is referred to as the vector
field corresponding to it.

Remark 6. The above formal description of decisive points is equivalent to the
following iterative procedure. Take, for instance, a plus-out point y. Then, ac-
cording to Definition 13, all focusing with respect to C inst

ε̄ (resp., to Cε̄) minus-in
and minus-trapping points are decisive. On the other hand, the procedure con-
tinues by restarting from any of the remaining focusing points that are minus-out
points, and so on. In some situations, this process may turn out to be infinite.
At the present time, however, it is not clear whether that kind of phenomena
can occur, say in propagation of singularities or similar processes.

4.5.2. Elastic mode: discontinuous Hamiltonians. In this case, decisive points
are constructed on the basis of an iterative procedure whose single steps are
either of reflective or of refractive type, as described below. Consider a regular
discontinuous nonholonomic system S = (M,H,C|N), which might be subject
to additional instantaneous constraints C inst along N . Let y ∈ C ∩ T ∗

NM be an
ε-out point.
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Reflective step.

1-st move: y ⇒ z, where z is a point in the constrained characteristic ζy(Hε, Cε)
such that Hε(z) = Hε(y).

2-nd move: z ⇒ u, where u is a focusing point for z with respect to either C inst
ε

or, if ε-instantaneous constraints are absent, Cε.

Refractive step.

1-st move: y ⇒ z, where z is a point of the constrained characteristic ζy(Hε, Cε)
and such that Hε̄(z) = Hε(y).

2-nd move: z ⇒ u, where u is a focusing point for z with respect to either C inst
ε̄

or, if ε̄-instantaneous constraints are absent, Cε̄.

With a slight abuse of language, we shall say that (y, ε) is the initial point
of the step and (u, ε) (resp., (u, ε̄)) is the end point of the step if the scenario is
reflective (resp., refractive).

Definition 14 (Decisive points for discontinuous Hamiltonians). Con-
sider a regular discontinuous nonholonomic system (M,H,C|N). Let Cinst be a
set of instantaneous constraints along N . Let y be an ε-out point. A sequence
(yi, εi), i = 0, 1, . . . , k, is called (y, ε)-admissible if

(i) (y0, ε0) = (y, ε);
(ii) (yi, εi) and (yi+1, εi+1) are the initial and the end points of a step, respec-

tively;
(iii) yi is an εi-out point, 0 ≤ i < k, and yk is an εk-in point or an εk-trapping

point.

The end point (yk, εk) of an admissible sequence is called (y, ε)-decisive and the
constrained Hamiltonian vector field XH,Cεk

is referred to as the vector field
corresponding to it.

If the Hamiltonian is discontinuous and the constraints are linear, i.e., C ⊂
T ∗M is a smooth linear submanifold, and the instantaneous constraints are
absent, the previous definition of decisive points becomes much simpler, as the
following result shows.

Proposition 5. Let (M,H,C|N) be a regular discontinuous nonholonomic Hamil-
tonian system with smooth linear constraints. Let y be an ε-out point. The
(y, ε)-decisive points are the in and the trapping points belonging to the in-
tersection of the constrained characteristic ζy passing through y with the set
{z ∈ C | H±(z) = Hε(y)}.

Proof. Let y be an ε-out point and denote by {z1, . . . , zs} (resp, {z1, . . . , zs̄})
the points belonging to the intersection of the constrained characteristic ζy
passing through y with the set {z ∈ C | Hε(z) = Hε(y)} (resp. with {z ∈
C | Hε̄(z) = Hε(y)}). Since the constraints are smooth, then u = z in the 2nd-
move of both a reflective and a refractive step. Now, for any j ∈ {1, . . . , s},
the intersection of the constrained characteristic passing ζzj through zj with
the set {z ∈ C | Hε(z) = Hε(zj)} (resp. with {z ∈ C | Hε̄(z) = Hε(y)}) is
again {z1, . . . , zs} (resp, {z1, . . . , zs̄}). The same observation holds for any zj ,
j ∈ {1, . . . , s}. The result now follows from Definition 14. ⊓⊔
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Remark 7. The introduced terminology remains valid for nonholonomic systems
with boundary (cf. Remark 2). In such a case, one has to formally put

M− = ∅ , M+ =M , N = ∂M , H− = ∞ , H+ = H .

This type of geometric data occurs in describing various collision phenomena.

4.5.3. Inelastic mode: change of constraints. As in the elastic case, we first deal
with the case when the Hamiltonian H is smooth. We treat an inelastic behavior
of the system as the passage under the control of either the instantaneous dis-
continuous nonholonomic system or, if instantaneous constraints are absent, the
discontinuous boundary system. In this and subsequent sections, the following
shorthand notation will be used (cf. Sections 3.2 and 3.3)

C inst,tr
ε = C inst

ε ∩ α−1
Hε

(TN) , X inst,tr
ε = X(Hε,C

inst,tr
ε ,N) ,

Ctr
ε = Cε(N,Hε) , Xtr

ε = Xtr
(Hε,Cε,N) .

We also use this notation when the Hamiltonian H is smooth, i.e., H± = H .

Definition 15 (Decisive points for smooth Hamiltonians and discon-
tinuous constraints). Consider a regular discontinuous nonholonomic system
(M,H,C|N). Let Cinst be a set of instantaneous constraints along N . Let y be
an ε-out point. An (y, ε)-decisive point is a focusing point for y with respect

to either Cinst,tr
ε̄ or, if the instantaneous constraints are absent, Ctr

ε̄ . The con-

strained Hamiltonian vector field X inst,tr
ε̄ , respectively, X tr

ε̄ is referred to as the
corresponding vector field.

4.5.4. Inelastic mode: discontinuous Hamiltonians. As in the elastic case, deci-
sive points are constructed on the basis of reflective or refractive steps, as we
now describe.

Reflected falling step.

1-st move: y ⇒ z, where z is a point of the constrained characteristic ζy(Hε, Cε)
such that Hε(z) = Hε(y).

2-nd move: z ⇒ u, where u is a focusing point for z with respect to either C inst,tr
ε

or, if ε-instantaneous constraints are absent, Ctr
ε .

Refracted falling step.

1-st move: y ⇒ z, where z is a point of the constrained characteristic ζy(Hε, Cε)
such that Hε̄(z) = Hε(y).

2-nd move: z ⇒ u, where u is a focusing point for z with respect to C inst,tr
ε̄ or,

if ε̄-instantaneous constraints are absent, Ctr
ε̄ .

We shall refer to (u, ε) (resp., (u, ε̄)) as a reflected (resp. refracted) falling
point.

Definition 16 (Decisive points for discontinuous Hamiltonians). Con-
sider a regular discontinuous nonholonomic system (M,H,C|N). Let Cinst be
a set of instantaneous constraints along N . Let y be an ε-out point. An (y, ε)-
decisive point is a falling point for y. The vector field X inst,tr

ε (resp., X tr
ε if

Cinst
ε = ∅) is called the vector field corresponding to a reflected falling point.

The vector field X inst,tr
ε̄ (resp., X tr

ε̄ if Cinst
ε̄ = ∅) is called the vector field corre-

sponding to a refracted falling point.
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4.6. Transition Principle. From a physical point of view, the Transition Prin-
ciple formulated below is an explicit description of the discontinuity of a tra-
jectory of a regular nonholonomic Hamiltonian system S that occurs when it
traverses a critical state. Such a discontinuity is interpreted as an impact, col-
lision, reflection, refraction, etc, depending on the physical situation modeled
by the system S. From a mathematical point of view, the Transition Princi-
ple corresponds to the definition of the trajectory of a regular discontinuous
nonholonomic Hamiltonian system.

The elastic or inelastic character of the impulsive motions of an specific phys-
ical system must be taken into account when defining the trajectories. Accord-
ingly, there are two different versions of the Transition Principle that distinguish
between the two situations. Let S = (M,H,C|N) stand for a regular discontin-
uous nonholonomic system and let C inst be eventual instantaneous constraints
imposed on S along N . Let (M̂, ς) be the associated cutting-up of M along N

(cf. Section 3.3). The regular part of a trajectory of the system Ŝ = (M̂, Ĥ, Ĉ) is
the part of the trajectory of the Hamiltonian vector field X

Ĥ,Ĉ that lies outside

∂M̂ . The regular part of a trajectory of S is the image by ς of the regular part
of the corresponding trajectory of Ŝ. At least locally, the regular part may be
viewed as a piece of the trajectory of the vector field XHε,Cε

that lies outside
the hypersurface T ∗

NM .

Transition Principle. Let S = (M,H,C|N) be a regular discontinuous non-
holonomic system and let Cinst be eventual instantaneous constraints on S along
N . If a regular trajectory of the vector field XHε,Cε

, ε = ± reaches the critical hy-
persurface TNM at a point y, it then continues its motion from any (y, ε)-decisive
point according to the chosen mode, elastic or inelastic, under the control of the
corresponding constrained Hamiltonian vector field.

Some features of the Transition Principle are worth mentioning. First of all,
it prescribes a splitting of the trajectory when the number of decisive points is
greater than one. Of course, it is difficult to imagine that a true mechanical
system “goes into pieces” when reaching the critical hypersurface. But it may
perfectly happen when a Hamiltonian system describes the propagation of sin-
gularities in a fields or a continuum media. A classical example one finds in
geometrical optics when a light ray passing from one optic medium to another
splits into reflected and refracted rays (see, for instance, [31]). The trajectory
may also be trapped by the critical hypersurface. This happens when an “impact”
state y possesses no y-decisive points.

5. Mechanical systems

In this section, we particularize the previous discussion to mechanical systems
subject to affine constraints. Let g be a Riemannian metric on M and V ∈
C∞(M), and consider the mechanical system whose kinetic energy and poten-
tial function are T (q, v) = 1

2g(v, v) and V , respectively. The corresponding La-
grangian function is L(q, v) = T (q, v)− V (q) and the Hamiltonian one is

H(q, p) = T̂ (q, p) + V (q) , (7)

where T̂ (q, p) = 1
2G(p, p), and G is the co-metric, i.e., the metric on the cotangent

bundle induced by g. In a local chart qa on M , the local expressions of g and G
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are

g = gabdq
a ⊗ dqb , G = gab

∂

∂qa
⊗

∂

∂qb
.

In the mechanical case, the Legendre transform LL : TM −→ T ∗M is a linear
bundle mapping whose local description is LL(q

a, q̇a) = (qa, gabq̇
b).

Consider an affine distribution C = C0 + Y in T ∗M determining some non-
holonomic constraints on the system (M,H). The linearity of αH = L−1

L implies
that the space αH(C) = αH(C0) + αH(Y ) is a distribution of affine spaces on
M , or otherwise said, that αH(C0) is a linear distribution on M . Throughout
this section, we will often resort to the shorthand notation D = αH(C0) and
Υ = αH(Y ). Now, it is easy to verify that T ∗

qM = C0
q ⊕ Ann(D)q , with associ-

ated projectors

Pq : T ∗
qM −→ C0

q , Qq : T ∗
qM −→ Ann(D)q , q ∈M .

Let µ1 = µ1adq
a, . . . , µm = µmadq

a be 1-forms such that (locally) Ann(D) =
span{µ1, . . . , µm}. Define the local function µi0 :M → R by µi0(q) = −µi(Υ (q)).
Then αH(C) is locally defined by the equations

µia(q)q̇
a + µi0(q) = 0 , 1 ≤ i ≤ m.

Now, consider the matrices

G = (gab) , J = (µia) , B = JG−1J t . (8)

From the discussion after Proposition 1, recall that (∆H,C , ωC) is a partial sym-
plectic structure if and only if αH |C is an immersion, or, equivalently, if the
compatibility condition is verified. Following [11], the latter is equivalent to the
matrix B being invertible. A direct computation give the following local expres-
sion for the projectors P and Q,

P(x) = x−Q(x) , Q(x) = J tB−1JG−1x , x ∈ T ∗M .

Finally, let N ⊂ M be a hypersurface and assume that the nonholonomic sys-
tem S = (M,H,C) is transversal to N . Consider also a set of instantaneous
nonholonomic linear constraints C inst = (C insto, ΥCinst) imposed on S along N .
Note that T ∗

qM = C inst
q

o
⊕Ann(Dinst)q, with associated projectors

P inst
q : T ∗

qM −→ C inst
q

o
, Qinst

q : T ∗
qM −→ Ann(Dinst)q , q ∈ N .

5.1. Focusing points. Since the mechanical system is subject to an affine dis-
tribution of constraints, Proposition 3 implies that for a given u ∈ T ∗M , the
focusing locus is F(H,C)(u) = {P(u)+Q(Υ )}. Regarding the instantaneous focus-

ing points, according to Proposition 4 one has that F(H,Cinst,N)(u) = {P inst(u)+

Qinst(ΥCinst)}.
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5.2. Constrained characteristics. Here we give an explicit description of the char-
acteristic curves. Let N be the critical hypersurface, and assume that (locally)
N = f−1(0), with f ∈ C∞(M) verifying that dqf 6= 0 for all q ∈ N . Consider
the covector field P(df) along N defined as q 7→ P(df)q = Pq(dqf), q ∈ N . The
transversality assumption between C and N implies that P(df)q 6= 0, for all
q ∈ N . Clearly P(df) ∈ C0. In addition, for v ∈ D ∩ TN ,

P(df)(v) = (df −Q(df))(v) = df(v) = 0 ,

and one can conclude that C0 ∩ Ann(D ∩ TN) = span{P(df)}. Therefore, we
have the following result.

Lemma 3. The constrained characteristic of a mechanical system (M,H,C|N)
passing through y ∈ C∩T ∗

NM is given by ζy = y+span{P(dπ(y)f)} ⊂ C∩T ∗
NM .

Note that in the absence of constraints one recovers the standard non-constrained
characteristic ζy = y + span{dπ(y)f} passing through y.

5.3. Decisive points: elastic mode.

5.3.1. Change of constraints. Let C± ⊂ T ∗M be two affine constraint subman-
ifolds. Denote by P± and Q± the projectors corresponding to C± and the co-
metric G. Let y ∈ Cε ∩ T ∗

NM be a ε-out point, ε ∈ {+,−}. Then, according
to Definition 13, an y-admissible sequence, (yi, εi), i = 0, 1, . . . , k, is necessarily
of the form yi+1 = Pεi+1

(yi) + Qεi+1
(ΥCεi+1

). If instantaneous constraints are

present, then one has to use the projectors P inst
ε and Qinst

ε instead of Pε and Qε,
respectively.

Remark 8. Mechanical systems subject to generalized constraints are also treated
in [14] in a somehow different context. The approach taken there makes use of
generalized (i.e. non-constant rank) codistributions defining the nonholonomic
constraints and a generalized version of Newton’s second law. Under appropriate
regularity conditions, it can be seen that the ‘post-impact’ point in [14] is a
decisive point of the Hamiltonian system according to Definition 13.

5.3.2. Discontinuous Hamiltonian systems. Let C± ⊂ T ∗M be two affine con-
straint submanifolds. Let g± be a Riemannian metric onM± and V± ∈ C∞(M±)
such that

H±(q, p) = T̂±(q, p) + V±(q) , T̂±(q, p) =
1

2
G±(p, p) . (9)

For simplicity, we only treat the case V± = V |M±
, V ∈ C∞(M). We denote

by P± and Q± the projectors corresponding to C± and the co-metric G±. Ad-
ditionally, let C inst

± ⊂ T ∗
NM be affine constraint submanifolds corresponding to

some instantaneous constraints imposed along N . Denote by P inst
± and Qinst

± the

projectors corresponding to C inst
± and the co-metric G±.

Let y ∈ Cε∩T ∗
NM be an ε-out point. Following Definition 14, we first describe

the reflective and refractive steps with initial point (y, ε). According to Lemma 3,
we have to look for points of the form

x = y + cPε(dqf) , q = π(y) ,

for some c, which in addition belong to the same H-energy level as y.
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Reflective step. Concerning the 1-st move, note that y+ cPε(dqf) and y belong

to T ∗
qM . Then, the equality Hε(y + cPε(dqf)) = Hε(y) implies that T̂ε(y +

cPε(dqf)) = T̂ε(y). Now,

T̂ε(y + cPε(dqf)) =

T̂ε(y) + cGε(y,Pε(dqf)) +
c2

2
Gε(Pε(dqf),Pε(dqf)) ,

and, therefore, we have

c
(

Gε(y,Pε(dqf)) +
c

2
Gε(Pε(dqf),Pε(dqf))

)

= 0 ,

with solutions

cε,1 = 0 , cε,2 = −
2Gε(y,Pε(dqf))

Gε(Pε(dqf),Pε(dqf))
. (10)

An important property of these points is contained in the following lemma.

Lemma 4. Let y ∈ Cε ∩ T ∗
NM and cε,2 be the constant given by (10). Then,

Gε(y, dqf) = Gε(Pε(y) +Qε(Υq), dqf) ,

Gε(y + cε,2Pε(dqf), dqf) = Gε(−Pε(y) +Qε(Υq), dqf) .

Proof. The first statement follows by noting that if y ∈ Cq, then y = Pε(y) +
Qε(Υq). For the second one, notice that

Gε(y + cε,2Pε(dqf), dqf) = Gε(y, dqf) + cε,2Gε(Pε(dqf),Pε(dqf))

= Gε(y, dqf − 2Pε(dqf)) = −Gε(Pε(y),Pε(dqf)) + Gε(Qε(y), dqf)

= Gε(−Pε(y) +Qε(Υq), dqf) ,

which gives the desired result. ⊓⊔

The 2-nd move simply consists of determining the focusing points for points (10)
with respect to C inst

ε or, if ε-instantaneous constraints are absent, with respect
to Cε. This is done in terms of the corresponding projectors, exactly as explained
in Section 5.1 above.

Refractive step. Concerning the 1-st move, the equality Hε̄(y + cPε(dqf)) =

Hε(y) implies T̂ε̄(y + cPε(dqf)) = T̂ε(y). Now,

T̂ε̄(y + cPε(dqf)) = T̂ε̄(y) + cGε̄(y,Pε(dqf)) +
c2

2
Gε̄(Pε(dqf),Pε(dqf)) .

Therefore, one has

c
(

Gε̄(y,Pε(dqf)) +
c

2
Gε̄(Pε(dqf),Pε(dqf))

)

+ T̂ε̄(y)− T̂ε(y) = 0 ,
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with solutions i = 1, 2,

cε̄,i =
1

Gε̄(Pε(dqf)),Pε(dqf))

(

− Gε̄(y,Pε(dqf))±

√

Gε̄(y,Pε(dqf))2 − 2Gε̄(Pε(dqf),Pε(dqf))(T̂ε̄(y)− T̂ε(y))
)

. (11)

As before, the 2-nd move simply consists of computing the focusing points
for the solutions (11) with regards to C inst

ε̄ or, if ε̄-instantaneous constraints are
absent, Cε̄. This is done in terms of the corresponding projectors according to
Section 5.1.

Discontinuous Hamiltonian systems with smooth constraints. In this situation,
there is a single constraint submanifold C, and a discontinuous Hamiltonian H±

on T ∗M . Denote by P± and Q± the projectors corresponding to C and the co-
metrics G±, respectively. According to Proposition 5, the decisive points for a
given ε-out point y ∈ C ∩T ∗

NM are simply the in and trapping points belonging
to the intersection of the constrained characteristic ζy passing through y with
the set {z ∈ C | H±(z) = Hε(y)}. Therefore, as candidate ε-decisive points
we have the solution corresponding to cε,2 in (10), and as candidate ε̄-decisive
points we have the solutions corresponding to cε̄,i, i = 1, 2, in (11).

Proposition 6. Let y ∈ Cε∩T ∗
NM be a ε-out point. If the constraints are linear,

C = C0, then the solution corresponding to cε,2 in (10) is a ε-decisive point for
y.

Proof. The basic observation is the second order character of the dynamics, both
in the presence and in the absence of nonholonomic constraints. This implies
that for any y ∈ T ∗M and any distribution of affine constraints C, we have
XH(f)(y) = XH,C(f)(y), since f is only a function of the configurations. Note
that if H is of mechanical type, then XH(f)(x) = G(x, dqf), for any x ∈ T ∗

qM .
Now, from Lemma 4, taking H = Hε, one gets

Gε(y + c2Pε(dqf), dqf) = −Gε(y, dqf) .

Since y is a ε-out point, then Gε(y, dqf) 6= 0. Consequently,XH+
(f)(y+c2P+(dqf)) =

−G+(dqf, y) has the opposite sign, and hence it is an in point. ⊓⊔

5.4. Decisive points: inelastic mode.

5.4.1. Change of constraints. Let C± ⊂ T ∗M be two affine constraint subman-
ifolds and let C inst be a set of instantaneous affine constraints. We denote by
P inst
± and Qinst

± the projectors corresponding to C inst
± and the co-metric G. If

the instantaneous constraints are absent, denote by P± and Q± the projec-
tors corresponding to Ctr

± and the co-metric G. Let y ∈ Cε ∩ T ∗
NM be a ε-

out point, ε ∈ {+,−}. Then, according to Definition 15, the unique y-decisive
point is P inst

ε̄ (y) + Qinst
ε̄ (ΥCε̄

) (or, if there are no instantaneous constraints,
Pε̄(y) +Qε̄(ΥCε̄

)).
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5.4.2. Discontinuous Hamiltonian systems. As in Section 5.3.2, let C± ⊂ T ∗M
be two affine constraint submanifolds, g± a Riemannian metric on M± and
V± ∈ C∞(M±) such that equation (9) is verified. For simplicity, we only treat
the case V± = V |M±

, V ∈ C∞(M). We denote by P± and Q± the projectors

corresponding to C± and the co-metric G±. Additionally, let C
inst
± ⊂ T ∗

NM be
affine constraint submanifolds corresponding to some instantaneous constraints
imposed along N . We denote by P inst,tr

ε and Qinst,tr
ε the projectors associated

with the submanifold C inst,tr
ε and the co-metric Gε. In the absence of instanta-

neous constraints, we denote by Ptr
ε and Qtr

ε the projectors associated with the
submanifold Ctr

ε and the co-metric Gε. In case N = ∂M , we denote the latter
with the superscript “∂” instead of “tr”.

Let y ∈ Cε ∩ T
∗
NM be an ε-out point. The points associated with y resulting

from the 1-st moves in a reflected or a refracted falling step are given, respec-
tively, by equations (10) and (11). As before, the 2-nd move simply consists
of computing the focusing points for these solutions with respect to C inst,tr

ε for

a reflected falling step (respectively, C inst,tr
ε̄ for a refracted falling step) or, if

the instantaneous constraints are absent, Ctr
ε (respectively, Ctr

ε̄ ). This is done
in terms of the corresponding projectors according to Section 5.1. According to
Definition 16, this gives all the y-decisive points.

Proposition 7. Let y ∈ Cε ∩ T ∗
NM be an ε-out point and assume that the con-

straints are linear. For N = ∂M , the unique y-reflected falling point is given
by P inst,∂

ε (y) (or, in the absence of ε-instantaneous nonholonomic constraints,
P∂
ε (y)).

Proof. From the previous discussion, we know that the points in the constrained
characteristic passing through y with the same Hε-energy level are y itself and
y+ cε,2Pε(dqf), q = π(y) (cf. equation (10)). Now, note that dqf belongs to the

Gε-orthogonal complement of α−1
Hε

(T (∂M)), i.e.

Gε(dqf, β) = dqf(αHε
(β)) = 0 , β ∈ α−1

Hε
(T (∂M)) .

Using the equality C∂
ε = Cε ∩α

−1
Hε

(T (∂M)), we have that dqf ∈ α−1
Hε

(T (∂M))⊥ε

implies P inst,∂
ε (Pε(dqf)) = 0 and P∂

ε (Pε(dqf)) = 0. The result is then a conse-
quence of Definition 16. ⊓⊔

5.5. Energy behavior. In this section, we discuss the consequences regarding the
energy behavior of the system that result from the application of the Transition
Principle.

Lemma 5. Given y ∈ T ∗
NM , let x = P(y) +Q(Υq), q = π(y), be the associated

y-focusing point with respect to a submanifold C ⊂ T ∗M . Then

T̂ (x) ≤ T̂ (y) + T̂ (Q(Υq),Q(Υq)) ,

and the equality holds if and only if y belongs to C0.
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Proof. Note that

G(P(y) +Q(Υq),P(y) +Q(Υq)) = G(P(y),P(y)) + G(Q(Υq),Q(Υq)))

≤ G(P(y),P(y)) + G(Q(y),Q(y)) + G(Q(Υq),Q(Υq))

= G(y, y) + G(Q(Υq),Q(Υq)) ,

where we have used that G is positive-definite, and the fact that C0 and Ann(D)
are orthogonal spaces with respect to the co-metric G. If the equality holds, then
G(Q(y),Q(y)) = 0, which is equivalent to y ∈ C0. ⊓⊔

As a consequence of this simple lemma we can conclude that in the case of
linear constraints the Transition Principle always implies a loss of energy. This is
a suitable generalization to constrained systems of the classical Carnot theorem
for systems subject to impulsive forces [33].

Theorem 1 (Carnot’s theorem for generalized linear constraints). Sup-
pose that the Hamiltonian system is subject to nonholonomic constraints given
by a linear distribution. Then the Transition Principle implies always a loss of
energy as the result of an “impact”.

Proof. Under linear constraints, note that Υ = 0. From Lemma 5, we get T̂ (x) ≤

T̂ (y) with F(H,C)(y) = {x}. The result now follows from the formulation of the
Transition Principle and the definitions of decisive points in Section 4.5 (cf.
Definitions 13-16). ⊓⊔

Under linear constraints, the trajectory of the system maintains the same
energy level after the application of the Transition Principle in the following
cases:

(i) when the decisive points are determined according to Definitions 13 and 15
and the impact point y ∈ T ∗

NM belongs to C+ ∩ C−; and
(ii) when the constraints are smooth, and therefore the decisive points are deter-

mined according to Proposition 5.

If the decisive points are determined according to Definitions 14 and 16, then
nothing can be said in general. The refractive steps will typically imply an energy
decrease.

Remark 9. This type of energy arguments also allows to discard as follows the
possibility of chattering when computing the y-decisive points if the constraints
change (see Definition 13 and Remark 6 above). Let N = {y ∈ T ∗M | f(y) = 0}.
Assume there is an infinite y-admissible sequence (yi, εi), i = 0, . . . ,∞. For each
i, we have that yi 6= yi+1, since otherwise

X l
H,Cεi+1

(f)(yi+1) = X l
H(f)(yi+1) = X l

H,Cεi
(f)(yi) , for all l ,

which together with the fact that yi is a εi-out point, implies that yi+1 is a
εi+1-in point. The latter contradicts the definition of admissible sequence. As a
consequence of Lemma 5, we then have

T̂ (y0) > T̂ (y1) > T̂ (y2) > · · · > T̂ (yi) ≥ 0 .

The limit of this sequence is zero, which implies that the y-decisive point corre-
sponding to such a sequence would be 0, that is, the trajectory would get ‘stuck’
when reaching N .
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5.6. Integrable constraints. The integrability of the constraints simplifies the ap-
plication of the Transition Principle. Consider, for instance, the situation when
the mechanical system is unconstrained on M− and is subject to some gener-
alized linear constraints C = C0 on M+ that turn out to be holonomic, i.e.,
αH(C0) = D is integrable. Denote by {Sα}, α being an m-dimensional parame-
ter, the foliation of M+ induced by D. Locally this foliation is described by m
functions fi ∈ C∞(M) such that

q ∈ Sα ⇐⇒ fi(q) = αi , 1 ≤ i ≤ m.

A similar situation has been treated in [32] in the context of totally inelastic
collisions (note, however, that in [32] the integrable distribution is defined only
on N , whereas here D is defined on M+). The integrable constraints imposed by
D can be interpreted as an abrupt reduction of the phase space of the mechanical
system.

By definition, one has that Ann(D) = span{df1, . . . , dfm}. The matrix J in (8)
is then given by J = (∂fi/∂q

a) and the projector P is P(x) = (1−J tB−1JG−1)x.
Let y ∈ C− ∩ T ∗

NM be the impact state of a trajectory q(t) coming from M−.
From the discussion in Section 5.3, we obtain that the unique focusing point
associated to y is x = (1−J tB−1JG−1)y. The trajectory will continue its motion
in M+, M− or N depending on the in/out/trapping character of the focusing
point x. If it evolves in M+ (more precisely, in Sα ⊂ M+ with α such that
x ∈ Sα), we call it the ‘refraction’ of the original trajectory. If it evolves in M−,
we call it the ‘reflection’ of the original trajectory.

6. Examples

In this section we consider four examples to illustrate the theory exposed above.
They all present the example of a rolling sphere considered in various constrained
situations. The first one is taken from [14] and is treated here in order to provide
a further comparison with previous approaches. The second one combines the
presence of smooth nonholonomic constraints with discontinuous Hamiltonians
and instantaneous constraints acting on the system along a hypersurface. The
third one consists of a ball rolling on a rotating surface whose angular velocity
is suddenly changed to a different value, and this is modeled via a discontinuous
affine distribution of constraints. Finally, the fourth one presents a two-wheeled
system with a rod of variable length and illustrates the application of the Tran-
sition Principle in both the elastic and the inelastic modes.

6.1. A rolling sphere. Consider a homogeneous sphere rolling on a plane. Assume
it has unit mass (m = 1) and let k2 be its inertia about any axis. Let (x, y) denote
the position of the center of the sphere and let (ϕ, θ, ψ) denote the Eulerian
angles. The configuration space is therefore Q = R

2 × SO(3). Assume that the
plane is smooth if x < 0 and absolutely rough if x > 0 (see Figure 1). On the
smooth half-plane, the motion of the sphere is assumed free, that is, the sphere
can slip. On the rough half-plane, the sphere should roll without slipping due to
the constraints imposed by the roughness. We are interested in determining the
eventual sudden changes in the trajectories of the sphere when it reaches the
line separating the smooth and the rough half-planes.
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x

y

smooth rough

x = 0

ω

Fig. 1. The rolling sphere on a ‘special’ surface.

The kinetic energy of the sphere is

T =
1

2

(

ẋ2 + ẏ2 + k2(ω2
x + ω2

y + ω2
z)
)

, (12)

where ωx, ωy and ωz are the angular velocities with respect to the inertial frame,
given by

ωx = θ̇ cosψ + ϕ̇ sin θ sinψ , ωy = θ̇ sinψ − ϕ̇ sin θ cosψ , ωz = ϕ̇ cos θ + ψ̇ .

The condition of rolling without sliding of the sphere when x > 0 implies that
the point of contact of the sphere and the plane has zero velocity

φ1 = ẋ− rωy = 0 , φ2 = ẏ + rωx = 0 ,

where r is the radius of the sphere.
Following the classical procedure [28], we introduce quasi-coordinates ‘q1’, ‘q2’

and ‘q3’ such that q̇1’= ωx, ‘q̇
2’= ωy and ‘q̇3’= ωz. The latter merely have a sym-

bolic meaning in the sense that in the present example, for instance, the partial
derivative operators ∂/∂qi should be interpreted as linear combinations of the
partial derivatives with respect to Euler’s angles. Also to the differential forms
dqi one should attach the appropriate meaning, i.e. they do not represent exact
differentials but, instead, we should read them as dq1 = cosψ dθ+sin θ sinψ dϕ,
etc.

The singular hypersurface N is defined by N = {x = 0}. In this case, the
constraints are linear and the nonholonomic distribution αH(C) = D on M+ is
given by

D(x,y,q1,q2,q3) = span

{

r
∂

∂x
+

∂

∂q2
,−r

∂

∂y
+

∂

∂q1
,
∂

∂q3

}

.

Here we are dealing with a single distribution which constrains the motion
on M+.

In the following we compute the decisive points for this example. Let λ ∈
C−∩T ∗M be a minus-out point. A direct computation shows that the expression
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of the projector P : T ∗M → C in local coordinates is

P =















r2

r2+k2 0 0 r
r2+k2 0

0 r2

r2+k2 − r
r2+k2 0 0

0 −rk2

r2+k2
k2

r2+k2 0 0
rk2

r2+k2 0 0 k2

r2+k2 0
0 0 0 0 1















. (13)

Therefore, the single focusing point for λ ∈ T ∗
NM is given by x = P(λ) ∈

C ∩T ∗
NM . If we denote λ = (x0, y0, q

1
0 , q

2
0 , q

3
0 , (px)0, (py)0, (p1)0, (p2)0, (p3)0) and

x = (x, y, q1, q2, q3, px, py, p1, p2, p3), we get

px =
r2(px)0 + r(p2)0

r2 + k2
,

py =
r2(py)0 − r(p1)0

r2 + k2
,

p1 =
−rk2(py)0 + k2(p1)0

r2 + k2
,

p2 =
rk2(px)0 + k2(p2)0

r2 + k2
,

p3 = (p3)0 .

Note also that the focusing point with respect to C− = T ∗M associated with x
is x itself. Therefore, if x is a plus-out point, the only admissible sequence for λ
is {(λ,−), (x,+), (x,−)}. If x is either a plus-in or a plus-trapping point, then
the only admissible sequence for λ is {(λ,−), (x,+)}. The set of plus-trapping
points for the dynamics XH,C+

is ∂(T ∗M)n = {µ ∈ T ∗M | x = 0 , px = 0}.
Consequently, the trajectory is refracted, i.e., the sphere follows its motion on
M+ under the dynamics XH,C+

(rolling without slipping) if px ≥ 0. Otherwise
(i.e., if px < 0), the trajectory is reflected by the “roughness” and continues in
M− under the dynamics XH starting from x.

6.2. A rolling sphere hitting a wall. This is a classical example [12,17,28] that we
treat here for the sake of completeness. Consider again a homogeneous sphere
of radius r and unit mass. Assume that the sphere rolls without sliding on a
horizontal table, and that at a certain instant of time it hits a wall determined by
the plane x = d > 0 (cf. Figure 2). When this happens, the following constraint
is instantaneously imposed on the system,

ψ = ẏ − rωz = 0 .

Therefore, we are in the situation explained in Remark 7. The configuration
space of the system is M = M+ = {x < d}, with the boundary N = {x = d},
and the linear constraint submanifold C = C+ ⊂ T ∗M is given by αH(C) = D,

D = span

{

r
∂

∂x
+

∂

∂q2
,−r

∂

∂y
+

∂

∂q1
,
∂

∂q3

}

.

The expression for the projector P : T ∗M → C is given by equation (13). The
submanifold giving the instantaneous constraints along N is

C inst = {λ ∈ C | ψ(αH(λ)) = 0} .
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x

y

!

x = d

Fig. 2. A rolling sphere that eventually hits a wall.

The projector P inst = P inst
+ : T ∗M → C inst is

P inst(λ) =
rλx + λ2
r2 + k2

(

rdx + k2dq2
)

+
−rλy + λ1 − λ3

r2 + 2k2
(

−rdy + k2dq1 − k2dq3
)

. (14)

Let λ = (x0, y0, q
1
0 , q

2
0 , q

3
0 , (px)0, (py)0, (p1)0, (p2)0, (p3)0) ∈ C+∩T ∗

NM ⊂ T ∗M
be a plus-out point, i.e., G(λ, dx) < 0. We first consider an elastic impact. Since
H− = ∞, we only compute the outcome of a reflective step. According to (10),
the points in the constrained characteristic passing through λ within the same
H+-energy level are

λ and λ+ c+,2P(dx) , with c+,2 = −2
r2 + k2

r2
(px)0 .

The associated focusing points are given by

P inst(λ) and P inst(λ) + c+,2P
inst(P(dx)) . (15)

Note that P inst(P(dx)) = P inst(dx) = P(dx), and therefore the points in (15) be-
long to the same constrained characteristic and to the sameH+-energy level. De-
noting the coordinates of the point P inst(λ) by (x, y, q1, q2, q3, px, py, p1, p2, p3),
we get

px = (px)0

py =
(r2 + k2)(py)0 + r(p3)0

r2 + 2k2
,

p1 = −k2
(r2 + k2)(py)0 + r(p3)0

r(r2 + 2k2)

p2 = k2
(px)0
r

p3 = k2
(r2 + k2)(py)0 + r(p3)0

r(r2 + 2k2)
,

Now, notice that P inst(λ) is a plus-out point, because G(P inst(λ), dx) =
G(λ, dx) < 0. Therefore, following Proposition 6, we conclude that the sequence
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{(λ,+),P inst(λ)+c+,2P inst(dx),+)} is λ-admissible, and P inst(λ)+c+,2P inst(dx)
is a decisive point. The other possible λ-admissible sequence corresponds to

{(λ,+),P inst(λ),P inst(λ) + c+,2P
inst(dx),+)} ,

but renders the same decisive point.
In the case of an inelastic impact, Proposition 7 yields that the unique λ-

decisive point is P inst,∂(λ). After the impact, the ball continues its motion along

the wall under the dynamics specified by the vector field X inst,∂
+ .

6.3. A rolling sphere on a rotating table. Consider again a homogeneous sphere
of radius r and unit mass. Assume that the sphere rolls without sliding on a
horizontal table which is rotating with certain constant angular velocity about
a vertical axis through one of its points (see Figure 3). Let Ω− and Ω+ be two
angular velocities. Here we consider the following situation: each time the sphere
reaches the hypersurface x = y, an impulsive force is exerted on the table to put
it spinning with a different angular velocity. That is, if the angular velocity of
the table was Ω−, the force applied on its rotation axis changes it to Ω+ and
vice versa. We assume that Ω− < Ω+. This can be modeled as thinking of a
system which is subject to two different affine constraint distributions. In order
for this model to be consistent, we also assume that the surface of the table is
rough enough so that sphere is rolling without slipping at all times.

x

y

ω

Ωε

Fig. 3. A rolling sphere on a rotating table.

The Lagrangian is again given by equation (12). The nonholonomic con-
straints are now affine in the velocities,

ẋ− rωy = −Ωy, ẏ + rωx = Ωx .

The constraint space αH(C) is then described by

αH(C) = D + Y = span

{

r
∂

∂x
+

∂

∂q2
,−r

∂

∂y
+

∂

∂q1
,
∂

∂q3

}

+ Y ,

where Y is the vector field defined by

Y = −Ωy
∂

∂x
+Ωx

∂

∂y
.
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Note that the projection of Υ = LL(Y ) to Ann(D) is given by

Q(Υ ) =
Ωk2

r2 + k2
(

−ydx+ xdy − xrdq1 − yrdq2
)

.

Following the discussion for the case of affine constraints, given y ∈ T ∗M , the
focusing point with respect to C± is given by

x = P(y) +Q(Υ±) ,

where P is the projector in (13).
Assume that the sphere is rolling on the hyperplane M− = {x < y} and that

the constant angular velocity of the table is Ω−. Consider the case when the
sphere “hits” the hypersurface N = {x = y} with the impact state

λ = (x0, y0, q
1
0 , q

2
0 , q

3
0 , (px)0, (py)0, (p1)0, (p2)0, (p3)0) ∈ C− = Co

− + Υ− .

Denote the coordinates of the associated focusing point by

x = P(λ) +Q(Υ+) = (x, y, q1, q2, q3, px, py, p1, p2, p3) .

Then

G(df, x) = px − py = (px)0 − (py)0 +
k2

r2 + k2
(x0 + y0)(Ω− −Ω+) . (16)

Given that λ is an minus-out point, we have that G(df, λ) = (px)0 − (py)0 > 0.
If x0 = y0 < 0, then the second term in (16) is also positive, and {(λ,−), (x,+)}
is the unique admissible sequence for λ. In this case, x is the λ-decisive point.
On the contrary, for certain values of x0 = y0 > 0, it might happen that G(df, x)
is negative, i.e., that x is a plus-out point. Now, note that the focusing point
associated with x is λ itself, since

P(x) +Q(Υ−) = P(P(λ)) +Q(Υ−) = P(λ) +Q(Υ−) = λ .

As a consequence, in this case there would not be any λ-decisive point. This
problem stems from the fact the modeling of this example as a system subject
to affine constraints does not take into account that the jump in the angular
velocity of the table takes place no matter what. Therefore, after the impact,
we should really regard C+ as the new set of affine constraints acting on the
whole configuration manifold. With this interpretation, x would obviously be a
plus-in point (and hence decisive). In other words, the trajectory of the ball gets
reflected back by the blow of the greater velocity Ω+.

6.4. A two-wheeled system with a rod of variable length. Consider a system com-
posed of two wheels of different radii, r1 < r2, connected by a massless rod of
variable length ℓ (see Figure 4). For simplicity, assume that the two-wheeled
system moves along a line, and that both the masses and the momenta of inertia
of the wheels are unitary. The wheels are subject to the standard constraints
of non-slipping. Assume that the length ℓ of the rod is constrained between a
minimum length a and a maximum length b. Here we consider the following two
situations: (i) when the length ℓ of the rod becomes extreme, an elastic impact
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x

r1
θ1

r2θ2

ℓ

Fig. 4. A two-wheeled system with a rod of variable length.

occurs; (ii) when the length ℓ of the rod becomes extreme, an arresting device
fixes it, and therefore an inelastic impact occurs.

The Lagrangian of the system is given by the kinetic energy of the wheels

L =
1

2

(

θ̇21 + θ̇22 + ẋ21 + ẋ22

)

.

The conditions of rolling without sliding are encoded in the constraints

ẋ1 − r1θ̇1 = 0 , ẋ2 − r2 θ̇2 = 0 ,

which, since we are considering the motion of the two-wheeled system only along
a line, turn out to be holonomic. The constraint on the length of the rod is given
by

a ≤ ℓ =
√

(r2 − r1)2 + (x2 − x1)2 ≤ b .

Following Remark 7, we set M− = ∅, M+ = M = {(x1, x2, θ1, θ2) ∈ R
2 × S

1 ×
S
1 | a ≤ ℓ(x1, x2, θ1, θ2) ≤ b}, with boundary set N = ∂M = {(x1, x2, θ1, θ2) ∈

R
2 × S

1 × S
1 | ℓ(x1, x2, θ1, θ2) = a or ℓ(x1, x2, θ1, θ2) = b}, and linear constraint

submanifold C = C+ ⊂ T ∗M given by αH(C) = D,

D = span

{

r1
∂

∂x1
+

∂

∂θ1
, r2

∂

∂x2
+

∂

∂θ2

}

.

The expression for the projector P : T ∗M → C in local coordinates is given by
the following matrix

P =













r21
1+r21

0 r1
1+r21

0

0
r22

1+r22
0 r2

1+r22
r1

1+r21
0 1

1+r21
0

0 r2
1+r22

0 1
1+r22













.

Let λ ∈ T ∗M+ be a plus-out point with ℓ(λ) = b and G(λ, dℓ) > 0. Since H− =
∞, we only compute the outcome of a reflective step. Following equation (10),
the points in the constrained characteristic passing through λ with the same
H+-energy level are λ and λ+ c+,2P(dℓ), with

c+,2 = −
2G(λ,P(dℓ))

G(P(dℓ),P(dℓ))
. (17)
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According to Proposition 6, the point λ+ c+,2P(dℓ) is +-decisive.
Consider now an inelastic impact, i.e., the case when the length ℓ of the

rod becomes fixed after the impact. Since there are no additional instantaneous
constraints imposed on the system at the impact state, we compute the decisive
points with regards to the boundary of the constraint manifold,

C∂ = C ∩ α−1
H+

(T∂M) = {(x1, x2, θ1, θ2, px1
, px2

, pθ1 , pθ2) ∈ T ∗M | px1
= px2

,

px1
= r1pθ1 , px2

= r2pθ2 , ℓ(x1, x2, θ1, θ2) = a or ℓ(x1, x2, θ1, θ2) = b} .

As before, we only compute the outcome of a reflective step. Following Propo-
sition 7, we deduce that the unique decisive point is P∂(λ). After the inelastic
impact, the length of the rod is fixed forever after, the velocities of the two wheels
of the system are reset according to P∂(λ) and evolve according to X∂

(H,C,N).
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