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FROM (n+ 1) -LEVEL ATOM CHAINS

TO n-DIMENSIONAL NOISES

Stéphane ATTAL and Yan PAUTRAT

This article is dedicated to the memory of Paul-André MEYER

Abstract

In quantum physics, the state space of a countable chain of (n+1) -level atoms becomes, in the

continuous field limit, a Fock space with multiplicity n. In a more functional analytic language, the

continuous tensor product space over IR+
of copies of the space Cn+1

is the symmetric Fock space

Γs(L
2(IR+;Cn)). In this article we focus on the probabilistic interpretations of these facts. We

show that they correspond to the approximation of the n-dimensional normal martingales by means of

obtuse random walks, that is, extremal random walks in IRn
whose jumps take exactly n+1 different

values. We show that these probabilistic approximations are carried by the convergence of the basic

matrix basis aij(p) of ⊗INCn+1
to the usual creation, annihilation and gauge processes on the Fock

space.

I. Introduction

In functional analysis, the tensor product of a family of Hilbert spaces indexed
by a continuous set, is a well-understood notion (see the very complete book [Gui])
which leads to notions such as “Fock spaces” or “symmetric space associated to a
measured space”.

A physical interpretation of those continuous tensor product spaces consists
in considering them as the continuous field limit of a countable chain of quantum
system state spaces (such as a spin chain, for example).

The interesting point in these constructions is that, for all n ∈ IN , the con-
tinuous tensor product space ⊗

IR+

Cn+1

is the symmetric Fock space Γs(L
2(IR+;Cn)). In a more physical language, the

continuous field limit of the state space of a countable chain of (n + 1) -level
atoms is a Fock space with multiplicity n. A rigourous setting in which such an
approximation is made true is developped in [At1].

Both the spaces ⊗INCn+1 and Γs(L
2(IR+;Cn)) admit natural probabilistic

interpretations. Indeed, the Fock space Γ(L2(IR+;Cn)) admits natural prob-
abilistic interpretations in terms of n-dimensional normal martingales, such as
n-dimensional Brownian motion, n-dimensional Poisson process, n-dimensional
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Azéma martingales ... (cf [A-E] and [At2]). The aim of this article is to under-
stand how the approximation of Γ(L2(IR+;Cn)) by means of spaces ⊗INCn+1 can
be interpreted in probabilistic terms.

The structure of the space ⊗INC(n+1) suggests that we are dealing with ran-
dom walks whose jumps are taking (n+ 1) different values.

In this article we show that the key point of this approximation is the notion of
obtuse random walks, developped in [A-E]. They are the centered and normalized
random variables in IRn which take exactly (n+ 1) different values.

These obtuse random variables are naturally associated to an algebraic ob-
ject called sesqui-symmetric 3-tensor and the associated random walk satisfies a
discrete-time structure equation. This structure equation allows us to represent
the multiplication operators by this random walk in terms of some basic operators
of ⊗INCn+1.

Considering the approximation of the Fock space Γ(L2(IR+;Cn)) by means of
spaces ⊗INCn+1, we obtain the approximation of a continuous-time normal mar-
tingale. The sesqui-symmetric 3-tensor Φ then converges to a so-called doubly-
symmetric 3-tensor which is the key of the structure equation describing the prob-
abilistic behaviour of that normal martingale (jumps, continuous and purely dis-
continuous parts...).

This article is organized in the following way: in section two we introduce
the state space of the atom chain and the associated operators. In section three,
we describe obtuse random walks in IRn, their structure equations and their rep-
resentations as operators on the state space of the atom chains. In section four
we introduce Fock space and its quantum stochastic calculus, and the relation of
these objects with the atom chains. In section five we describe structure equations
for normal martingales and the information given by these equations in a special
case. In section six we put together all of our tools and prove convergence in law
of random walks to well-identified normal martingales. In section seven we review
some explicit and illustrative examples.

II. The structure of the atom chain

We here introduce the mathematical structure and notations associated to
the space ⊗INCn+1. As the reader will easily see, this only means choosing a
particular basis for the vectors and for the operators on that space. The physical-
like terminology that we here use time to time is not necessary for the sequel, it is
just informative (though it is pertinent and really used in articles such as [A-P]).

Consider the space Cn+1 in which we choose an orthonormal basis denoted
by {Ω, X1, . . . , Xn}. This space and this particular choice of an orthonormal basis
physically represent either a particle with n excited states X i and a ground state
Ω, or a site which is either empty (Ω) or occupied by a type i particle (X i). We
often write X0 for Ω when we need unified notations, but it is important in the
sequel to distinguish one of the basis states.
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Together with this basis of Cn+1 we consider the following natural basis of
L(Cn+1) = Mn+1(C):

aijX
k = δkiX

j ,

for all i, j, k = 0, . . . , n. With these notations the operator a0j corresponds, up to

a sign factor, to classical fermionic creation operator for the particle Xj; indeed,
we have a0jΩ = Xj and (a0j)

2 = 0. The operator aj0 corresponds to its associated

annihilation operator. The operator aij exchanges a i-level state with a j-level
state particle.

We now consider a chain of copies of this system, like a chain of (n+ 1)-level
atoms. That is, we consider the Hilbert space

TΦ =
⊗

i∈IN

Cn+1

made of a countable tensor product, indexed by IN , of copies of Cn+1. By this we
mean that a natural orthonormal basis of TΦ is described by the family

{XA;A ∈ Pn}
where

– Pn is the set of finite subset A = {(n1, i1), . . . , (nk, ik)} of IN × {1, . . . , n}
such that the ni’s are two by two different. Another way to describe the set Pn is
to identify it to the set of sequences (Ak)k∈IN with values in {0, . . . , n}, but taking
only finitely many times a value different from 0.

– XA denotes the vector

Ω⊗ . . .⊗ Ω⊗X i1 ⊗ Ω⊗ . . .⊗ Ω⊗X i2 ⊗ . . .

of TΦ, where X i1 appears in the copy number n1, X
i2 appears in the copy n2,...

When A is seen as a sequence (Ak)k∈IN as above, then XA is advantageously
written ⊗kXAk

.

The physical meaning of this basis is easy to understand: we have a chain of
sites, indexed by IN ; on each site there is an atom in the ground state or an atom
at energy level 1... The above basis vector XA specifies that there is an atom at
level i1 in the site n1, an atom at level i2 in the site n2 . . ., all the other sites being
at the ground state. The space TΦ is what we shall call the (n + 1)-level atom
chain.

We denote by aij(k) the natural ampliation of the operator aij to TΦ which

acts as aij on the copy number k of Cn+1 and as the identity on the other copies.

Note, for information only, that the operators aij(k) form a basis of the algebra
B(TΦ) of bounded operators on TΦ. That is, the von Neumann algebra generated
by the aij(k), i, j = 0, . . . , n, k ∈ IN , is the whole of B(TΦ) (for TΦ admits no
subspace which is non trivial and invariant under this algebra).

III. Obtuse random walks in IRn

We now abandon for a while this structure in order to concentrate on the
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probabilistic and algebraic structure of the obtuse random variables. The space
TΦ will come back naturally when describing the obtuse random walks.

Let X be a random variable in IRn which takes exactly n + 1 different val-
ues v1, . . . , vn+1 with respective probability α1, . . . , αn+1 (all different from 0 by
hypothesis). We assume, for simplicity, that X is defined on its canonical space
(A,A, P ), that is, A = {1, . . . , n+ 1}, A is the σ-field of subsets of A, the proba-
bility measure P is given by P ({i}) = αi and X is given by X({i}) = vi, for all
i = 1, . . . , n+ 1.

Such a random variable X is called centered and normalized if IE[X ] = 0 and
Cov(X) = I.

A family of elements v1, . . . , vn+1 of IRn is called an obtuse system if

<vi , vj > = −1

for all i 6= j.
We consider the coordinates X1, . . . , Xn of X in the canonical basis of IRn,

together with the random variable Ω on (A,A, P ) which is deterministic and always
equal to 1.

We put X̃ i to be the random variable X̃ i(j) =
√
αj X

i(j) and Ω̃(j) =
√
αj .

For any element v = (a1, . . . , an) of IR
n we put v̂ = (1, a1, . . . , an) ∈ IRn+1.

The following proposition is rather straightforward and left to the reader.

Proposition 1. –The following assertions are equivalent.

i) X is centered and normalized.

ii) The (n+ 1)× (n+ 1)-matrix (Ω̃, X̃1, . . . , X̃n) is unitary.

iii) The (n+ 1)× (n+ 1)-matrix (
√
α1 v̂1, . . . ,

√
an+1 v̂n+1) is unitary.

iv) The family v1, . . . , vn+1 is an obtuse system of IRn and

αi =
1

1 + ||vi||2
.

Let T be a 3-tensor in IRn, that is, a linear mapping from IRn to Mn(IR). We
write T ij

k for the coefficients of T in the canonical basis of IRn, that is,

(T (x))i,j =
n∑

k=1

T ij
k xk.

Such a 3-tensor T is called sesqui-symmetric if

i) (i, j, k) 7−→ T ij
k is symmetric

and
ii) (i, j, l,m) 7−→∑

k T
ij
k T lm

k + δijδlm is symmetric.

Theorem 2 – If X is a centered and normalized random variable in IRn, taking
exactly n+ 1 values, then there exists a sesqui-symmetric 3-tensor T such that

X ⊗X = I + T (X). (1)
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Proof

By Proposition 1, the matrix (
√
α1 v̂1, . . . ,

√
αn+1 v̂n+1) is unitary. In par-

ticular the matrix (v̂1, . . . , v̂n+1) is invertible and so is its adjoint matrix. But
the latter is the matrix whose columns are the values of the random variables
Ω, X1, . . . , Xn. As a consequence, these n + 1 random variables are linearly in-
dependent. They thus form a basis of L2(A,A, P ) for it is a n + 1 dimensional
space.

The random variable X iXj belongs to L2(A,A, P ) and can thus be written
as

X iXj =

n∑

k=0

T ij
k Xk,

for some real coefficients T ij
k , k = 0, . . . , n, i, j = 1, . . . n, where X0 denotes Ω.

The fact that IE[Xk] = 0 and IE[X iXj] = δij implies T ij
0 = δij . This gives the

representation (1).
The fact that the 3-tensor T associated to the above coefficients T ij

k , i, j, k =
1, . . . n, is sesqui-symmetric is an easy consequence of the fact that the expressions
X iXj are symmetric in i, j and X i(XjXk) = (X iXj)Xk for all i, j, k. We leave
it to the reader.

There is actually a natural bijection between the set of sesqui-symmetric 3-
tensors and the set of obtuse random variables. This is a result obtained in [A-E],
Theorem 2, pp. 268-272, which is far from obvious but which we shall not really
need here.

Theorem 3. –The formulas

S = {x ∈ IRn; x⊗ x = I + T (x)}.
and

T (x) =
∑

y∈S

py<y , x>y ⊗ y,

where px = 1/(1 + ||x||2), define a bijection between the set of sesqui-symmetric
3-tensor T on IRn and the set of obtuse systems S in IRn.

Now we wish to consider the random walks which are induced by obtuse sys-
tems. That is, on the probability space (AIN ,A⊗IN , P⊗IN ), we consider a sequence
(X(n))n∈IN of independent random variables with the same law as a given centered
normalized random variable X .

Recalling the notations of section II, for any A ∈ Pn, we define the random
variable

XA =
∏

(p,i)∈A

X i(p)

with the convention
X∅ = 1l.
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Proposition 4. –The family {XA;A ∈ Pn} is an orthonormal basis of the space
L2(AIN ,A⊗IN , P⊗IN ).

Proof

For any A,B ∈ Pn we have

<XA , XB > = IE[XAXB] = IE[XA∆B]IE[X2
A∩B]

by the independence of the X(p). For the same reason, the first term IE[XA∆B]
gives 0 unless A∆B = ∅, that is A = B. The second term IE[X2

A∩B] is then equal
to
∏

(p,i)∈A IE[X i(p)2] = 1. This proves the orthonormal character of the family

{XA;A ∈ Pn}.
Let us now prove that it generates a dense subspace of L2(AIN ,A⊗IN , P⊗IN ).

Had we considered random walks indexed by {0, . . . , N} instead of IN , the XA,
A ⊂ {0, . . . , N} would have formed an orthonormal basis of L2(AN ,A⊗N , P⊗N ),
for their dimensions are equal. Now a general element f of L2(AIN ,A⊗IN , P⊗IN )
can be easily approached by a sequence (fN )N such that fN ∈ L2(AN ,A⊗N , P⊗N ),
for all N , by taking conditional expectations on the trajectories of X up to time
N .

For every obtuse random variable X , we thus obtain a Hilbert space

TΦ(X) = L2(AIN ,A⊗IN , P⊗IN ),

with a natural orthonormal basis {XA;A ∈ Pn} which emphasizes the indepen-
dence of the X(p)’s. In particular there is a natural isomorphism between all the
spaces TΦ(X) which consists in identifying the associated bases. In the same way,
all these canonical spaces TΦ(X) of obtuse random walks are naturally isomor-
phic to the atom chain TΦ of previous section (again by identifying their natural
orthonormal bases).

Of course this identification of Hilbert spaces does not mean much for the
moment: in particular, it loses all the probabilistic properties of the random vari-
ables X i(p), be it individual (the law) or collective (probabilistic independence)
properties.

The only way to recover the full probabilistic information on X i(p) in the
Hilbert space formalism associated to TΦ is to consider the multiplication operator
by X i(p) instead of the Hilbert space element X i(p). Indeed, if we know the
representation in TΦ of the operator MXi(p) of multiplication by X i(p) on TΦ(X),
we know everything about the random variable X i(p) and its relation with other
random variables. The above idea is what makes quantum probabilistic tools
relevent for the study of classical probability; following this idea, the next theorem
is one of the keys of this article. It is what allows us to translate probabilistic
properties into theoretic language, showing that all the obtuse random walks in
IRn can be represented in a single space TΦ with very economical means: linear
combinations of the operators aij(p).
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Theorem 5. –Let X be an obtuse random variable, let (X(p))p∈IN be the associ-
ated random walk on the canonical space TΦ(X). Let T be the sesqui-symmetric
3-tensor associated to X. Let U be the natural unitary isomorphism from TΦ(X)
to TΦ. Then, for all p ∈ IN, i = {1, . . . , n} we have

UMXi(p)U
∗ = a0i (p) + ai0(p) +

n∑

j,l=1

T jl
i ajl (p).

Proof

It suffices to compute the action of MXi(p) on the basis elements XA, A ∈ Pn.
Denote by “(p, .) 6∈ A” the claim “for no i does (p, i) belong to A”. Then, by
Theorem 1, there exists a sesquisymmetric tensor T on IRn such that

Xi(p)XA = 1l(p,·)6∈AXi(p)XA +

n∑

j=1

1l(p,j)∈AXi(p)XA

= 1l(p,·)6∈AXA∪{(p,i)} +
n∑

j=1

1l(p,j)∈AXi(p)Xj(p)XA\{(p,j)}

= 1l(p,·)6∈AXA∪{(p,i)} +
n∑

j=1

1l(p,j)∈A

(
δij +

∑

l

T ij
l Xl(p)

)
XA\{(p,j)}

= 1l(p,·)6∈AXA∪{(p,i)} + 1l(p,i)∈AXA\(p,i) +
n∑

j=1

n∑

l=1

1l(p,j)∈AT
ij
l XA\{(p,j)}∪{(p,i)}

and we immediately recognize the formula for

a0i (p)XA + ai0(p)XA +
∑

p,l

T ij
l ajl (p)XA.

Let us now return to quantum probabilistic structures and describe the Fock
space structure and its approximation by the atom chain.

IV. Approximation of the Fock space by atom chains

We recall the structure of the bosonic Fock space Φ and its basic structure
(see e.g. [At3] or [Pau] for details).

Let Φ = Γs(L
2(IR+;Cn)) be the symmetric (bosonic) Fock space over the

space L2(IR+;Cn). We shall here give a very efficient presentation of that space,
the so-called Guichardet interpretation of the Fock space.

Let I = {1, . . . , n} and P be the set of finite subsets {(s1, i1), . . . , (sk, ik)} of
IR+ × I such that the si are mutually distinct. Then P = ∪kP(k) where P(k)
is the set of k-elements subsets of IR+ × I. By ordering the IR+-part of the
elements of σ ∈ P(k), the set P(k) can be identified to the increasing simplex
Σk = {0 < t1 < · · · < tk} × I of IRk × I. Thus P(k) inherits a measured space
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structure from the product of Lebesgue measure on IRk and the counting measure
on I. This also gives a measure structure on P if we specify that on P0 = {∅} we
put the measure δ∅. Elements of P are often denoted by σ, the measure on P is
denoted by dσ. The σ-field obtained this way on P is denoted F .

We identify any element σ ∈ P with a family {σ1, . . . , σn} of (two by two
disjoint) subsets of IR+ where

σi = {s ∈ IR+; (s, i) ∈ σ}.
For a s ∈ IR+ we denote by {s}i the element σ = {∅, . . . , ∅, {s}, ∅, . . .∅} of P
(where {s} is at the i-th position.

The Fock space Φ is the space L2(P,F , dσ). An element f of Φ is thus a
measurable function f : P → C such that

||f ||2 =

∫

P
|f(σ)|2 dσ < ∞ .

One can define, in the same way, P[a,b] and Φ[a,b] by replacing IR+ with [a, b] ⊂ IR+.
There is a natural isomorphism between Φ[0,t]⊗Φ[t,+∞[ given by h⊗ g 7→ f where
f(σ) = h(σ ∩ [0, t]) g(σ ∩ (t,+∞[). Define also 1l to be the vacuum vector, that is,
1l(σ) = δ∅(σ).

Define χi
t∈Φ by

χt(σ) =
{
1l[0,t](s) if σ = {s}i
0 otherwise.

Then χt belongs to Φ[0,t]. We even have χi
t − χi

s ∈ Φ[s,t] for all s ≤ t. This
last property allows to define a so-called Itô integral on Φ. Indeed, let (git)t≥0 be
families in Φ, for i = 1, . . . , n, such that

i) t 7→ ‖git‖ is measurable,

ii) git ∈Φ[0,t] for all t,

iii)
∫∞
0

‖git‖2 dt < ∞,

then one defines
∑

i

∫∞
0

git dχ
i
t to be the limit in Φ of

n∑

i=1

∞∑

j=0

1

tj+1 − tj

∫ tj+1

tj

Ptjg
i
s ds⊗

(
χi
tj+1

− χi
tj

)
(3)

where Pt is the orthogonal projection onto Φ[0,t] and {tj , j∈IN} is a partition of

IR+ which is understood to be refining and to have its diameter tending to 0. Note
that 1

tj+1−tj

∫ tj+1

tj
Ptjgs ds belongs to Φ[0,tj], which explains the tensor product

symbol in (3).
We get that

∑
i

∫∞
0

git dχ
i
t is an element of Φ with

∥∥∥
∑

i

∫ ∞

0

gt dχt

∥∥∥
2

=
∑

i

∫ ∞

0

∣∣git
∣∣2 dt . (4)

Let f∈L2(Pn); one can easily define the iterated Itô integral on Φ.

In(f) =

∫

Pn

f(σ) dχi1
t1
. . . dχin

tn

8



by iterating the definition of the Itô integral. We use the following notation:

In(f) =

∫

Pn

f(σ) dχσ

which we extend, in an obvious way, to any f ∈ Φ. We then have the following
important representation.

Theorem 6. –Any element f of Φ admits an abstract chaotic representation

f =

∫

P
f(σ) dχσ

with

‖f‖2 =

∫

P
|f(σ)|2 dσ

and an abstract predictable representation

f = f(∅)1l +
∑

i

∫ ∞

0

Di
tf dχi

t

with

‖f‖2 = |f(∅)|2 +
∑

i

∫ ∞

0

‖Di
sf‖2 ds

where [Di
sf ](σ) = f(σ ∪ {s}i)1lσ⊂[0,s[.

Let us now recall the definitions of the basic noise operators aij(t), i, j =
0, . . . , n, on Φ. They are respectively defined by

[a0i (t)f ](σ) =
∑

s∈σi∩[0,t]

f(σ \ {s}i),

[ai0f ](σ) =

∫ t

0

f(σ ∪ {s}i) ds,

[aijf ](σ) =
∑

s∈σi∩[0,t]

f(σ \ {s}i ∪ {s}j)

for i, j 6= 0 and

a00(t) = tI.

There is a good common domain to all these operators, namely

D =
{
f∈Φ ;

∫

P
|σ| |f(σ)|2 dσ < ∞

}
.

Let S = {0 = t0 < t1 < · · · < tp < · · ·} be a partition of IR+ and
δ(S) = supi |ti+1 − ti| be the diameter of S. For fixed S, define Φp = Φ[tp,tp+1],
i∈IN . We then have Φ ≃ ⊗p∈INΦp (with respect to the stabilizing sequence
(1l)p∈IN ).

9



For all p∈IN , define for i, j 6= 0

X i(p) =
χi
tp+1

− χi
tp√

tp+1 − tp
∈ Φp ,

ai0(p) =
ai0(tp+1)− ai0(tp)√

tp+1 − tp
P1] ,

aij(p) = P1]

(
aij(tp+1)− aij(tp)

)
P1] ,

a0j (p) = P1]

a0j (tp+1)− a0j(tp)√
tp+1 − tp

,

where P1] is the orthogonal projection onto L2(P1) and where the above definition
of a0i (p) is understood to be valid on Φp only, with a0i (p) being the identity
operator I on the others Φq’s (the same is automatically true for ai0, a

i
j). We put

a00(p) = I.

Proposition 7. –We have {
ai0(p)X

j(p) = δij1l
ai01l = 0

{
aij(p)X

k(p) = δikX
j(p)

aij1l = 0
{
a0j (p)X

i(p) = 0

a0j (p)1l = Xj(p).

Thus the action of the operators aij on the X i(p) is similar to the action of the
corresponding operators on the atom chain of section two. We are now going to
construct the atom chain inside Φ. We are still given a fixed partition S. Define
TΦ(S) to be the space of vectors f∈Φ which are of the form

f =
∑

A∈PN

f(A)XA

(with ‖f‖2 =
∑

A∈PN
|f(A)|2 < ∞).

The space TΦ(S) is thus clearly identifiable to the atom chain TΦ; the oper-
ators aij(p) act on TΦ(S) exactly in the same way as the corresponding operators
on TΦ. We have completely embedded the toy Fock space into the Fock space.
Let S = {0 = t0 < t1 < · · · < tp < · · ·} be a fixed partition of IR+. The space
TΦ(S) is a closed subspace of Φ. We denote by PS the operator of orthogonal
projection from Φ onto TΦ(S).

We are now going to prove that the Fock space Φ and its basic operators aij(t)

can be approached by the toy Fock spaces TΦ(S) and their basic operators aij(p).
We are given a sequence (Sp)p∈IN of partitions which are getting finer and finer

and whose diameter δ(Sp) tends to 0 when p tends to +∞. Let TΦ(p) = TΦ(Sp)
and let Pp be the orthogonal projector onto TΦ(Sp), for all p∈IN .

10



Theorem 8. –

i) For every f∈Φ there exists a sequence (fp)p∈IN such that fp∈TΦ(p), for all
p∈IN , and (fp)p∈IN converges to f in Φ.

ii) For all i, j let

εij =
1

2
(δ0i + δ0j).

If Sp = {0 = tp0 < tp1 < · · · < tpk < · · ·}, then for all t∈IR+, the operators∑

k;tp
k
≤t

(tpk+1 − tpk)
εijaij(k)

converge strongly on D to aij(t).

Proof

i) As the Sp are refining then the (Pp)p form an increasing family of orthog-
onal projection in Φ. Let P∞ = ∨pPp. Clearly, for all s ≤ t, all i we have that
χi
t − χi

s belongs to RanP∞. But by the construction of the Itô integral and by
Theorem 5, we have that the χi

t − χi
s generate Φ. Thus P∞ = I. Consequently if

f∈Φ, the sequence fp = Ppf satisfies the statements.

ii) The convergence of
∑

k,tp
k
≤t (t

p
k+1 − tpk)

εijaij(k) to aij(t) is clear from the

definitions when i 6= 0. Let us check the case of a0i . We have, for f∈D[ ∑

k;tp
k
≤t

√
tpk+1 − tpka

0
i (k)f

]
(σ) =

∑

k;tp
k
≤t

1l|σ∩[tp
k
,tp

k+1
]|=1

∑

s∈σ∩[tp
k
,tp

k+1
]

f(σ \ {s}).

Put tp = inf
{
tpk∈Sp ; tpk ≥ t

}
. We have

∥∥∥
∑

k;tp
k
≤t

√
tpk+1 − tpka

0
i (k)− a0i (t)f

∥∥∥
2

=

∫

P

∣∣∣
∑

k;tp
k
≤t

1l|σ∩[tp
k
,tp

k+1
]|=1

∑

s∈σ∩[tp
k
,tp

k+1
]

f(σ \ {s})−
∑

s∈σ∩[0,t]

f(σ \ {s})
∣∣∣
2

dσ

≤ 2

∫

P

∣∣∣
∑

s∈σ∩[t,tp]

f(σ \ {s})
∣∣∣
2

dσ

+ 2

∫

P

∣∣∣
∑

k;tp
k
≤t

1l|σ∩[tp
k
,tp

k+1
]|≥2 ×

∑

s∈σ∩[tp
k
,tp

k+1
]

f(σ \ {s})
∣∣∣
2

dσ.

For any fixed σ, the terms inside each of the integrals above converge to 0 when p
tends to +∞. Furthermore we have, for large enough p ,∫

P

∣∣∣
∑

s∈σ∩[t,tp]

f(σ \ {s})
∣∣∣
2

dσ ≤
∫

P
|σ|

∑

s∈σ

s≤t+1

|f(σ \ {s})|2 dσ

=

∫ t+1

0

∫

P
(|σ|+ 1)|f(σ)|2 dσ ds

≤ (t+ 1)

∫

P
(|σ|+ 1)|f(σ)|2 dσ

11



which is finite for f∈D;
∫

P

∣∣∣
∑

k;tp
k
≤t

1l|σ∩[tp
k
,tp

k+1
]|≥2

∑

s∈σ∩[tp
k
,tp

k+1
]

f(σ \ {s})
∣∣∣
2

dσ

≤
∫

P

( ∑

k;tp
k
≤t

1l|σ∩[tp
k
,tp

k+1
]|≥2

∣∣∣
∑

s∈σ∩[tp
k
,tp

k+1
]

f(σ \ {s})
∣∣∣
)2

dσ

≤
∫

P

( ∑

k;tp
k
≤t

∑

s∈σ∩[tp
k
,tp

k+1
]

|f(σ \ {s})|
)2

dσ

=

∫

P

( ∑

s∈σ

s≤tp

|f(σ \ {s})|
)2

dσ

=

∫

P
|σ|
∑

s∈σ

s≤tp

|f(σ \ {s})|2 dσ

≤ (t+ 1)

∫

P
(|σ|+ 1)

∣∣f(σ)
∣∣2 dσ

in the same way as above. So we can apply Lebesgue’s theorem. This proves ii).

V. Multidimensional structure equations

Let us recall some basic facts about normal martingales in IRn; except for
Theorem 13, all the statements in this section are taken from [A-E].

In the same way as the Fock space Φ = Γ(L2(IR+;C)) admits probabilistic in-
terpretations in terms of one-dimensional normal martingales (see [At3]), the mul-
tiple Fock space Φ = Γ(L2(IR+;Cn)) admits probabilistic interpretations in terms
of multidimensional normal martingales. The point here is that the extension
of the notion of normal martingale, structure equation. . . to the multidimensional
case is not so immediate. Some interesting algebraic structures appear.

A martingale X = (X1, . . . , Xn) with values in IRn is called normal if X0 = 0
and if, for all i and j, the process X i

tX
j
t − δijt is a martingale. This is equivalent

to saying that
〈X i, Xj〉t = δijt

for all t ∈ IR+, or else this is equivalent to saying that the process

[X i, Xj]t − δijt

is a martingale.
A normal martingale X = (X1 . . .Xn) in IRn is said to satisfy a structure

equation if each of the martingales [X i, Xj]t − δijt is a stochastic integral with
respect to X :

[X i, Xj]t = δijt+
n∑

k=1

∫ t

0

T ij
k (s) dXk

s

12



where the T ij
k are predictable processes.

Any family
{
Aij

k ; i, j, k ∈ {1 . . . n}
}

of real numbers is identified to a 3-

tensor, that is, a linear map A from IRn to IRn ⊗ IRn by

(Ax)ij =

n∑

k=1

Aij
k xk .

Such a family is said to be diagonalizable in some orthonormal basis if there exists
an orthonormal basis {e1 . . . en} of IRn for which

Aek = λke
k ⊗ ek

for all k = 1 . . . n and for some eigenvalues λ1 . . . λn ∈ IR.

A family
{
Aij

k ; i, j, k ∈ {1 . . . n}
}
is called doubly symmetric if

i) (i, j, k) 7→ Aij
k is symmetric on {1 . . . n}3 and

ii) (i, j, i′, j′) 7→∑n
k=1 A

ij
k A

i′j′

k is symmetric on {1 . . . n}4.

Theorem 9. –For a family
{
Aij

k ; i, j, k ∈ {1 . . . n}
}

of real numbers, the follow-

ing assertions are equivalent.

i) A is doubly symmetric.

ii) A is diagonalizable in some orthonormal basis.

This means that the condition of being doubly symmetric is the exact ex-
tension to 3-tensors of the symmetry property for matrices (2-tensors): it is the
necessary and sufficient condition for being diagonalisable in some orthonormal
basis.

A family {x1 . . . xk} of elements of IR is called orthogonal family if the xi are
all different from 0 and are two by two orthogonal.

Theorem 10. –There is a bijection between the doubly symmetric families A of
IRn and the orthogonal families Σ which is given by

Af =
∑

x∈Σ

1

‖x‖2 〈x, f〉 x⊗ x

and
Σ = {x ∈ IRn \ {0} ; Ax = x⊗ x} .

These algebraic preliminaries are used to determine the behaviour of the mul-
tidimensional normal martingales.

Theorem 11. –Let X be a normal martingale in IRn satisfying a structure equa-
tion

[X i, Xj]t = δijt+
n∑

k=1

∫ t

0

T ij
k (s) dXk

s .

13



Then for a.a. (t, ω) the family {T ij
k (s, ω) ; i, j, k = 1 . . . n} is doubly symmetric.

If Σt(ω) is its associated orthogonal system and if πt(ω) denotes the orthogonal
projection onto (Σt(ω))

⊥, then the continuous part of X is given by

Xc,i
t =

n∑

j=1

∫ t

0

πij
s dXj

s ;

the jumps of X happen only at totally inaccessible times and they satisfy

∆Xt(ω) ∈ Σt(ω) .

We can now study a basic example. The simplest case occurs when T is
constant in t. Contrarily to the unidimensional case, this situation is already
rather rich.

Proposition 12. –Let T be a doubly symmetric family on IRn. Let Σ be its
associated orthogonal system. Let B be a Brownian motion with values in the
Euclidian space Σ⊥. For each x ∈ Σ, let Nx be a Poisson process with intensity
‖x‖−2. We assume B and all the Nx to be independent. Then the martingale

Xt = Bt +
∑

x∈Σ

(Nx
t − ‖x‖−2

t )x

satisfies the constant coefficient structure equation

[X i, Xj]t = δijt+
n∑

k=1

T ij
k Xk

t .

Conversely, every normal martingale which is solution of the above equation has
the same law as X.

Finally, let us recall a particular case of a theorem proved in [At2], which has
the advantage of not needing the introduction of quantum stochastic integrals and
of being sufficient for our purpose.

Theorem 13. –Let X be a normal martingale in IRn which satisfies a structure
equation of the above form :

[X i, Xj]t = δijt+
n∑

k=1

T ij
k Xk

t .

Then (Xt)t possesses the chaotic representation property. Furthermore, the space
L2(Ω,F , P ), where (Ω,F , P ) is the canonical space associated with (Xt)t, is nat-
urally isomorphic to Φ, by identification of the chaotic expansion of f with the
element f̃ of Φ whose abstract chaotic expansion has the same coefficients.

Within this identification the operator of multiplication by Xk
t is equal to

MXk
t
= a0k(t) + ak0(t) +

n∑

i,j=1

T ij
k aij(t).

14



VI Convergence to normal martingales

Now we can close the circle under the form of a kind of commutative diagram
and establish some convergence theorem.

Starting from an obtuse random random variableX depending on a parameter
h ∈ IR+, with associated sesqui-symmetric tensor T , we associate a random walk
(Xp)p∈INof i.i.d. random variables with the same law as X . By Theorem 2, the
renormalized random walk

X̃n =
√
hXn

satisfies the discrete time structure equation

X̃ ⊗ X̃ = hI + T̃ (X̃)

where T̃ ij
k =

√
hT ij

k . The tensor T̃ is also sesqui-symmetric but with the relation

ii’) (i, j, l,m) 7−→∑
k T

ij
k T lm

k + hδijδlm is symmetric.

Theorem 5 shows that the associated multiplication operator by X̃ is given
by

UM
X̃i(k)

U∗ =
√
h(a0i (k) + ai0(k)) +

n∑

j,l=1

T̃ jl
i ajl (k).

By Proposition 7 we can embed this situation inside the Fock space Φ and we get
a family of operators on Φ such that

∑

k≤[t/h]

UM
X̃i(k)

U∗

converges strongly on D to

Xt = a0i (t) + ai0(t) +
n∑

j,l=1

Sjl
i ajl (t)

where Sjl
i = limh→0 T̃

jl
i , by Theorem 8. Because of the relation ii’) above, the

limit tensor S is automatically doubly-symmetric.
Thus by Theorem 13, the operators Xt are the canonical multiplication oper-

ators by a normal martingale, solution of the structure equation

[X i, Xj]t = δijt+

n∑

k=1

Sij
k Xk

t .

From the above we see that only the coefficients T̃ ij
k which admit a limit Sij

k ,
when h → 0, contribute to the limit normal martingale (Xt)t≥0. This means that

only the coefficients T ij
k which have a dominant term of order 1/

√
h will contribute

non-trivialy to the limit. A smaller dominant term gives 0 in the limit and a larger
dominant term will not admit a limit.

15



If the obtuse random variableX is given one direction for which its probability
is of order h, then, by Proposition 1 iv), the length of the jump in that direction
is of order 1/

√
h. The associated tensor will then get terms T ij

k of order 1/
√
h too

(Theorem 3). Thus in the limit this terms will participate to the tensor S. By
Proposition 12, these terms Sij

k will participate to the Poisson-type behaviour of
the normal martingale.

In the same way one gets easily conviced that the directions of X which
are visited with a probability of constant order, or of bigger order than h will
contribute to the diffusive part of the martingale.

Note that, in order to understand the above discussion in probabilistic terms
it is not necessary to pass throught the representation in terms of creation and
annihilation operators. One can directly approach a normal martingale in IRn by
some obtuse random walks (this has be achieved explicitely in [Tav]). But this
was not our purpose here to detail this approximation. We just wanted to show
how it is naturally related to the approximation of the Fock space by state spaces
of (n+ 1) -level atom chains.

We have already a convergence of the random walk to a normal martingale
of which the law is given by Theorem 12. Yet this strong convergence of mul-
tiplication operators is not easy to translate into probabilistic language, because
determining which random variables in L2(Ω,F , P ) are sent to D by identification
is not an easy problem (it amounts to studying the integrability properties of the
chaotic expansion of random variables).

Obtaining the convergence in law in the above framework requires some more
work. This is what the next theorem does.

Theorem 14. –With the above notations, the random variable

√
h

[t/h]∑

n=1

Xn

converges to Xt in law, for almost all t.

Proof

Developping all the details of this proof would need much more serious and
longer developments which are not compatible with the length and the spirit of
this article. This is the reason why we adopt a more concise style in the following
proof.

Choose α in IRn with coordinates α1, . . . , αn and denote by M(α, h, k) the
operator of multiplication by

〈α,
√
h

k∑

p=1

Xp〉IRn

16



on L2(A⊗IN ,A⊗IN , P⊗IN ). Then denote by uk the operator exp(iM(α, h, k)). The
family uk satisfies the equations

{
uk+1 = ei〈α,

√
hXk+1〉uk

u0 = I.

Now, by a slight adaptation of Theorem 19 in [A-P] (the terms Dij have to be
allowed to converge as h goes to zero instead of being constant, but this is imme-
diate from the proof), the sequence u[t/h], seen as a sequence of operators on Φ,
converges strongly to Ut for almost all t, where (Us) solves{

dUs =
∑n

j,l=0 L
j
lUs da

j
l (s)

U0 = I

with

L0
0 = −1

2
W ∗W

L0
l = Wl

Lj
0 − (W ∗S)j

Lj
l = Sj

l − I

where
S = exp(iD)

W = (S − I)/Dα

and D is the n× n matrix with coefficients

Djl =

n∑

i=1

αiT
jl
i .

Note that we do not assume that D is invertible; if it is not then (S− I)/D is still
defined by its series expansion.

Such an equation, called a Hudson-Parthasarathy equation, always has a so-
lution made of unitary operators Us, and such an equation is unique (for such
results we refer the reader to [Par]).

On the other hand, consider the operator Vt which is the value for s = 1 of
the unitary semigroup eisM(α,t) where M(α, t) is the operator of multiplication
by Xt (on the space L2(Ω) identified with Φ). Remember that M(α, t) has the
representation

n∑

i=1

αi

(
a0i (t) + ai0(t) +

n∑

j,l=1

T jl
i ajl (t)

)

on D. We now wish to apply Vincent-Smith’s formula (see [ViS]) for eiM(α,t),
but Vincent-Smith’s result would require M(α, t) to belong to the class of regular
semimartingales (as in [At4]); here it would need the additional property of being
bounded.

Yet in our case it is easy to prove a posteriori that the formula holds; this
is done by an usual trick. Checking that a formal application of Vincent-Smith’s
formula for exp(isM(α, t)) gives a quantum stochastic integral which is a bounded
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operator, a strongly continuous semigroup of the parameter s, and that it is uni-
tary, its generator can then be computed and shown to be equal M(α, t) on some
good domain (e.g. the space of coherent vectors). Since M(α, t), as a linear com-
bination of the fundamental operators ajl (t), is known to be essentially selfadjoint
on the exponential domain, Stone’s theorem proves the validity of the integral
representation on Φ for all exp(isM(α, t)).

Let us therefore apply Vincent-Smith’s formula for exp(isM(α, t)). It sim-
plifies greatly since the operator 〈α,Xt〉IRn , as a scalar multiplication, commutes
with all other coefficients. We obtain therefore the equation

dVs =
n∑

j,l=1

Kj
l Vs da

j
l (s)

with

K0
l =

∫ 1

0

exp
(
i(1− u)D

)
αdu

Kj
0 =

∫ 1

0

α∗ exp
(
iuD

)
du

Kj
l =

∫ 1

0

exp
(
i(1− u)D

)
Ddu

K0
0 =

∫ 1

0

∫ 1

0

uα∗ exp
(
iu(1− v)D

)
αdu dv

=

∫ 1

0

α∗ exp
(
iuD

)
α du

and it is clear that the Kj
l equal the corresponding Lj

l . Since V0 = U0 we obtain
the equality Ut = Vt for all t.

On the other hand, for all α, the operator M(α, h, k) is selfadjoint on TΦ(h).
By Nelson’s theorem, there exists a dense set of vectors f such that

ukf =
∑

j∈IN

ijM(α, h, k)j

j !
f.

When seen on the L2(Ω,F , P ), this means that almost everywhere, the equality

(ukf)(ω) = exp(i〈α,
√
h

k∑

p=1

Xp(ω)〉IRn) f(ω)

holds for all f in the previously specified dense set. Note that this equality is only
apparently trivial because of our identification.

The almost everywhere equality can therefore be extended to all f in TΦ(h),
all k. Similarly we can obtain the almost everywhere equality

(Utf)(ω) = exp(i〈α,Xt(ω)〉IRn)

for all f in Φ.
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The above equalities and the strong convergence prove in particular that

IE
(
exp(i〈α,

[t/h]∑

p=1

Xp〉IRn)
)
= 〈Ω, u[t/h]Ω〉TΦ(h)

converges to
〈Ω, UtΩ〉Φ = IE

(
exp(i〈α,Xt〉IRn)

)

as h tends to zero. This holds for all α, so that the conclusion holds.

VII. Some approximations of 2-dimensional noises

We end this article by computing some simple and illustrative examples in
the case n = 2.

We consider, in the case n = 2, an obtuse random variable X which takes the
values v1 = (a, 0), v2 = (b, c) and v3 = (b, d) with respective probabilities p, q, r.
In order that X be obtuse we put

a =
√
1/p− 1, b = −1/a, c =

√
1/q − 1− b2, d = −

√
1/r − 1− b2.

Let us call S this set of values for X and ps the probability associated to s ∈ S.
The associated sesqui-symmetric 3-tensor T is given by

T (v) =
∑

s∈S

ps < s, x > s⊗ s.

For example, in the case p = 1/2, q = 1/3 and r = 1/6 we get a = 1, b = −1,
c = 1 and d = −2. The tensor T is then given by

T (v) =

(
0 −y
−y −x− y

)

if v = (x, y). Thus the multiplication operator by X1 is equal to

X1 = a10 + a01 − a22

and the multiplication operator by X2 is equal to

X2 = a20 + a02 − (a12 + a21 + a22).

Now we consider a random walk (X(k))k≥0 made of independent copies of this
random variable X , with time step h. In the framework of the Fock space approx-
imation described above, the operator

∑

k;kh≤t

√
hX1(k)

converges, both in the sense of convergence of multiplication operators and in law,
to

a01(t) + a10(t)
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and the operator ∑

k;kh≤t

√
hX2(k)

converges to
a02(t) + a20(t).

This means that the limit process X(t) is a 2-dimensional Brownian motion. In-
deed, the above representation shows that the associated doubly-symmetric tensor
Φ is null and thus X satisfies the structure equation

d[X1, X1]t = dt

d[X1, X2]t = 0

d[X2, X2]t = dt

which is exactly the structure equation verified by two independent Brownian
motions.

It is clear, that whatever the values of p, q, r are, if they are independent of the
time step parameter h, we will always obtain a 2-dimensional Brownian motion as
a limit of this random walk.

When some of the probabilities p, q or r depend on h the behaviour is very
different. Let us follow two examples.

In the case p = 1/2, q = h and r = 1/2− h we get

a = 1, b = −1, c =
1√
h
+O(h1/2), d = −2

√
h+ o(h3/2).

For the tensor T we get

T (v) =

(
0 + o(h5/2) −y + o(h2)
−y + o(h2) − y√

h
− x+ o(h1/2)

)
.

The multiplication operators are then given by

X1 = a10 + a01 − a22 +O(h2)

and

X2 = a20 + a02 − (a12 + a21) +
1√
h
a22 +O(h1/2).

In the same limit as above we thus obtain the operators

a10(t) + a01(t)

and
a20(t) + a02(t)− a22(t).

This means that the coordinate X1(t) is a Brownian motion and X2(t) is an
independent Poisson process, with intensity 1 and directed upwards. Indeed, the
associated tensor Φ is given by

Φ(v) =

(
0 0
0 −y

)
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and the associated structure equation is

d[X1, X1]t = dt

d[X1, X2]t = 0

d[X2, X2]t = dt+ dX2(t)

which is the structure equation of the process we described.

The last example we shall treat is the case p = 1− 2h, q = r = h. We get, for
the dominating terms

a =
√
2
√
h, b = − 1√

2

1√
h
, c =

1√
2

1√
h
, d = − 1√

2

1√
h
,

and

X1 = a10 + a01 −
1√
2

1√
h
a22 +

1√
2

1√
h
a11

X2 = a20 + a02 −
1√
2

1√
h
(a12 + a21).

The limit process is then solution of the structure equation

d[X1, X1]t = dt− 1√
2
dX1(t)

d[X1, X2]t = − 1√
2
dX2(t)

d[X2, X2]t = dt− 1√
2
dX1(t).

The associated tensor is easy to diagonalise and one finds the eigenvectors

(−1/
√
2, 1/

√
2) and (−1/

√
2,−1/

√
2).

The limit process is made of two independent Poisson processes, with intensity 2
and respective direction (-1,1) and (-1,-1).
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Thesis of Strasbourg University, 1999.
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