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STABLE AND SINGULAR SOLUTIONS OF THE

EQUATION ∆u = 1
u

ALEXANDER M. MEADOWS

Abstract: We study properties of the semilinear elliptic equation ∆u = 1

u
on domains

in R
n, with an eye toward nonnegative singular solutions as limits of positive smooth

solutions. We prove the nonexistence of such solutions in low dimensions when we also re-

quire them to be stable for the corresponding variational problem. The problem of finding

singular solutions is related to the general study of singularities of minimal hypersurfaces

of Euclidean space.

1. Introduction

One way to obtain singular minimal hypersurfaces with symmetry is given
in the paper [14] by Simon. Given positive u : Ω ⊂ R

n −→ R solving the
equation

(1) Mu :=
n
∑

i=1

Di

(

Diu
√

1 + |Du|2

)

=
m

u
√

1 + |Du|2

and an m-dimensional closed subgroup Γ of the orthogonal group in R
N ,

with Gp := {g(p) : g ∈ Γ} an orbit of maximal volume over p ∈ SN−1, the
“symmetric graph” G(u) defined by

G(u) = {(x, u(x)ω) : x ∈ Ω, ω ∈ Gp} ⊂ R
n+N

will be stationary with respect to n+m–dimensional volume, and will have
the same regularity as the function u. Positive solutions u > 0 are smooth.
However, if a sequence uj of such solutions converges continuously to a weak
solution u ≥ 0, then u will be singular exactly at the points where it is zero.
The corresponding G(u) will be a singular minimal submanifold. A degree
theoretic program for obtaining such sequences of solutions is outlined in
Simon’s paper. For more on equation (1), see the survey paper by Dierkes [6].
Our goal is to apply a similar program to the equation ∆u = 1

u . The basic
degree argument is presented in Section 4.

Notice that if we linearize the left hand side of (1) in the form

∑

i

DiDiu−
∑

i,j

DiuDjuDiDju

1 + |Du|2 =
m

u
,

the resulting equation is ∆u = m
u . For this equation the constant m scales

with the independent variable, i.e. u(Cx) solves ∆u = C2m
u , so we may
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restrict our attention to the case m = 1:

(2) ∆u =
1

u

Both equations (2) and (1), with m = 1, have the particular solution
u(x) = C|x| with C = 1/

√
n− 1. By the results of section 3, this solution

is indeed the limit of a sequence of positive smooth solutions.
We note that equation (2) is the Euler–Lagrange equation for the varia-

tional integral

(3) F(u) =

∫

Ω

1

2
|Du|2 + log u

while equation (1) has variational integral
∫

Ω
um
√

1 + |Du|2,

which is the n +m-dimensional volume of G(u). Notice that for arbitrary
positive u, the integral (3) is not bounded below for any positive boundary
data ϕ on ∂Ω. Indeed the function uǫ := ϕ+ ζ(ǫ− ϕ), where ζ is a smooth
cutoff function on Ω, satisfies F(uǫ) → −∞ as ǫ → 0.

Equation (2) also arises in relation to chemical catalyst kinetics (See [1]
and [5]). Here it is a special case of the more general equation

(4) ∆u = u−α, α > 0

For α 6= 1, (4) is stationary for the variational integral

(5)

∫

Ω

1

2
|Du|2 + 1

1− α
u1−α

Note that when 0 < α < 1, this integral is bounded below, and by lower
semicontinuity, as in [11], minimizers among nonnegative functions with
given boundary data exist. In fact, most results concerning (4), as in [5],
are limited to the case 0 < α < 1 and are results on minimizers of the
variational problem. In this way, (2) is an interesting limiting case.

An important difference in our method is that the singular limit must
(weakly) satisfy the PDE ∆u = 1

u on the whole domain Ω. Minimizers of
(5) need not satisfy the Euler–Lagrange equation (4) on the whole domain,
in fact they need only solve the free boundary problem on the set {u > 0}.

Despite the nonexistence of minimizers, we may consider solutions u of

(2) which are also stable for F(u) in the sense that d2

dt2

∣

∣

∣

t=0
F(u + tζ) ≥ 0

for test functions ζ. In this case, u satisfies the stability inequality

(6)

∫

Ω

ζ2

u2
≤
∫

Ω
|Dζ|2

for all test functions ζ. We call such u “stable solutions.”
In Sections 7, 8, and 9, we prove the main results on stable solutions,

namely, the Hölder continuity of stable solutions, the nonexistence of sin-
gular stable solutions in dimension less than seven, and an estimate on the
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size of the singular set of a stable solution. The existence and uniqueness
of stable solutions is presented in Sections 5 and 6. Here we state the main
results.

Theorem 1. Let Ω ⊂ R
n and suppose there is a subsolution v with ∆v ≥ 1/v

on Ω with boundary values ϕ0 on ∂Ω. Then for any ϕ ≥ ϕ0, there is a unique
stable solution u of ∆u = 1/u on Ω with boundary values ϕ.

Theorem 2. For a stable solution u with boundary data ϕ ≤ M , and for
every 0 < α < 1 and Ω̃ ⊂⊂ Ω, there is a constant C(n,M,α, Ω̃) such that

for all x, y ∈ Ω̃, |u(x)− u(y)| ≤ C|x− y|α.
Theorem 3. Let 2 ≤ n ≤ 6 and let u be a positive stable solution of ∆u = 1

u

on the C1,1 domain Ω, with boundary data ϕ ∈ C2,α(Ω), |ϕ|2,α ≤ M , and
ϕ ≥ ǫ > 0. Then there is a constant δ = δ(Ω,M, ǫ) such that u ≥ δ on Ω.

Corollary 4. In dimension less than seven, there are no singular stable
solutions of (2).

Theorem 5. Suppose u is a limit of positive stable solutions of ∆u = 1
u on

a domain Ω with singular set A = {u = 0}. Then the Hausdorff dimension
dimH(A) ≤ n− 4− 2

√
2.

2. Basic Facts

Positive solutions to equation (2) are subharmonic, so the maximum
principle implies that they achieve their maximum on the boundary of Ω.
However, the difference w = u − v of two solutions satisfies the equation
∆w + w

uv = 0, and so the maximum principle does not guarantee that a
positive solution is a unique solution of the Dirichlet problem for its bound-
ary data. Indeed, solutions of the analogous ordinary differential equation
u′′ = 1

u need not be unique, and positive radially symmetric solutions in low
dimension may not be unique.

Solutions are invariant under homothetic scaling of the graph. That is,
if u(x) is a solution on Ω, then u(Cx)/C is also a solution on the domain
Ω/C for C > 0. In particular, the conical solution scales under homothety
of the graph to itself, when centered at the origin.

Nonnegative limits of positive solutions are singular, as in the following

Lemma 6. If u ≥ 0 is a weak solution of ∆u = 1
u in a neighborhood of x0

with u(x0) = 0, then u is not differentiable at x0.

Proof: Suppose we have a weak solution u with u ≥ 0, u(x0) = 0, and u
differentiable at x0. Then Du(x0) = 0, and for any ǫ > 0, in a small enough
ball B = Bδ(x0) we have 0 ≤ u ≤ ǫ|x− x0|. The weak equation in this ball
is

(7)

∫

B
u∆ζ =

∫

B

ζ

u

where ζ is C2 with compact support in the ball.
3



We choose ζ radially symmetric such that 0 ≤ ζ ≤ 1, ζ = 1 on Bδ/2, and

|∆ζ| ≤ C
δ2 . Then

∫

B

ζ

u
≥
∫

Bδ/2

1

ǫ|x| =
nωn

(n− 1) ǫ

(

δ

2

)n−1

where ωn is the volume of the unit n-ball. But also
∫

ζ

u
=

∫

Bδ

u∆ζ ≤
∫

Bδ

ǫ|x|C1

δ2
=

nωnC2ǫ

n+ 1
δn−1.

Thus, ǫ2 ≥
(

n+1
n−1

)

21−n

C , a contradiction for ǫ small enough.

Using similar methods, we can derive some basic positivity results.

Lemma 7. Suppose u is a positive and smooth subsolution, i.e. ∆u ≥ 1
u ,

on a ball B2ρ. Then the following hold:

(1)
1

ρ2

∫

B2ρ\Bρ

u2 ≥ ωnρ
n

(2) sup
B2ρ

u ≥ ρ√
2n − 1

Notice that the second property says that there do not exist solutions on
any ball that are uniformly small, and any solution defined on all of Rn must
be unbounded.

3. Asymptotically Conical and Radial Solutions

In this section it will be convenient to consider the rescaled equation

∆u =
n− 1

u

which has the conical solution u(x) = |x|. We will also use the radial variable
r = |x|.

Caffarelli, Hardt, and Simon proved in [2] the existence of minimal sur-
faces asymptotic to minimal cones. Following their proof we get a similar
result showing the existence of a wide variety of singular solutions of (2) on
the ball which are asymptotic to our conical solution at the origin.

The wide variety of singular solutions comes from the existence of solu-
tions with boundary data which are small perturbations of constant bound-
ary data equal to one on the sphere ∂B1. As in [2], we are only able to
specify the perturbed boundary data of the asymptotic solution in the or-
thogonal complement of a finite dimensional subspace of L2(∂B1), which
depends on the rate at which our solutions will be asymptotic to the cone.
In this case, the finite dimensional subspace is the span of the first J eigen-
vectors of the operator −∆ − (n − 1) on the sphere, where the remaining

eigenvectors have eigenvalues µ large enough that 1− n
2 +

√

(n−2)2

4 + µ > m.

The projection onto the orthogonal complement is denoted ΠJ . The result
may be expressed in terms of the scaled Hölder norm on annuli, defined by
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|f |2,α;r =
2
∑

l=0

rl sup
r≤|x|≤2r

|Dlu|+ rk+α sup
x 6= y

r ≤ |x|, |y| ≤ 2r

|D2f(x)−D2f(y)|
|x− y|α .

Theorem 8. Given m > 1 and 0 < α < 1, there exist ǫ and C depending
on m,n, and α so that for any function g on ∂B1 with |g|C2,α < ǫ, there
exists a solution u of ∆u = n−1

u on B1 with ΠJ(u − 1) = ΠJg on ∂B1 and
satisfying for 0 < r < 1/2

r−m |u− |x||2,α;r ≤ C|g|C2,α .

The proof of this theorem is essentially identical to the argument given
in [2].

We call smooth positive solutions of ∆u = n−1
u which are radially sym-

metric, i.e. u(x) = u(r), r = |x|, “radial solutions.” The resulting ordinary
differential equation satisfied by u is urr+

n−1
r ur− n−1

u = 0, with the partic-
ular solution u = r. The following two theorems on radial solutions are the
most useful for further analysis of the PDE. Theorem 9 is due to Brauner–
Nicolaenko [1], using bifurcation theory in the context of equation (4). We
have alternative proofs of these and more general facts using basic ODE
techniques.

Theorem 9. For any ǫ > 0, solutions of the ODE problem urr +
n−1
r ur −

n−1
u = 0 with u(0) = ǫ and u′(0) = 0 exist uniquely on [0,∞). These

solutions satisfy u(r) − r = O(1), and consequently as ǫ → 0, the solutions
u(r) → r uniformly on compact subsets.

Theorem 10. There exist constants C1 and C2 depending on n such that
on the ball B1(0), the Dirichlet problem

∆u = n−1
u on B1

u = C on ∂B1

has a solution for C > C1, and has a unique solution for C > C2. For
n ≥ 7, C1 = C2 = 1.

Thus, the radial conic solution u = |x| is indeed a limit of positive smooth
solutions. An interesting further result is that these conic solutions are
stable for n ≥ 7 and unstable 2 ≤ n ≤ 6. We state the result for the original
equation ∆u = 1/u.

Lemma 11. The conical solutions u = |x|√
n−1

are stable for n ≥ 7 and are

unstable for 2 ≤ n ≤ 6.

Proof: This follows from the Hardy inequality with best constant

(n − 2)2

4

∫

Ω

ζ2

|x|2 ≤
∫

Ω
|Dζ|2

for all ζ ∈ C1
c (Ω). See [10], or for a simple proof see [7].
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4. Degree Construction

We will use the Leray–Schauder degree with several different setups. For
the basic theory of the degree on Banach spaces, see [4]. In general we will
use the Banach space B = C2,α(Ω̄) and open set U = {u ∈ B : u > g, |u|2,α <
Mδ} where g is a fixed positive bounded function with positive minimum δ.
A typical operator T : [0, 1] × U → B will be defined by Tt(u) = v, where v
is the solution of

{

∆v = v
u2 on Ω

v = ϕt on ∂Ω

and ϕt are boundary data continuous in t with g < ϕt < Mδ. We use the
notation deg(I − Tt,U , 0) for the Leray–Schauder degree invariant for fixed
points of Tt.

In the following results, all solutions are assumed to be positive. Lemma 12
comes from a basic Schauder estimate.

Lemma 12. For each 0 < δ < 1, Mδ can be chosen such that any solution
u of ∆u = 1

u with δ ≤ u ≤ 1
δ satisfies |u|2,α < Mδ.

Lemma 13. If ϕ0 ≥ C2(n) is constant boundary data on the unit ball in R
n,

C2(n) as in Theorem 10, and if U is convex containing ϕ0 and the solution
of (2) with data ϕ0, then deg(I − T0,U , 0) = 1.

Proof of Lemma 13:
By Theorem 10, the radial solution with u = ϕ0 on ∂B1 is unique. We let
Tt(u) = v be the solution to the problem

{

∆v = (1−t)v
u2 on B1

v = ϕ0 on ∂B1

so that the unique solution u above is the unique fixed point of T0. From
u we can scale to ũ = u(

√
1− tx) which satisfies ∆ũ = 1−t

ũ and is unique

relative to its boundary data, ũ = u(
√
1− t) < ϕ0 on ∂B1. We may then

geometrically scale ũ to get û uniquely solving ∆û = 1−t
û and û = ϕ0

on ∂B1. Note that û > u on B1. Thus, Tt has a unique fixed point for
all t, and in our Leray–Schauder degree setup, there are no fixed points
of Tt on the boundary of U for any convex U containing u and ϕ0. So,
deg(I − T0,U , 0) = deg(I − T1,U , 0). But T1 ≡ C. So, deg(I − T1,U , 0) =
deg(I − C,U , 0) = deg(I,U , C) = 1.

Lemma 14. There exists ǫ(Ω) such that if ϕ1 ≤ ǫ is boundary data on a
domain Ω in R

n, then no solution with boundary data φ1 exists and deg(I −
T1,U , 0) = 0.

Proof: Lemma 14 follows easily from part 2 of Lemma 7

Lemma 15. If Ω is an arbitrary domain and the function g is chosen to be
the maximum of a finite collection of subsolutions, i.e. U = {u ∈ C2,α : u >
g1, . . . , u > gk, |u|2,α < Mδ} with ∆gk ≥ 1

gk
, and if ϕ1 > max gk is boundary

data on Ω, then deg(I − T1,U , 0) = 1.
6



Proof: Consider again the map Tt(u) = v where v is the solution of
{

∆v = tv
u2 on Ω

v = ϕ0 on ∂Ω

Since T0 is constant, it has degree one. Suppose for some t that Tt has a
fixed point u in ∂U . Then ∆u = t

u , and for some gj , we have u ≥ gj and
u(x0) = gj(x0) for some x0. Then,

∆(u− gj) ≤
tgj − u

ugj
≤ 0 u− gj ≥ 0 on Ω.

So u− gj has a zero minimum, contradicting the Hopf Maximum Principle.
Thus, deg(I − T1,U , 0) = 1.

We now outline a general method for producing “singular sequences” of
positive solutions to (2) with minimum tending to zero. In the application
of the degree, let us choose Ω = B1 ⊂ R

n. Let g = δj > 0 so that U = {u ∈
C2,α : u > δj, |u|2,α < Mδj}, and let δj ց 0. Using Lemmas 13 and 14, we
may take ϕt to be any homotopy of boundary data between ϕ0 = C ≥ C(n)
a large constant and ϕ0 ≤ ǫ small. Then since deg(I − T0,U , 0) = 1 and
deg(I − T1,U , 0) = 0, there must exist tj ∈ (0, 1) and a fixed point uj ∈ ∂U
which solves

{

∆uj = 1
uj

on B1

uj = ϕtj on ∂B1

with min
B1

uj = δj . Then the sequence uj is a “singular sequence” in the sense

that minuj → 0. If uj → u uniformly with u ≥ 0 and minu = 0, then u is a
singular solution. Notice that if ϕt ∈ C1 is bounded, then we at least have
a subsequence j′ and a t0 with ϕtj′ → ϕt0 . However, we do not yet have the

necessary continuity estimates on uj to get a singular limit u.
In the case n = 2, since the uj are in particular subharmonic, we can use

the “log trick” (See Corollary 24 below) to show that
∫

Bρ

|Duj |2 ≤
C

| log ρ|
uniformly as ρ → 0, which is just short of a modulus of continuity estimate
and also shows the uj are uniformly of vanishing mean oscillation as in [19].
Even in dimension 2, subharmonicity cannot be sufficient for a continuity
estimate. For example, the functions uǫ(x) = |x|ǫ for ǫ > 0 are nonnegative,
uniformly bounded on B1 ⊂ R

2, and subharmonic, yet do not satisfy any
continuity estimate.

5. General Facts about Maximal Solutions

A maximal solution u of ∆u = 1
u satisfies the property that v ≤ u for any

other solution v with the same boundary data as u. We show in Lemma 17
below that whenever a subsolution exists for fixed boundary data, there is
also a maximal solution with that boundary data. It turns out that the
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maximal solution is also the unique stable solution. The existence of max-
imal solutions can be achieved by the usual method of sub/supersolutions
(see [5]). We give an alternative degree method.

We will consistently use the Leray–Schauder degree with the operator
Tt(u) = v, where v is the solution of

{

∆v = v
u2

v|∂Ω = ϕt
.

Lemma 16. For a nonempty finite set of positive subsolutions uj with
boundary data ϕ1, there is a solution u with boundary data ϕ1 such that
u ≥ uj for all j.

Proof: Consider the open set

U =
⋂

j

{

u ∈ C2,α : u(x) > uj(x), |u|2,α < Mδ

}

in C2,α(Ω), where all uj > δ and Mδ is chosen according to Lemma 12.
Take data ϕ0 > ϕ1 and let ϕt be any smooth decreasing homotopy from
ϕ0 to ϕ1. By Lemma 15, deg(I − Tt,U , 0) = 1 for all t < 1, and thus
there exist solutions ut ∈ U for all t < 1. Consider any sequence tj ր 1,
and corresponding solutions utj . Since all of these functions are uniformly

bounded below, the Schauder estimates give us a uniform C3 bound, so
by Arzela–Ascoli, a subsequence utk −→ u ∈ Ū in C2,α, and ∆u = 1/u,
u|∂Ω = ϕ1, u ≥ uj ∀j.

Lemma 17. If there is a positive subsolution u0 to ∆u = 1
u on Ω with

boundary data ϕ0, and if ϕ ≥ ϕ0, then there is a unique maximal solution
with boundary data ϕ.

Proof: Consider the collection C of all solutions u ≥ u0 with boundary data
ϕ. By Lemma 15, this collection is nonempty. C is partially ordered by the
relation uα ≤ uβ on Ω. By the Hausdorff Maximality Theorem, there exists
a maximal totally ordered subset S. For any x0 ∈ Ω let uα, uβ ∈ S with
uα 6= uβ and uα ≤ uβ. By the maximum principle, we have uα(x0) < uβ(x0).
Thus, S can be indexed by uα(x0). That is, S = {uα}α∈A where α = uα(x0).
By the maximum principle, since ∆uα ≥ 0, uα ≤ supϕ for all α, so A is
bounded above. Let α∞ = supA α. We claim that α∞ ∈ A, and uα∞

is a
maximal solution. Consider uαj ∈ S with αj ր α∞ and uαj ≤ uαj+1

. Since
these are uniformly bounded below and monotone increasing, the Schauder
estimates and Arzela–Ascoli give a function uα∞

with uαj ր uα∞
, where

uα∞
(x0) = α∞ and uα∞

is a solution. For any uα ∈ S, choose j large
so that αj > α. Then uαj ≥ uα by total ordering, and uα∞

≥ uαj since
the sequence was monotone. Thus, uα∞

is an upper bound for S, so by
maximality uα∞

∈ S. To see that uα∞
is a maximal solution, suppose v is

another solution with v(x1) > uα∞
(x1) for some x1 ∈ Ω. By Lemma 16,
8



there exists a solution ṽ with ṽ ≥ uα∞
and ṽ ≥ v. Also by the hypothesis on

x1, ṽ 6= uα∞
. But then S ∪{ṽ} is totally ordered, contradicting maximality.

Lemma 18. If ϕ0 < ϕ1, and u0, u1 are maximal solutions with boundary
data ϕ0 and ϕ1 respectively, then u0 < u1.

Proof: By Lemma 15, there exists a solution u to ∆u = 1
u with data ϕ1 and

u > u0, since u0 is a subsolution. Since u1 is maximal, u1 ≥ u > u0.

Lemma 19. If u is a maximal solution on Ω and Ω̃ ⊂ Ω is a subdomain
with continuous boundary, then u restricted to Ω̃ is a maximal solution with
respect to its boundary data on ∂Ω̃.

Proof: Suppose not. Then there is a maximal solution v on Ω̃ with boundary
data u and v > u on Ω̃. Let U be the open set

U =
{

w ∈ C2,α : w > u on Ω, w > v on Ω̃, |w|2,α < Mδ

}

.

Let ϕ1 be any boundary data on ∂Ω greater than the boundary data ϕ0 of
u. As in the proof of Lemma 15, consider the operator Tt(w) = w̃ where w̃
is the solution of

{

∆w̃ = tw̃
w2 on Ω

w̃ = ϕ1 on ∂Ω

Suppose w is a fixed point of Tt in Ū . By the Hopf Maximum Principle,
w > u on Ω. Thus, w > u on ∂Ω̃. Then we may apply the maximum
principle on Ω̃, so w > v on Ω̃. Thus, w cannot be on the boundary of U .
So, deg(I − T1,U , 0) = deg(I − T0,U , 0) = 1. Then, for any boundary data
ϕt > ϕ0, there exists a solution w of ∆w = 1

w on Ω with w = ϕt on ∂Ω, w > u

on Ω, and w > v on Ω̃. Now we let ϕt be any smooth decreasing homotopy
of boundary data approaching ϕ0. Let wt be the corresponding solutions
whose existence we just proved. By the Schauder estimates and Arzela–
Ascoli, there exists a sequence wtj with tj → 0 such that wtj converges to a

solution w with boundary data ϕ0, and with w ≥ u on Ω and w ≥ v on Ω̃.
Thus, w ≥ v > u on Ω̃, contradicting the maximality of u.

6. Stability of Maximal Solutions

Recall that stable solutions satisfy the stability inequality (6).

Lemma 20. Maximal solutions of ∆u = 1/u are stable.

Proof: Let u0 be a maximal solution with data ϕ0, and let ϕt = ϕ0 + t for
t > 0. By Lemma 17, there exist maximal solutions ut with data ϕt and
ut > u0. By the Schauder estimates the ut are also bounded in C4. For a
sequence tj ց 0, we then have a subsequence such that utj −→ ũ0 in C2,α,

9



with ũ0 ≥ u0, and by maximality ũ0 = u0. Let δj = maxΩ(utj −u0), and let

vj =
utj−u0

δj
. Then

∆vj =
u0 − utj
u0utj δj

.

By the Schauder estimates, vj is bounded in C2,α, so by Arzela–Ascoli, a
subsequence vj −→ v in C2. The function v is nonnegative, not identically
0, has nonnegative boundary data, and satisfies the linearized equation ∆v+
1
u2
0

v = 0. By the maximum principle, v > 0 in Ω. The weak equation for v

is then
∫

Ω
Dv ·Dζ =

∫

Ω

ζv

u20
.

We use the test function ζ2

v for ζ, and Cauchy–Schwartz to get the desired
inequality

∫

ζ2

u20
≤
∫

|Dζ|2

for all compactly supported ζ.

In fact, the maximal solution for given boundary data is the only stable
solution.

Lemma 21. The maximal solution for given boundary data ϕ is the unique
stable solution with data ϕ.

Proof: Let u be the maximal solution and let v be any other positive solution.
Then u = v + w where w > 0 in Ω and w = 0 on ∂Ω. Thus,

∆w =
1

v + w
− 1

v
=

−w

v(v +w)
>

−w

v2

and so, integrating by parts with w,

∫

Ω

w2

v2
>

∫

Ω
w∆w =

∫

Ω
|Dw|2

and v cannot be stable.
Theorem 1 now follows from Lemmas 17, 20, and 21

7. Hölder Continuity of Stable Solutions

We now prove a main result that stable solutions are locally uniformly
Hölder continuous.

Theorem 22. For a stable solution u with boundary data ϕ ≤ M , and for
every 0 < α < 1 and Ω̃ ⊂⊂ Ω, there is a constant C(n,M,α, Ω̃) such that

for all x, y ∈ Ω̃, |u(x)− u(y)| ≤ C|x− y|α.
10



Proof: Let u be a smooth positive stable solution on Ω. The weak form of
the equation is

(8)

∫

Du ·Dζ = −
∫

ζ

u

for ζ compactly supported. Here and throughout the rest of the proof, all
integrals are taken over the domain Ω. Substituting uζ2 for ζ in (8) yields

∫

|Du|2ζ2 + 2

∫

uζDu ·Dζ = −
∫

ζ2

and applying the Cauchy–Schwartz inequality, we get

(9)

∫

ζ2
(

1

2
|Du|2 + 1

)

≤ 2

∫

u2|Dζ|2.

Substituting ζ2

u in (8) and again using Cauchy–Schwartz gives

(10)

∫ |Du|2
u2

ζ2 ≤ 2

∫

ζ2

u2
+ 4

∫

|Dζ|2.

Differentiating the equation with respect to xl, and using subscripts to de-
note differentiation, we have ∆ul = − ul

u2 , and thus the weak equation
∫

uliζi =

∫

ul
u2

ζ,

where we sum on the repeated index i. Note that this equation is equivalent
to using ζl in (8) and integrating by parts. Substituting ulζ

2 for ζ gives
∫

uliuliζ
2 + 2

∫

uliulζζi =

∫

u2l
u2

ζ2,

or, after summing on l,

(11)

∫

|D2u|2ζ2 + 2

∫

ululiζζi =

∫ |Du|2
u2

ζ2

It is now convenient to use the variable v =
√

1 + |Du|2, where
vi =

1

v
ujuji, |vi|2 ≤

∑

j

|uij |2,

and
|Dv|2 ≤

∑

ij

|uij |2 = |D2u|2.

Also, vvi = ululi. Replacing in equation (11) gives

(12)

∫

|Dv|2ζ2 + 2

∫

vviζζi ≤
∫ |Du|2

u2
ζ2.

If u is stable, it additionally satisfies (6),
∫

ζ2

u2
≤
∫

|Dζ|2.
11



Now we can combine our inequalities:
∫

|Dv|2ζ2 + 2
∫

vviζζi ≤
∫ |Du|2

u2 ζ2 by (12)

≤ 2
∫ ζ2

u2 + 4
∫

|Dζ|2 by (10)
≤ 6

∫

|Dζ|2 by (6)

and we get the main inequality for stable solutions:

(13)

∫

|Dv|2ζ2 + 2

∫

vviζζi ≤ 6

∫

|Dζ|2

We use this and the Sobolev Inequality to iteratively estimate integrals
∫

vqζβ for q ≥ 0. In fact, the estimate for q = 2 and β = 2 is contained
in (9). For q > 2, replace ζ in (13) by vqζ to get

∫

|Dv|2v2qζ2 + 2q

∫

|Dv|2v2qζ2 + 2

∫

v2q+1ζviζi ≤

≤ 6

∫

∣

∣qvq−1ζDv + vqDζ
∣

∣

2

and so
∫

|Dv|2v2qζ2 + 2q

∫

|Dv|2v2qζ2 ≤(14)

2

∫

|Dv||Dζ|v2q+1ζ + 12q2
∫

|Dv|2v2q−2ζ2 + 12

∫

v2q|Dζ|2

where we have used the squared triangle inequality (a+ b)2 ≤ 2a2+2b2. We
use the Cauchy–Schwartz inequality to eliminate the second term on the top
line of (14) with the first term on the bottom line.

∫

|Dv|2v2qζ2 ≤ 1

2q

∫

v2q+2|Dζ|2 + 12

∫

v2q|Dζ|2 +(15)

+ 12q2
∫

|Dv|2v2q−2ζ2

Notice at this point that the last term on the right side of the inequality is
the same as the left hand side with a lower power of v. So, we can apply (15)
to that term iteratively until 2q − 2 is less than zero, and use the fact that
v ≥ 1 to get

(16)

∫

|Dv|2v2qζ2 ≤ C(n, q)

∫

v2q+2|Dζ|2.

We rewrite the equation above as

(17)

∫

|D(vq+1ζ)|2 ≤ C(n, q)

∫

v2q+2|Dζ|2,

replace q by q − 1, and apply the Sobolev inequality to get

(18)

(
∫

v2qκζ2κ
)

1

κ

≤ C(n, q)

∫

v2q|Dζ|2 for q ≥ 1

12



with κ = n
n−2 or κ = 2 if n = 2. We now replace ζ by ζβ, and we fix ζ so

that |Dζ|2 is bounded pointwise by C(Ω̃) and ζ = 1 on Ω̃.

(19)

(
∫

v2qκζ2κβ
)

1

2qκ

≤ C

(
∫

v2qζ2β−2

)
1

2q

where the constant C now depends on n, q, Ω̃, and β. Now we iterate the
inequality (19) with q = 1, κ, κ2, . . . and corresponding β = 2, β1, β2, . . .,
where βj = 1 + κ+ κ2 + · · ·+ 2κj . Then we have

(20)

(
∫

v2κ
m
ζ2(2κ

m+κm−1+···+κ)

)
1

2κm

≤ C(n,m, Ω̃)

(
∫

v2ζ2
)

1

2

.

By (9),

(
∫

v2κ
m
ζ2(2κ

m+κm−1+···+κ)

)
1

2κm

≤ C(n,m, Ω̃)

(
∫

u2
)

1

2

≤ C(n,m, Ω̃,M)

So, on the subdomain Ω̃ we now have a bound for the Sobolev norm:

(21) ‖u‖W 1,2κm (Ω̃) ≤ C(n,m, Ω̃,M)

By the Sobolev Imbedding Theorem, to each α in the statement of the
theorem there corresponds an m in equation (21) depending on n and α
such that we have a bound on |u|C0,α(Ω̃). This completes the proof.

Remark: This theorem may be just short of a sharp interior regularity
estimate, since the known conical example solutions are at worst Lipschitz.
For equation (4) with 0 < α < 1, a sharp estimate for solutions of the free
boundary problem minimizing the variational integral was given by Phillips
in [12].

8. Lower Bounds for Stable Solutions in Low Dimensions

Recall that for n ≥ 7, the radial solutions are unique for their Dirichlet
boundary data, therefore maximal and stable. In particular, the conical
solution is a stable singular solution for n ≥ 7. However, for 2 ≤ n ≤ 6, the
conical solution does not satisfy the stability inequality (6) by Lemma 11
and is not maximal for its boundary data. Thus it cannot be the limit of
stable radial solutions and, for 2 ≤ n ≤ 6, the stable radial solutions are
bounded below by a constant. The next result generalizes this lower bound
to all stable solutions in a compact subdomain. Theorem 25 gives the same
result on the entire domain.

Theorem 23. Let 2 ≤ n ≤ 6 and let u be a positive stable solution of
∆u = 1

u on the domain Ω with u ≤ M , and let Ω̃ ⊂⊂ Ω be a compact
13



subdomain. Then there is a constant δ = δ(n, Ω̃,M) > 0 such that u ≥ δ on

Ω̃.

Proof: The proof follows from the estimate

(22)

∫

Ω̃
u−p ≤ C(Ω̃, p) for p < 4 + 2

√
2.

Notice that the restriction on p allows for p ≥ n as long as n ≤ 6. For
u > 0 smooth, we use the stability inequality (6) with the test function
ζu−q. Then for ǫ > 0,
∫

u−2q−2ζ2 ≤
∫

|u−qDζ − qu−q−1ζDu|2

≤
∫

u−2q|Dζ|2 + 2|q|u−2q−1ζ|Du||Dζ|+ q2u−2q−2ζ2|Du|2

≤
(

1 +
|q|
2ǫ

)
∫

u−2q|Dζ|2 +
(

q2 + 2|q|ǫ
)

∫

u−2q−2ζ2|Du|2(23)

Again, all integrals in this proof are taken over the domain Ω. Notice that
in every integral the integrand has compact support in Ω. We will also use
the weak form of the equation (8) with the test function ζ2u−β, β > 0 to
get

(24) β

∫

u−β−1ζ2|Du|2 ≤
∫

u−β−1ζ2 + 2

∫

u−βζ|Du||Dζ|

and using Cauchy-Schwartz, for any δ > 0,

(25) (β − 2δ)

∫

u−β−1ζ2|Du|2 ≤
∫

u−β−1ζ2 +
1

2δ

∫

u−β+1|Dζ|2

Replacing β by 2q + 1 and combining with (23), we get for q > −1
2 and

ǫ, δ > 0,

∫

u−2q−2ζ2 ≤
(

1 +
|q|
2ǫ

+
q2 + 2|q|ǫ

2δ (2q + 1− 2δ)

)
∫

u−2q|Dζ|2 +

+

(

q2 + 2|q|ǫ
2q + 1− 2δ

)
∫

u−2q−2ζ2

Then for 1 −
√
2 < q < 1 +

√
2 and ǫ and δ small enough depending on q,

the coefficient in the last term above is less than one. So,

(26)

∫

ζ2u−2q−2 ≤ C(q)

∫

u−2q|Dζ|2

and now assuming q > 0, we replace ζ by ζq+1:

(27)

∫
(

ζ

u

)2q+2

≤ C(q)

∫
(

ζ

u

)2q

|Dζ|2

14



Now we use Young’s inequality in the form

ab ≤ ǫα

α
aα +

α− 1

αǫ
α

α−1

b
α

α−1

with α = q+1
q and replace q by p

2 − 1. Then for 2 < p < 4 + 2
√
2,

(28)

∫
(

ζ

u

)p

≤ C(p)

∫

|Dζ|p

So we get equation (22) for any p < 4 + 2
√
2. We now recall our continuity

estimate for stable solutions, that for any α < 1, the Hölder norm |u|0,α,Ω̃ ≤
C(Ω̃, α,M).

Now let Ω̃ ⊂ Ω̂ ⊂⊂ Ω with dist(Ω̃, ∂Ω̂) > ρ, so that for any x ∈ Ω̃, Bρ(x) ⊂
Ω̂. For x0 ∈ Ω̃, let r = |x − x0| and suppose u(x0) = ǫ. Then for x ∈
Bρ(x0) ⊂ Ω̂, u(x) ≤ ǫ+ C(Ω̂, α,M)rα. Then
∫

Ω̂
u−p ≥

∫

Bρ(x0)
u−p ≥

∫

Bρ(x0)
(ǫ+ Crα)−p ≥ nωn

∫ ρ

0
(ǫ+Crα)−p rn−1dr

We may choose α and p large enough that n− 1−αp < −1 for n ≤ 6. Then
for ǫ small enough, we have a contradiction of equation (22) with Ω̂ in place

of Ω̃. This completes the theorem.

We note that we did not need to use the continuity estimate in the above
proof. In fact, equation (22) together with the Lp estimates gives an estimate

for u ∈ C
1,1−n

p (Ω̃) for n ≤ 6 and p < 4+2
√
2. We use a similar method below

to get a lower bound on the whole domain. First we present an interesting
corollary.

Corollary 24. There are no complete stable solutions of ∆u = 1
u on all of

R
n for 2 ≤ n ≤ 6.

Proof: Suppose not. From (28), for 2 ≤ n ≤ 6 we have
∫
(

ζ

u

)n

≤ C(n)

∫

|Dζ|n

We choose ζ equal to one on the ball BR, equal to zero outside BR2 , and

equal to 2− log |x|
logR on BR2 \BR. Then, using the variable r = |x|, we have

∫

BR

1

un
≤ C

∫ R2

R

rn−1

rn(logR)n
dr ≤ C

(logR)n−1

and the result follows letting R → ∞. We thank Neshan Wickramasekera
for pointing out this trick, which also appeared in reference to the Bernstein
Theorem in [17].

Theorem 25. Let 2 ≤ n ≤ 6 and let u be a positive stable solution of
∆u = 1

u on the C1,1 domain Ω, with boundary data ϕ ∈ C2,α(Ω), |ϕ|2,α ≤ M ,
and ϕ ≥ ǫ > 0. Then there is a constant δ = δ(Ω,M, ǫ) such that u ≥ δ on
Ω.

15



The theorem follows from the following lemma.

Lemma 26. Let 2 ≤ n ≤ 6 and let u be a positive stable solution of ∆u = 1
u

on the domain Ω, with Lipschitz boundary data ϕ, and ϕ ≥ ǫ > 0. Let
2 ≤ p < 4 + 2

√
2. Then there is a constant C(p, |Dϕ|) such that

∫

Ω

1

up
≤ C|Ω|

ǫp
.

Remark: Notice that in Lemma 26 there is no assumption on the smooth-
ness of the domain.

Proof: Let ǫ > 0 as in the statement and assume u > 0 is a stable solution.
Let η > 0 and first consider the stability inequality with the test function
ζ = (ϕ− u− η)

+
:

(29)

∫

(ϕ− u− η)2
+

u2
≤
∫

|D (ϕ− u− η)
+
|2

So,
∫

|D (ϕ− u− η)
+
|2 =

∫

Dϕ ·D (ϕ− u− η)
+
−
∫

Du ·D (ϕ− u− η)
+

=

∫

Dϕ ·D (ϕ− u− η)
+
+

∫

(ϕ− u− η)
+

u

≤
∫

|Dϕ|2 + 1

4

∫

|D (ϕ− u− η)
+
|2 + 1

2

∫ (ϕ− u− η)2
+

u2
+

1

2

∫

1

≤
∫

|Dϕ|2 + 3

4

∫

|D (ϕ− u− η)
+
|2 + 1

2

∫

1 (by (29))

So,

(30)

∫

|D (ϕ− u− η)
+
|2 ≤ C

∫

(

1 + |Dϕ|2
)

Now we use (27) with the same test function, and replace q by p/2 − 1 so
that for 2 < p < 4 + 2

√
2,

(31)

∫

(

(ϕ− u− η)
+

u

)p

≤ C(p)

∫

(

(ϕ− u− η)
+

u

)p−2

|D (ϕ− u) |2.

Recall from equation (25) that for β > 1,

∫

u−βζ2|Du|2 ≤ C

∫

u−βζ2 + C

∫

u2−β |Dζ|2.
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So, assuming p > 4, we replace β by p − 2 and ζ by (ϕ− u− η)
p−2

2

+
and we

have

∫

(

(ϕ− u− η)
+

u

)p−2

|Du|2 ≤ C

∫

(

(ϕ− u− η)
+

u

)p−2

+ C

∫

(

(ϕ− u− η)
+

u

)p−4

|D (ϕ− u− η)
+
|2

We use this with (31) to get

∫

(

(ϕ− u− η)
+

u

)p

+

∫

(

(ϕ− u− η)
+

u

)p−2

|D (ϕ− u) |2 ≤

C

∫

(

(ϕ− u− η)
+

u

)p−2

+ C

∫

(

(ϕ− u− η)
+

u

)p−4

|D (ϕ− u) |2

where the constant C now depends also on |Dϕ|. Now we can apply Young’s
inequality twice. Then

∫

(ϕ− u− η)p
+

up
+

(ϕ− u− η)p−2
+

up−2
|D (ϕ− u) |2 ≤C

∫

1 + |D (ϕ− u) |2

We then use our estimate (30), and let η tend to zero.

∫

(

(ϕ− u)
+

u

)p

≤ C|Ω|

Now for ϕ > 2ǫ,

1

up
≤ 1

ǫp

((

(ϕ− u)
+

u

)p

+ 1

)

so
∫

1

up
≤ (C + 1)|Ω|

ǫp

as required.

Remark: Notice that for p = 2,we get a stronger result y removing the
dependence ov C on |Dϕ| and using inequalities (29) and (30). Namely,

(32)

∫

Ω

1

u2
≤ C

ǫ2

∫

Ω

(

1 + |Dϕ|2
)

where we may assume that ϕ is merely in W 1,2(Ω).
17



Proof of Theorem 25: The lemma demonstrates the inequality

(33)

∫

1

up
≤ C(p,Ω, ǫ, |Dϕ|)

But of course 1
up = (∆u)p by the equation, and we can apply the Lp estimates

(see [9] 9.14) related to the Calderon–Zygmund Inequality. So,

‖u‖W 2,p ≤ C(p,Ω,M, ǫ)

and by the extended Sobolev Embedding Theorem,

|u|C1,1−n/p ≤ C(p,Ω,M, ǫ)

which in particular implies a uniform Lipschitz bound on u. Then if u
achieves the value δ at a point x0 ∈ Ω,

∫

1

up
≥
∫

1

(δ + Cr)p

where r = x− x0, a contradiction of (33) for δ < δ(p,Ω,M, ǫ) and p > n.

Remark: With this lower bound we in fact have complete regularity of
stable solutions for n ≤ 6. From u ∈ C1,α and thus (by the lower bound)
1
u ∈ C1,α, we can apply Holder estimates to get continuous derivatives of all
orders on the interior of the domain.

9. Hausdorff Dimension of Singular Sets of Stable Solutions

We use Hausdorff dimension as described in [15].

Theorem 27. Suppose u is a limit of positive stable solutions of ∆u = 1
u on

a domain Ω with singular set A = {u = 0}. Then the Hausdorff dimension

dimH(A) ≤ n− 4− 2
√
2.

Proof: We will show for any ball Bρ of radius ρ whose closure is contained in

Ω, and any β > n−4−2
√
2, that the Hausdorff MeasureHβ

(

A ∩Bρ/2

)

< ∞.
First, for any δ with 0 < δ < ρ/4, we cover A ∩ Bρ/2 by cubes Qj of side

length 2δ with disjoint interiors, j = 1, . . . , N . Let p < 4 + 2
√
2. By (22),

we have
∫

⋃

Qj

1

up
≤
∫

Bρ/2

1

up
≤ K < ∞

with K independent of δ. By Theorem 22, for any 0 < α < 1, we have
u(x) ≤ C (dist(x,A))α. Thus, assuming all the Qj intersect A,

∫

Qj

C

up
≥
∫

Qj

1

(dist(x,A))αp
≥
∫

0<xi<2δ

1
(

x21 + · · · x2n
)αp/2

≥

≥ 1

2n

∫ δ

0

nωnr
n−1

rαp
dr ≥ nωn

2n(n− αp)
δn−αp

18



Choose α so that β = n− αp. Then we have

Hβ
δ

(

A ∩Bρ/2

)

≤ C ′∑

Qj

δβ ≤ C ′′K < ∞

independent of δ, and the result follows.

Remark: Recall that the analogous equation (4) with 0 < α < 1 has actual
minimizers for the variational problem. In [13], Phillips proved a Hausdorff
estimate on the free boundary for minimizers. Note that in the free boundary
problem, the solution is allowed to vanish completely and not satisfy the
PDE on an interior set of positive measure. The technique above gives an
estimate on the size of the singular set of a singular solution which is a limit
of positive solutions satisfying the PDE on the whole domain.

Remark: The major results of this paper extend to the equation (4) with
0 < α < 1, except for two points. Solutions of (4) which achieve the value
zero need not be singular, and the results of sections 8 and 9 are more
complicated, with dimensions depending on α.
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