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Abstract

Weakly-irreducible not irreducible subalgebras of so(1, n + 1) were classified by

L. Berard Bergery and A. Ikemakhen. In the present paper a geometrical proof of this re-

sult is given. Transitively acting isometry groups of Lobachevskian spaces and transitively

acting similarity transformation groups of Euclidean spaces are classified.

Introduction

In 1952 A. Borel and A. Lichnerowicz showed that the holonomy group of a Riemannian man-

ifold is a product of irreducible holonomy groups of Riemannian manifolds, see [9]. The main

reason is the following. If a subgroup G ⊂ SO(n) preserves a proper vector subspace, then G

preserves also its orthogonal complement U⊥ and we have Rn = U ⊕ U⊥, i.e. the group G is

totally reducible. In 1955 M. Berger classified possible connected irreducible holonomy groups

of Riemannian manifolds, see [8].

The Borel and Lichnerowicz theorem does not work in the pseudo-Riemannian case. Suppose

a subgroup G ⊂ SO(r, s) preserves a proper vector subspace U ⊂ R
r,s such that the restriction

of the inner product to U is degenerate, then U ∩ U⊥ 6= {0} and we have no orthogonal

decomposition of Rr,s into G-irreducible subspaces. A subgroup G ⊂ SO(r, s) is called weakly-

irreducible if it preserves no nondegenerate proper subspace of Rr,s. There is Wu’s theorem

that states that the holonomy group of a pseudo-Riemannian manifold is a product of weakly-

irreducible holonomy groups of pseudo-Riemannian manifolds, see [19]. If a holonomy group is

irreducible, then it is weakly-irreducible. In [8] M. Berger gave a classification of irreducible

holonomy groups for pseudo-Riemannian manifolds. In particular, the only connected irreducible
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holonomy group of Lorentzian manifolds is SO0(1, n+ 1), see [11] and [10] for direct proofs of

this fact.

There is still no classification of weakly-irreducible not irreducible holonomy groups of pseudo-

Riemannian manifolds. The first step towards a classification of weakly-irreducible not ir-

reducible holonomy groups of Lorentzian manifolds was made by L. Berard Bergery and A.

Ikemakhen, who classified weakly-irreducible not irreducible subalgebras of so(1, n+1), see [6].

More precisely, they divided weakly-irreducible not irreducible subalgebras of so(1, n+ 1) into

4 types. The proof of this result was purely algebraical.

We introduce a geometrical proof of the result of L. Berard Bergery and A. Ikemakhen. We

consider an n+2-dimensional Minkowski vector space (V, η) and fix an isotropic vector p ∈ V .

We denote by SO(V )Rp the Lie subgroup of SO(V ) that preserves the isotropic line Rp. We

denote by E a vector subspace E ⊂ V such that (Rp)⊥η = Rp ⊕ E, and by q an isotropic

vector q ∈ V such that η(q, E) = 0 and η(p, q) = 1. The vector space E is an Euclidean

space. We consider the vector model of the n + 1-dimensional Lobachevskian space Ln+1 and

its boundary ∂Ln+1, which is diffeomorphic to the n-dimensional unit sphere. We have the

natural isomorphisms

SO(V ) ≃ Isom Ln+1 ≃ Conf ∂Ln+1 and SO(V )Rp ≃ Sim E,

where Isom Ln+1 is the group of all isometries of Ln+1, Conf ∂Ln+1 is the group of all conformal

transformations of ∂Ln+1 and Sim E is the group of all similarity transformations of E. We

identify the set ∂Ln+1\{Rp} with the Euclidean space E. Then any subgroup G ⊂ SO(V )Rp

acts on E, moreover we have G ⊂ Sim E. We prove that a connected subgroup G ⊂ SO(V )Rp is

weakly-irreducible iff the corresponding subgroup G ⊂ Sim E under the isomorphism SO(V )Rp ≃
Sim E acts transitively on E. This gives us a one-to-one correspondence between connected

weakly-irreducibly acting subgroups of SO(V )Rp and connected transitively acting subgroups of

Sim E. Using a description for connected transitive subgroups of Sim E (see [2], [3]), we divide

such subgroups into 4 types. We show that the corresponding weakly-irreducible subgroups of

SO(V )Rp have the same type introduced by L. Berard Bergery and A. Ikemakhen.

We also classify transitively acting isometry groups of the Lobachevskian space Ln+1. We

show that these groups are exhausted by SO0(V ) and by the weakly-irreducible not irreducible

subgroups of SO(V )Rp of type 1 and type 3.

Remark In another paper we will use a similar ideas for complex Lobachevskian space in

order to classify connected weakly-irreducible not irreducible subgroups of SU(1, n + 1) ⊂
SO(2, 2n+ 2).

Acknowledgments. I wish to thank D.V. Alekseevsky for his useful suggestions. Also I

would like to express my gratitude to Helga Baum and M.V. Losik for help in preparation of

this paper.
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1 Results of L. Berard Bergery and A. Ikemakhen

Let (V, η) be a Minkowski space of dimension n + 2, where η is a metric on V of signature

(1, n + 1). We fix a basis p, e1, ..., en, q of V with respect to which the Gram matrix of η has

the form









0 0 1

0 En 0

1 0 0









, where En is the n-dimensional identity matrix.

Let E ⊂ V be the vector subspace spanned by e1, ..., en. The vector space E is an Euclidean

space with respect to the inner product η|E.
Denote by so(V ) the Lie algebra of all η-skew symmetric endomorphisms of V and by so(V )Rp

the subalgebra of so(V ) that preserves the line Rp.

The Lie algebra so(V )Rp can be identified with the following algebra of matrices:

so(V )Rp =























a −X t 0

0 A X

0 0 −a









: a ∈ R, X ∈ E, A ∈ so(E)















.

The above matrix can be identified with the triple (a, A,X). Define the following subalgebras

of so(V )Rp, A = {(a, 0, 0) : a ∈ R}, K = {(0, A, 0) : A ∈ so(E)} and N = {(0, 0, X) : X ∈ E}.
We see that A commutes with K, and N is an ideal. We have the decomposition

so(V )Rp = (A⊕K)⋉N .

A subalgebra g ⊂ so(V ) is called irreducible if it preserves no proper subspace of V ; g is called

weakly-irreducible if it preserves no nondegenerate proper subspace of V .

Obviously, if g ⊂ so(V ) is irreducible, then it is weakly-irreducible. If g ⊂ so(V ) preserves

a degenerate proper subspace U ⊂ V , then it preserves the isotropic line U
⋂

U⊥; any such

algebra is conjugated to a subalgebra of so(V )Rp.

Let B ⊂ so(E) be a subalgebra. Recall that B is a compact Lie algebra and we have the

decomposition B = B′ ⊕ z(B), where B′ is the commutant of B and z(B) is the center of B.
The following result is due to L. Berard Bergery and A. Ikemakhen.

Theorem Suppose g ⊂ so(V )Rp is a weakly-irreducible subalgebra. Then g belongs to one of

the following types

type 1. g = (A⊕ B)⋉N , where B ⊂ so(E) is a subalgebra;

type 2. g = B ⋉N ;

type 3. g = (B′ ⊕{ϕ(A) +A : A ∈ z(B)})⋉N , where ϕ : z(B) → A is a non-zero linear map;

type 4. g = (B′ ⊕ {ψ(A) + A : A ∈ z(B)}) ⋉ NW , where we have a non-trivial orthogonal

decomposition E = U ⊕W such that B ⊂ so(W ); NW = {(0, 0, X) : X ∈ W};
NU = {(0, 0, X) : X ∈ U} and ψ : z(B) → NU is a surjective linear map.
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Denote by SO(V ) the Lie group of all automorphisms of V that preserve the form η, and with

det f = 1, and by SO(V )Rp the Lie subgroup of SO(V ) that preserves the isotropic line Rp.

Obviously, so(V ) and so(V )Rp are the Lie algebras of SO(V ) and SO(V )Rp respectively.

By definition, the type of a connected weakly-irreducible Lie subgroup G ⊂ SO(V )Rp is the

type of its Lie algebra g ⊂ so(V )Rp.

2 Transitive similarity transformation groups of Euclidean

spaces

In this section we recall a description for connected transitively acting groups of similarity

transformations and isometries of Euclidean spaces, see [2] or [3].

Let (E, η) be an Euclidean space. A map f : E → E is called a similarity transformation of

E if there exists a λ > 0 such that ‖f(x1) − f(x2)‖ = λ‖x1 − x2‖ for all x1, x2 ∈ E, where

‖x‖2 = η(x, x). If λ = 1, then f is called an isometry. Denote by Sim E and Isom E the groups

of all similarity transformations and isometries of E respectively. A subgroup G ⊂ Sim E such

that G 6⊂ Isom E is called essential. A subgroup G ⊂ Sim E is called irreducible if it preserves

no proper affine subspace of E.

We need the following theorem from [2] and [3].

Theorem 1 (1) Let G ⊂ Isom E be a connected subgroup that acts transitively on E. Then

there exists a decomposition G = H ⋌F , where H is the stabilizer of a point x ∈ E and F is a

normal subgroup of G that acts simply transitively on E.

(2) Let F ⊂ Isom E be a connected subgroup that acts simply transitively on E. Then there

exists an orthogonal decomposition E = U ⊕W and a Lie groups homomorphism

Ψ : U → SO(W ) such that F = UΨ
⋌W , where

UΨ = {Ψ(u) · u : u ∈ U} ⊂ SO(W )× U

is a group of screw isometries.

(3) Let G ⊂ Sim E be an essential connected subgroup that acts transitively on E. Then

G = (A1×H)⋌F , where A1 ⊂ Sim E is a 1-parameterized essential subgroup that preserves a

point x, H ⊂ Isom E commutes with A1 and preserves the point x, and F is a normal subgroup

of G that acts simply transitively on E.

(4) A connected subgroup G ⊂ Isom E acts irreducibly on E if and only if it acts transitively

on E.

From parts (3) and (4) of the theorem it follows that a connected subgroup G ⊂ Sim E acts

irreducibly on E if and only if it acts transitively on E.
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3 Isometries of Lobachevskian spaces

Let p, e1, ..., en, q be a basis of the vector space V as above. Consider the basis e0, e1, ..., en, en+1

of V , where e0 =
√
2
2
(p− q) and en+1 =

√
2
2
(p+ q). With respect to this basis the Gram matrix

of η has the form

(

−1 0

0 En+1

)

, where En+1 is the n + 1-dimensional identity matrix.

The vector model of the n+ 1-dimensional Lobachevskian space is defined in the following way

Ln+1 = {x ∈ V : η(x, x) = −1, x0 > 0}.

Recall that Ln+1 is an n+ 1-dimensional Riemannian submanifold of V . The tangent space at

a point x ∈ Ln+1 is identified with the vector subspace (x)⊥η ⊂ V and the restriction of the

form η to this subspace is positively definite.

Any element f ∈ SO(V ) preserves the space Ln+1. Moreover, for any f ∈ SO(V ), the restriction

f |Ln+1 is an isometry of Ln+1 and any isometry of Ln+1 can be obtained in this way. Hence we

have the isomorphism

SO(V ) ≃ Isom Ln+1,

where Isom Ln+1 is the group of all isometries of Ln+1.

Consider the light-cone of V ,

C = {x ∈ V : η(x, x) = 0}.

The subset of the n + 1-dimensional projective space PV that consists of all isotropic lines

l ⊂ C is called the boundary of the Lobachevskian space Ln+1 and is denoted by ∂Ln+1.

We identify ∂Ln+1 with the n-dimensional unit sphere Sn in the following way. Consider the

vector subspace E1 = E ⊕ Ren+1. Each isotropic line intersects the hyperplane e0 + E1 at a

unique point. The intersection (e0 + E1) ∩ C is the set

{x ∈ V : x0 = 1, x21 + · · ·+ x2n+1 = 1},

which is the n-dimensional sphere Sn. This gives us the identification ∂Ln+1 ≃ Sn.

Denote by Conf Sn the group of all conformal transformations of Sn. Any transformation

f ∈ SO(V ) takes isotropic lines to isotropic lines. Moreover, under the above identification, we

have f |∂Ln+1 ∈ Conf ∂Ln+1 and any transformation from Conf ∂Ln+1 can be obtained in this

way. Hence we have the isomorphism

SO(V ) ≃ Conf ∂Ln+1.

Suppose f ∈ SO(V )Rp. The corresponding element f ∈ Conf Sn (we denote it by the same

letter) preserves the point p0 = Rp∩(e0+E1). Clearly, p0 =
√
2p. Denote by s0 the stereographic

projection s0 : S
n\{p0} → e0 + E. Since f ∈ Conf Sn, we see that s0 ◦ f ◦ s−1

0 : E → E (here
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we identify e0+E with E) is a similarity transformation of the Euclidean space E. Conversely,

any similarity transformation of E can be obtained in this way. Thus we have the isomorphism

SO(V )Rp ≃ Sim E.

A plane in the Lobachevskian space Ln+1 is the nonempty intersection of Ln+1 and of a vector

subspace U ⊂ V . The intersection Ln+1 ∩ U is not empty if and only if the restriction of the

form η to U has signature (1, dimU − 1). A subgroup G ⊂ Isom Ln+1 is called irreducible if it

preserves no proper plane in Ln+1.

The following theorem is due to F.I. Karpelevich, see [3] or [15].

Theorem 2 Let G be a proper connected closed subgroup of Isom Ln+1. Then G acts irreducibly

on Ln+1 if and only if it preserves an isotropic line l ∈ ∂Ln+1 and acts transitively on the

Euclidean space El = ∂Ln+1\{l}.

Since the holonomy group of a Lorentzian manifold can be not closed, we need an analog of

this theorem for not closed groups. In [11] was proved the following theorem.

Theorem 3 Let G be a connected (non nec. closed) subgroup of SO(V ) that acts weakly-

irreducibly. Then either G acts transitively on Ln+1 or G acts transitively on the Euclidean

space El = ∂Ln+1\{l}.

We will prove the following theorem.

Theorem 4 Let G be a proper connected subgroup of SO(V )Rp. Then G acts weakly-irreducibly

on V if and only if it acts transitively on the Euclidean space E = ∂Ln+1\{Rp}.

Proof. We claim that the subgroup G ⊂ SO(V )Rp acts weakly-irreducibly on V if and only

if the corresponding subgroup G ⊂ Sim E acts irreducibly on E. If G ⊂ SO(V )Rp is not

weakly-irreducible, then it preserves a not degenerate proper subspace U ⊂ V . Since the

orthogonal complement U⊥ ⊂ V is also preserved and either U ∩ C 6= {0} or U⊥ ∩ C 6= {0},
we can assume that U ∩ C 6= {0}. The subgroup G ⊂ Sim E preserves the affine subspace

s0((e0 + E) ∩ C ∩ U) ⊂ E, which is not empty. Conversely, if the subgroup G ⊂ Sim E

preserves a proper affine subspace W ⊂ E, then G ⊂ SO(V )Rp preserves the vector subspace

of V spanned by s−1
0 (W ) ⊂ e0 + E, which is not degenerate. Now the proof of the theorem

follows from parts (3) and (4) of theorem 1. ✷

4 Application to holonomy groups of Lorentzian mani-

folds

Now we consider connected weakly-irreducible not irreducible subgroups of SO(V ). Any such

group G preserves an isotropic line and is conjugated to a subgroup of SO(V )Rp.
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In section 2 we have constructed the isomorphism SO(V )Rp ≃ Sim E. This isomorphism and

theorem 4 gives us a one-to-one correspondence between connected weakly-irreducible subgroups

G ⊂ SO(V )Rp and connected transitively acting subgroups G ⊂ Sim E.

Theorem 5 Let G ⊂ Sim E be a transitively acting connected subgroup. Then G belongs to

one of the following types

type 1. G = (A×H)⋌E, where A = R
+ is the unite component for the group of all dilations of

E about the origin 0, H ⊂ SO(E) is a Lie subgroup, and E is the group of all translations

in E;

type 2. G = H ⋌E;

type 3. G = (AΦ ×H)⋌E, where Φ : A→ SO(E) is a homomorphism and

AΦ = {Φ(a) · a : a ∈ A} ⊂ SO(E)× A

is a group of screw dilations of E;

type 4. G = (H×UΨ)⋌W, where E = U⊕W is an orthogonal decomposition, Ψ : U → SO(W )

is a homomorphism, and

UΨ = {Ψ(u) · u : u ∈ U} ⊂ SO(E)× U

is a group of screw isometries of E.

The corresponding subgroups of SO(V )Rp under the isomorphism SO(V )Rp ≃ Sim E are the

groups of the same type introduced by L. Berard Bergery and A. Ikemakhen.

Proof. Denote by A, K and N the connected Lie subgroups of SO(V )Rp corresponding to the

subalgebras A, K and N ⊂ so(V )Rp. With respect to the basis p, e1, ..., en, q these groups have

the following forms A =























a 0 0

0 id 0

0 0 1
a









: a ∈ R, a > 0















,

K =























1 0 0

0 f 0

0 0 1









: f ∈ SO(E)















and N =























1 −X t −1
2
X tX

0 id X

0 0 1









: X ∈ E















.

We have the decomposition SO0(V )Rp = (A×K)⋌N .

The computation shows that under the isomorphism SO(V )Rp ≃ Sim E

the element









a 0 0

0 id 0

0 0 1
a









∈ A corresponds to the dilation X 7→ aX ,
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the element









1 0 0

0 f 0

0 0 1









∈ K corresponds to f ∈ SO(E), and

the element









1 −X t −1
2
X tX

0 id X

0 0 1









∈ N corresponds to the translation Y 7→ Y +X .

Let a subgroup G ⊂ Sim E act transitively. Denote by the same letter G the corresponding

weakly-irreducible subgroup of SO(V )Rp. Since we are interested in the groups up to conjugacy,

in the theorem 1 we choose x = 0, then H ⊂ SO(E).

For the subgroup G ⊂ SO(V )Rp we have two cases:

case 1. G preserves the vector p;

case 2. G preserves the isotropic line Rp but does not preserve the vector p.

Consider these cases.

Case 1. We have G ⊂ K ⋌ N . Hence the corresponding subgroup G ⊂ Sim E consists of

isometries, i.e. G ⊂ Isom E. From the transitivity of G it follows that G = H ⋌ F , where

H ⊂ SO(E) and F is a normal subgroup of G that acts simply transitively on E. Hence there

exists an orthogonal decomposition E = U ⊕W and a homomorphism Ψ : U → SO(W ) such

that F = UΨ
⋌W .

There are two subcases

Subcase 1.1. The homomorphism Ψ is trivial. Hence F = E and G = H ⋌ E. From the

classification of L. Berard Bergery and A. Ikemakhen we have G ⊂ SO(V )Rp is a group of type

2.

Subcase 1.2. The homomorphism Ψ is not trivial. We can assume that the homomorphism

dΨ : U → so(W ) is injective. Indeed, if ker dΨ 6= {0}, then we choose the decomposition

E = U1 ⊕W1, where W1 =W ⊕ ker dΨ and U1 ⊂ U is the orthogonal complement of ker dΨ in

U , and we consider Ψ1 = Ψ|U1
.

We claim that H commutes with Ψ(U) ⊂ SO(W ), moreover H acts trivially on U and H ⊂
SO(W ). Let f ∈ H , u ∈ U . Since F is a normal subgroup of G, we have f ◦ Ψ(u) ◦ u ◦ f−1 =

w◦Ψ(u1)◦u1 for some w ∈ W and u1 ∈ U . Hence for all v ∈ E we have f(u)+f ◦Ψ(u)◦f−1(v) =

w+ u1+Ψ(u1)v. Since this holds for all v ∈ E, we have f ◦Ψ(u) ◦ f−1 = Ψ(u1). We will prove

that Ψ(u) = Ψ(u1). Let l(Ψ(U)) and h = l(H) be the Lie algebras of the Lie groups Ψ(U)

and H respectively. We have (h + l(Ψ(U)))′ = h′ + [h,Ψ(U)]. Since [h,Ψ(U)] ⊂ Ψ(U) and

the Lie algebra l(Ψ(U)) is commutative, we have (h + l(Ψ(U)))′′ = h′. If Ψ(u) 6= Ψ(u1), then

[h,Ψ(U)] 6= {0} and (h+l(Ψ(U)))′ 6= (h+l(Ψ(U)))′′. Since the subalgebra h+l(Ψ(U)) ⊂ so(E) is

compact, we have a contradiction. Thus, Ψ(u) = Ψ(u1) and H commutes with Ψ(U). Consider

now the Lie algebra l(G) of the Lie group G. We have l(G) = (h ⊕ l(UΨ)) ⋉ W . Since

UΨ = {Ψ(u) ◦ u : u ∈ U}, we see that l(UΨ) = {dΨ(u) + u : u ∈ U}. For ξ ∈ h and
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dΨ(u) + u ∈ l(UΨ) we have [ξ, dΨ(u) + u] = ξu ⊂ U . Since U ∩ l(G) = {∅}, we see that

ξu = 0. Hence H acts trivially on U . Since H ⊂ SO(E) and W is orthogonal to U , we see that

H(W ) ⊂W and H ⊂ SO(W ).

We see now that dΨ(U) ⊂ so(W ) is a commutative subalgebra that commutes with h. Put

B = h⊕ dΨ(U). We have z(B) = z(h)⊕ dΨ(U). Put ψ = dΨ−1 : dΨ(U) → U and extend ψ to

the linear map ψ : z(B) → U by putting ψ|z(h) = 0. Thus we have

l(G) = (B′ ⊕ {ψ(A) + A : A ∈ z(B)})⋉W.

We see that l(G) is an algebra of type 4 and G is a group of type 4.

Case 2. In this case we have G ⊂ Sim E, hence G = (A1 × H) ⋌ F , where A1 is a 1-

parameterized subgroup of G that preserves the point 0, H ⊂ SO(E) commutes with A1, and

F is a normal subgroup that acts simply transitively on E.

There are two subcases

Subcase 2.1. We have A1 = A is the unity component of the group of all dilations of E about

the origin 0 ∈ E.

We claim that F = E. Indeed, suppose that F = UΨ
⋌W and the homomorphism Ψ is not

trivial. Let u ∈ U , w ∈ W and 1 6= λ ∈ A = R
+. Since the subgroup F ⊂ G is normal, we see

that λ ◦Ψ(u) ◦ u ◦ w ◦ λ−1 ∈ UΨ
⋌W . Let v ∈ E. We have (λ ◦Ψ(u) ◦ u ◦ w ◦ λ−1)v =

Ψ(u)(λ ◦ u ◦w ◦ λ−1)v = Ψ(u)(λ ◦ u ◦w(λ−1v)) = Ψ(u)(λ(u+w+ λ−1v)) = Ψ(u)(λu+ λw+ v).

Hence, λ ◦ Ψ(u) ◦ u ◦ w ◦ λ−1 = Ψ(u) ◦ (λu) ◦ (λw) ∈ UΨ
⋌W . This implies u = λu for all

u ∈ U , hence, λ = 1. This gives us a contradiction. Thus, F = E.

Now we see that G = (A1 ×H)⋌ F is a group of type 1.

Subcase 2.2. In this case A1 6= A, then A1 ⊂ A× SO(E). By analogy with subcase 2.1., we

can prove that F = E.

Let ξ : R → A1 be a parameterization of the group A1. Define the homomorphisms ξ1 : R → A

and ξ2 : R → SO(E) by condition ξ(t) = ξ1(t) · ξ2(t) for all t ∈ R. Since A1 6⊂ SO(E), we see

that the homomorphism ξ1 is an isomorphism. Put Φ = ξ2 ◦ ξ−1
1 : A→ SO(E). We have

A1 = {Φ(a) · a : a ∈ A} ⊂ SO(n)× R.

We see that l(G) = (l(A1)⊕ h)⋉ E and

l(A1) = {dΦ(a) + a : a ∈ l(A)}.

Note that the subalgebra l(dΦ(l(A))) ⊂ so(E) is commutative and commutes with h. Put

B = h⊕ l(dΦ(l(A))). We see that z(B) = z(h)⊕ l(dΦ(l(A))). Put ϕ = (dΦ)−1 : dΦ(l(A)) → l(A)

and extend ϕ to the linear map ϕ : z(B) → l(A) by putting ϕ|z(h) = 0. Thus,

l(G) = (B′ ⊕ {ϕ(A) + A : A ∈ z(B)})⋉ E.

We see that G is a group of type 3. This completes the proof of the theorem. ✷.
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5 Transitive isometry groups of the Lobachevskian space

Ln+1

Recall that we consider a Minkowski space (V, η) of dimension n + 2 and a basis p, e1, ..., en, q

of V with respect to which the Gram matrix of η has the form









0 0 1

0 En 0

1 0 0









, where En is the

n-dimensional identity matrix. We consider the vector subspace E ⊂ V spanned by e1, ..., en as

an Euclidean space with respect to the inner product η|E.We denote by SO(V )Rp the subgroup

of SO(V ) that preserves the line Rp. For the Lie group SO0(V )Rp we have the decomposition

SO0(V )Rp = (A×K)⋌N , where with respect to the basis p, e1, ..., en, q the groups A, K and

N have the following matrix forms A =























a 0 0

0 id 0

0 0 1
a









: a ∈ R, a > 0















,

K =























1 0 0

0 f 0

0 0 1









: f ∈ SO(E)















and N =























1 −X t −1
2
X tX

0 id X

0 0 1









: X ∈ E















.

Theorem 6 Let G ⊂ SO(V ) be a connected subgroup that acts transitively on the Lobachevskian

space Ln+1. Then either G = SO0(V ) or G preserves an isotropic line l ⊂ V and there exists

a basis p, e1, ..., en, q of V as above such that l = Rp and G is one of the following groups

(1) (A×H)⋌N , where H ⊂ K is a subgroup;

(2) (AΦ ×H)⋌N , where Φ : A→ K is a not trivial homomorphism and

AΦ = {Φ(a) · a : a ∈ A} ⊂ K × A.

Moreover the groups of the form A⋌N and AΦ
⋌N exhaust all connected subgroups of SO(V )

that act simply transitively on Ln+1.

Note that A is the group of translations in Ln+1 along the line h = (Rp⊕Rq)∩Ln+1, K is the

group of rotations about h, N is the group of parabolic translations along 2-dimension planes

in Ln+1 and AΦ is a group of screw translations along the line h.

Proof. Suppose a subgroup G ⊂ SO(V ) acts transitively on Ln+1. Then it preserves no

plane in Ln+1, hence G acts weakly-irreducibly on SO(V ). If G acts irreducibly on V , then

G = SO0(V ), see [11] or [10].

If G acts weakly-irreducibly not irreducibly on V , then G preserves an isotropic line l ⊂ V , we

assume that l = Rp. Then G is the group of type 1,2,3 or 4.

We claim that the subgroup K ⋌ N ⊂ SO(V ) does not act transitively on Ln+1. Indeed,

any element of K ⋌ N takes the vector 1
2
p − q ∈ Ln+1 to some vector u − q, where u ∈
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span{p, e1, ..., en}, hence there is no element of K⋌N that takes 1
2
p−q ∈ Ln+1 to p− 1

2
q ∈ Ln+1.

Hence the groups of type 2 and 4 does not act transitively on Ln+1.

We must prove that groups of type 1 and 3, i.e. groups of the form A×H⋌N and AΦ×H⋌N

act transitively on Ln+1. Let v = xp + α + yq ∈ Ln+1 and w = xp + β + yq ∈ Ln+1, where

α, β ∈ E. Then we have 2xy + η(α, α) = −1 and 2xy + η(β, β) = −1. Let X = α−β

y
. The

element









1 −X t −1
2
X tX

0 id X

0 0 1









∈ N takes u to w.

Let v = x1p+ β + y1q ∈ Ln+1, i.e. 2x1y1 + η(β, β) = −1.

The element









x1

x
0 0

0 id 0

0 0 x
x1









∈ A takes w to v. The element









x1

x
0 0

0 Φ(x1

x
) 0

0 0 x
x1









∈ AΦ takes

w to xp+Φ(x1

x
)(β) + yq ∈ Ln+1. Thus there exist elements in (A×H)⋌N and (AΦ ×H)⋌N

that take u to v, i.e. the groups (A×H)⋌N and (AΦ ×H)⋌N act transitively on Ln+1.

Note that the elements of the subgroup H ⊂ G preserve the point p − 1
2
q ∈ Ln+1. Since

dimLn+1 = dim(A⋌N) = dim(AΦ
⋌N) and Ln+1 is simply connected, we see that the groups

of the form A ⋌ N and AΦ
⋌ N are the only connected subgroups of SO(V ) that act simply

transitively on Ln+1. ✷
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