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Abstract

Let K be the subgroup of the extended mapping class group, Mod(S), gen-
erated by Dehn twists about separating curves. Assuming that S is a closed,
orientable surface of genus at least 4, we confirm a conjecture of Farb that
Comm(K) ∼= Aut(K) ∼= Mod(S). More generally, we show that any injection of
a finite index subgroup of K into the Torelli group I of S is induced by a home-
omorphism. In particular, this proves that K is co-Hopfian and is characteristic
in I . Further, we recover the result of Farb and Ivanov that any injection of a
finite index subgroup of I into I is induced by a homeomorphism. Our method
is to reformulate these group theoretic statements in terms of maps of curve
complexes.
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1 Introduction

The extended mapping class group of a surface S is:

Mod(S) = π0(Homeo±(S))

In this paper we show that certain topologically defined subgroups of Mod(S)
have algebraic structures which strongly reflect their topological origins. We
assume throughout that S is a closed, oriented surface. Also, unless specifically
stated otherwise, the genus g of S is assumed to be at least 4.

The Torelli group I = I(S) is the subgroup of Mod(S) consisting of elements
which act trivially on H = H1(S,Z), and K = K(S) denotes the subgroup of I
generated by Dehn twists about separating curves. Birman and Powell initially
suggested that K has finite index in I . However, Johnson, who first singled
out K for study in its own right, showed (among other things) that K arises
naturally as the kernel of a map from I to ∧3(H)/H [18]; hence we call K the
Johnson kernel.

Building on Johnson’s work, Morita showed that every homology 3–sphere is
obtained by splitting S3 along a Heegaard surface and regluing by an element of
the Johnson kernel [24]. Morita further demonstrated that the natural map from
K to Z, given by computing the Casson invariant of the associated homology
3–sphere, is a homomorphism (this is not true for the analagous map from I
to Z). More recently, Biss and Farb applied ideas of McCullough and Miller
[23] to prove that K is not finitely generated [3].

Abstract commensurators The abstract commensurator of a group Γ, de-
noted Comm(Γ), is the group of isomorphisms of finite index subgroups of Γ
(under composition), with two such isomorphisms equivalent if they agree on a
finite index subgroup of Γ. The product of φ : G → H with ψ : G′ → H ′ is a
map defined on φ−1(H ∩G′).

While there is always a map from Aut(Γ) to Comm(Γ), one generally expects
Comm(Γ) to be much larger (for instance, if Γ is arithmetic). As an exam-
ple, Comm(Zn) ∼= GLn(Q), whereas Aut(Zn) ∼= GLn(Z). On the other hand,
Ivanov used Theorem 1.10 below to prove Comm(Mod(S)) ∼= Mod(S) [15],
Farb and Mosher showed that any word-hyperbolic surface-by-free group has
finite index in its abstract commensurator [5], and Farb and Handel proved
Comm(Out(Fn)) ∼= Out(Fn) [7].

We confirm a conjecture of Farb, from his talk at an AMS sectional meeting in
2002 (Question 2 of [6]):

Geometry & Topology, Volume 8 (2004)



Commensurations of the Johnson kernel 1363

Main Theorem 1 For S a surface of genus g ≥ 4, we have:

Comm(K) ∼= Aut(K) ∼= Mod(S)

This follows from a more general theorem:

Main Theorem 2 Let S be a surface of genus g ≥ 4. Any injection φ : G→
I , where G is a finite index subgroup of K , is induced by an element f of
Mod(S) in the sense that φ(h) = fhf−1 for all h ∈ G.

Co-Hopfian property A group is co-Hopfian if each of its injective endo-
morphisms is an isomorphism. In general, this is more rare (and harder to
prove) than the Hopfian property, which, for instance, holds for all finitely gen-
erated linear groups by work of Mal’cev (recall that a group is Hopfian if every
surjective endomorphism is an isomorphism).

The co-Hopfian property has been demonstrated for lattices in semisimple Lie
groups by Prasad [25], torsion-free non-elementary freely indecomposable word-
hyperbolic groups by Sela [26], Mod(S) by Ivanov and McCarthy [16], the braid
group modulo its center by Bell and Margalit [1], and finite-index subgroups of
Out(Fn) by Farb and Handel [7] (the case of Out(Fn) itself follows from work
of Bridson and Vogtmann [4]).

As consequences of Main Theorem 2, we establish two basic algebraic properties
of K . First, K is co-Hopfian. Also, K is characteristic in I . The former was
asked by Farb as Question 3 in his lecture [6].

Corollary 1.1 If S is a surface of genus g ≥ 4, then K and all of its finite
index subgroups are co-Hopfian.

To obtain the corollary for a finite index subgroup G, note that given an injec-
tion G→ G, the automorphism of K supplied by Main Theorem 2 sends each
of the (finitely many) cosets of G in K entirely into another such coset.

Corollary 1.2 If S is a surface of genus g ≥ 4, then K is characteristic in I .
Finite index subgroups of K are characteristic in I up to conjugacy.

By “characteristic up to conjugacy”, we mean that automorphisms of I preserve
the conjugacy class in I of a finite index subgroup of K .

Our methods, which are largely inspired by the work of Farb and Ivanov, can
be used recover their main results:

Geometry & Topology, Volume 8 (2004)
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Theorem 1.3 For S a surface of genus g ≥ 4, we have:

Comm(I) ∼= Aut(I) ∼= Mod(S)

Theorem 1.4 If S is a surface of genus g ≥ 4, then I and all of its finite
index subgroups are co-Hopfian. Further, any injection ψ : G → I , where G
is a finite index subgroup of I , is induced by an element f of Mod(S) in the
sense that ψ(h) = fhf−1 for all h ∈ G.

We remark that Farb and Ivanov proved these for g ≥ 5, and McCarthy and
Vautaw extended the result that Aut(I) ∼= Mod(S) to g ≥ 3 [22]. We also note
that in the case of the Johnson kernel itself, Corollary 1.2 also follows from
Theorem 1.4, since conjugation by an element of Mod(S) preserves the set of
Dehn twists about separating curves (see Fact 2.3 in Section 2).

Our basic strategy is to recast algebraic statements about K in terms of com-
binatorial topology. That is, given an injection of a finite index subgroup of K
into I , we construct a map of the complex of separating curves Cs(S), which
has vertices corresponding to separating curves in S and edges corresponding
to disjointness (see Section 2). We then prove:

Theorem 1.5 For S a surface of genus g ≥ 4, we have:

Aut(Cs(S)) ∼= Mod(S)

More generally, we look at superinjective maps of Cs(S). Superinjective maps
were defined and used by Irmak in order to show that, for most surfaces, any
injection of a finite index subgroup of Mod(S) into Mod(S) is induced by a
homeomorphism [13] [12]. See Section 2 for a precise definition.

Theorem 1.6 If S is a surface of genus g ≥ 4, then every superinjective map
of Cs(S) is induced by an element of Mod(S).

The corresponding results for Torelli groups concern the Torelli complex T (S),
which has a vertex for each separating curve and bounding pair in S , and
edges between vertices which can be realized disjointly in S (see Section 2).
This complex was originally defined by Farb and Ivanov (their Torelli geometry
T G(S) is T (S) with a certain marking) [8].

We prove:

Theorem 1.7 For S a surface of genus g ≥ 4, we have:

Aut(T (S)) ∼= Mod(S)

Geometry & Topology, Volume 8 (2004)
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Theorem 1.8 If S is a surface of genus g ≥ 4, then any superinjective map
of T (S) is induced by an element of Mod(S).

The previous two theorems generalize the following theorem of Farb and Ivanov
about automorphisms of T G(S) (here, automorphisms preserve the marking)
[8]:

Theorem 1.9 For S a surface of genus g ≥ 5, we have:

Aut(T G(S)) ∼= Mod(S)

All of the above results concerning maps of “curve complexes” are based on
the seminal theorem of Ivanov about the complex of curves C(S) (defined in
Section 2) [15]:

Theorem 1.10 For S a surface of genus g ≥ 3, we have:

Aut(C(S)) ∼= Mod(S)

In lower genus cases, explored by Korkmaz and Luo [19] [20], there are excep-
tions to Ivanov’s theorem.

Remarks Despite the deep connection between mapping class groups and
arithmetic groups, none of the groups Mod(S), I , and K are arithmetic [8]
[15]. For K , it suffices to note that arithmetic groups are finitely generated and
compare with the aforementioned theorem of Biss and Farb.

Mustafa Korkmaz has pointed out another approach to computing Aut(Cs(S)),
using his theorem that Aut(C(S)) ∼= Mod(S) for punctured spheres. However,
since there is currently no analog of Irmak’s superinjectivity result for genus
zero, this method does not seem to recover our second main theorem.

Outline We start with any injection:

φ : G →֒ I

where G is any finite index subgroup of K . As per Main Theorem 2, we aim
to produce a mapping class f which induces φ.

Step 1 The injection φ induces a map φ⋆ of the vertices of Cs(S) into T (S).
We show that φ takes a Dehn twist to either a Dehn twist or a “bounding
pair map” (a product of two Dehn twists), so we get a natural map φ⋆ from
curves to collections of curves. This follows from Proposition 3.5, which relies

Geometry & Topology, Volume 8 (2004)
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on Ivanov’s algebraic characterization of “simple” mapping classes—the centers
of their centralizers are infinite cyclic.

Step 2 The set map φ⋆ extends to a simplicial map from Cs(S) to T (S).
This follows from Lemma 3.6, which uses the fact that Dehn twists commute if
and only if the corresponding curves are disjoint.

Step 3 The map φ⋆ is really a map of Cs(S) to itself. In other words, we
show in Proposition 3.8 that φ⋆ takes separating curves to separating curves.
The idea is that the rank of a maximal abelian subgroup on either side of a
separating curve is even, and on either side of a bounding pair is odd. We use
the assumption that S is closed in Section 3.

Step 4 The map φ⋆ extends to a map φ̂⋆ of C(S). In Sections 4.1 and 4.2, we
define an action on nonseparating curves. The key is that a nonseparating curve
is characterized by the separating curves which cut off a genus 1 subsurface
containing that curve. To define φ̂⋆ on a particular nonseparating curve, it
suffices to choose two such separating curves—a “sharing pair”. We use the
assumption on genus here.

To show that φ̂⋆ is well-defined, ie, that the map is independent of choices of
sharing pairs, we apply the chain-connectedness of a certain arc complex defined
by Harer.

Step 5 The map φ̂⋆ is a superinjective simplicial map of C(S) to itself. As
we shall see in Section 4.3, this follows easily from the superinjectivity of φ⋆
and the definition of φ̂⋆ . It is then a theorem of Irmak that φ̂⋆ is induced by
some f ∈ Mod(S).

Step 6 Both φ⋆ and φ itself are induced by f . We accomplish this by showing
that φ(h) and fhf−1 have the same action on Cs(S) for any h ∈ G. Thus, we
conclude in Section 5 that φ is really the restriction of an element of Aut(K)
and φ⋆ is really an automorphism of Cs(S). To summarize:

φ 7→ φ⋆ 7→ φ̂⋆ 7→ f

At this point, we have established Main Theorem 2 and Theorem 1.6, and we
have:

Aut(K) ∼= Comm(K) → Mod(S)

The natural map η : Mod(S) → Aut(K) is an inverse, so it is an isomorphism.

In Section 6, we explain how to get the related results about Torelli groups.

Acknowledgements The authors are indebted to Bob Bell, Mladen Bestvina,
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2 Background

2.1 Curves

When no confusion arises, we will use curve to mean either “simple closed
curve” or “isotopy class of simple closed curves”.

A curve c is separating if S − c is not connected. The genus of a separating
curve c on S is the minimum of the genera of the two components of S − c.

Bounding pairs A bounding pair, denoted (a, b), is an ordered pair of disjoint,
homologous nonseparating curves.

Intersection We use i(·, ·) to mean geometric intersection number. If either
term is a bounding pair, we use the following formula:

i((a, b), ·) = i(a, ·) + i(b, ·)

We say that two curves and/or bounding pairs intersect if their geometric in-
tersection is nonzero.

Geometry & Topology, Volume 8 (2004)
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2.2 Generators

A Dehn twist about a simple closed curve c, denoted Tc , is the isotopy class of
a homeomorphism which is the identity outside of a regular neighborhood N
of c, and which is described on the annulus N by Figure 1.

Figure 1: A Dehn twist

Bounding pair maps Johnson proved that I is generated by finitely many
bounding pair maps [17], which are given by:

BP (a, b) = TaT
−1
b

for (a, b) a bounding pair. The Johnson kernel contains no bounding pair maps.

Rank Both Dehn twists and bounding pair maps can appear in free abelian
subgroups of maximal rank in I . In general, we denote by rk(Γ) the maximal
rank of a free abelian subgroup in a group Γ. The next proposition follows
from the classification of abelian subgroups of Mod(S) obtained by Birman,
Lubotzky, and McCarthy [2].

Proposition 2.1 For any surface S , rkK = rkI . If S has genus g and b
boundary components where b ∈ {0, 1, 2}, then rkK = rkI = 2g − 3 + b.

In particular, Proposition 2.1 tells you the size of a maximal collection of disjoint
separating curves on S , as there is always a subgroup of rank rkK = rkI
generated by Dehn twists, and any collection of n disjoint curves gives rise to
a free abelian subgroup of rank n. The parities of the ranks in Proposition 2.1
are crucial in Proposition 3.8.

2.3 Relations

While a complete set of relations for K is not known, the results of this paper
only rely on the commuting relation of Fact 2.4 below.

Geometry & Topology, Volume 8 (2004)
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Figure 2: A maximal collection of disjoint separating curves

Fact 2.2 Let f, Tc ∈ I , where Tc is a Dehn twist. For k 6= 0, we have
[f, T k

c ] = 1 if and only if f(c) = c.

The last statement follows from the fact that elements of I are orientation
preserving, together with the identity:

Fact 2.3 For f, Tc ∈ Mod(S), we have fT k
c f

−1 = T ǫk
f(c) , where ǫ is 1 if f is

orientation preserving, and −1 otherwise.

As a special case of the Fact 2.2, we have:

Fact 2.4 For f ∈ {BP (a, b), Tc}, h ∈ {BP (x, y), Tz}, and j and k nonzero,
we have [f j, hk] = 1 if and only if the intersection number between the corre-
sponding curves and/or bounding pairs is zero.

2.4 Curve complexes

We will require the use of three different abstract complexes which have vertices
corresponding to curves (or bounding pairs), and have edges between vertices
which can be realized disjointly.

Complex of curves The complex of curves C(S) for a surface S , defined by
Harvey [10], is the abstract simplicial flag complex with a vertex for each curve
in S and edges between vertices which can be realized as disjoint curves in S .

Geometry & Topology, Volume 8 (2004)
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Complex of separating curves The subcomplex of C(S) spanned by ver-
tices corresponding to separating curves is called the complex of separating
curves, and is denoted Cs(S).

Farb and Ivanov introduced Cs(S) and showed that it is connected for all
surfaces of genus at least 3 [8], in particular for the surfaces we consider (for
alternate proofs, see [21] and [22]).

Torelli complex We denote by T (S) the abstract simplicial flag complex
with vertices corresponding to separating curves and bounding pairs in S , and
edges between vertices that can be realized disjointly in S . This Torelli complex
is the simplicial complex underlying the Torelli geometry of Farb and Ivanov
[8]. It follows from the connectedness of Cs(S) that T (S) is connected.

Superinjective maps A simplicial map ψ of C(S), Cs(S), or T (S) into itself
is superinjective if i(ψ(a), ψ(b)) 6= 0 whenever i(a, b) 6= 0. Here, we are comput-
ing intersection number on the curves (and/or bounding pairs) corresponding
to the vertices of the complex.

It is not hard to prove that superinjectivity implies injectivity for all of the above
complexes, but this does not follow immediately from the definition (see [13]).
It does follow from the definition that superinjective maps preserve disjointness
(the maps are simplicial).

Remark If X is a flag complex, then Aut(X) = Aut(X(1)), where X(1) is
the 1–skeleton of X . Thus, we may restrict our attention to vertices and edges
when discussing automorphisms of C(S), Cs(S), and T (S).

3 Separating curves

Let φ : G → I be an injection, where G is a finite index subgroup of K . The
goal of this section is to prove that the image under φ of a power of a Dehn
twist in G is a power of a Dehn twist. This will imply two things:

(1) φ(G) < K

(2) φ induces a superinjective map φ⋆ of Cs(S).

We first show that φ takes a power of a Dehn twist to a power of either a Dehn
twist or a bounding pair map. We then rule out bounding pair maps.

Geometry & Topology, Volume 8 (2004)
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3.1 Centers of centralizers

We now give a series of three propositions: an algebraic characterization of
Dehn twists in G in terms of centers of centralizers, a comparison between the
centers of centralizers of an element and its image under an injection, and a
characterization of Dehn twists (and bounding pair maps) in I .

The first proposition follows from work of Ivanov which in turn rests on Thurs-
ton’s theory of surface homeomorphisms [14]. First, we will require a lemma,
which follows immediately from the fact that if a mapping class permutes com-
ponents of a surface, it necessarily acts nontrivially on the first homology of
S .

Lemma 3.1 If f ∈ I , and f(c) = c for some curve c, then f leaves invariant
the components of S − c.

Proposition 3.2 If f ∈ G is a power of a Dehn twist, then Z(CG(f)) ∼= Z

and rkCG(f) = 2g − 3.

Proof Let f = T k
c ∈ G be a power of a Dehn twist. First, we know that

rkCG(f) = 2g − 3 by Proposition 2.1. It remains to show that Z(CG(f)) ∼= Z.

Each element of CG(f) fixes the separating curve c (Fact 2.2), and has well-
defined restrictions to S − c by Lemma 3.1. Suppose h ∈ CG(f) has nontrivial
support on a component S′ of S−c (note that such a component necessarily has
genus greater than one). Then there is a separating curve a in S′ with h(a) 6= a.
By Fact 2.2, h does not commute with nontrivial powers of Ta (some of which
are in CG(f)), and hence h /∈ Z(CG(f)). It follows that Z(CG(f)) can only
consist of powers of Tc .

The following proposition is due to Ivanov and McCarthy [16]:

Proposition 3.3 Let φ : G→ G′ be an injection between groups with rk(G)
= rk(G′) <∞. Let H ∼= Zrk(G) be a subgroup of G, and let h ∈ H . Then

rkZ(CG′(φ(h))) ≤ rkZ(CG(h))

We now require the following proposition of Farb and Ivanov (private commu-
nication; announced in [8]).

Proposition 3.4 An element h of I is a power of a Dehn twist or a bounding
pair map if and only if both of the following hold:

Geometry & Topology, Volume 8 (2004)
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(1) Z(CI(h)) ∼= Z

(2) rkCI(h) = 2g − 3

We now put the above results together:

Proposition 3.5 If φ : G→ I is an injection for G a finite index subgroup of
K , and f = T k

c ∈ G, then φ(f) is a power of either a Dehn twist or a bounding
pair map.

Proof We will show that φ(f) satisfies the two conditions of Proposition 3.4.
We have that rkZ(CI(φ(f))) ≤ rkZ(CK(f)) = 1, by Propositions 2.1, 3.2,
and 3.3. Since the center of the centralizer of an element h in a group al-
ways contains hn for all integers n, and since I is torsion free, we have that
rkZ(CI(φ(f))) is precisely 1.

Since φ is an injection, we know that rkCI(φ(f)) ≥ rkCK(f) = 2g − 3, with
the latter equality given by Proposition 3.2. Proposition 2.1 now implies that
this inequality must in fact be an equality, which proves the proposition.

By Proposition 3.5, φ gives a natural map φ⋆ from the vertices of Cs(S) to the
vertices of T (S) defined by:

φ(T k
a ) = T k′

φ⋆(a)
or φ(T k

a ) = BP (φ⋆(a))
k′

In the remainder of this section, we will argue that the latter is an impossibility,
and further that φ⋆ is a superinjective map of Cs(S).

3.2 Basic topology

We will now show that φ⋆ preserves some elementary topological relationships
between separating curves on S . In particular, it will follow from Lemma 3.6
and Proposition 3.8 that φ⋆ is a superinjective map of Cs(S).

Lemma 3.6 (Disjointness) If a and b are separating curves in S , then
i(a, b) 6= 0 if and only if i(φ⋆(a), φ⋆(b)) 6= 0.

The above lemma follows immediately from Fact 2.4 and the assumption that
φ is an injective homomorphism.

We define a side of a separating curve z (or bounding pair (a, b)) to be a
component of S − z (or S − (a ∪ b)).

Geometry & Topology, Volume 8 (2004)
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Lemma 3.7 (Sides) If separating curves a and b are on the same side of a
separating curve z , then φ⋆(a) and φ⋆(b) are separating curves or bounding
pairs on the same side of φ⋆(z).

Proof If the curves a and b are on the same side of z , then there is a curve
c which intersects a and b but not z . Apply Lemma 3.6.

Proposition 3.8 (Genus) If z is a genus m separating curve, then φ⋆(z) is
a genus m separating curve. Further, if a is on a genus m side of z , then φ⋆(a)
is on a genus m side of φ⋆(z).

Proof First, if z is a genus m curve, then any maximal collection of disjoint
separating curves in S which contains z is of the form:

{a1, . . . , a2m−2, z, b1, . . . , b2(g−m)−2}

where the ai are on one side of z , and the bi are on the other side of z (see
Proposition 2.1).

By Proposition 3.5, Lemma 3.6, and Proposition 2.1, we have that the set
{φ⋆(ai), φ⋆(z), φ⋆(bi)} is a maximal collection of mutually disjoint separating
curves and bounding pairs. By Lemma 3.7 and Proposition 2.1, we either have
that φ⋆(z) is a genus 1 separating curve and the φ⋆(ai) and φ⋆(bi) are on the
same side of φ⋆(z), or φ⋆(z) is a genus m separating curve and the φ⋆(ai) and
φ⋆(bi) are on different sides of φ⋆(z).

If m = 1, both cases are the same, so the image under φ⋆ of z (or any genus
1 curve) must be a genus 1 curve. Since there are always exactly g genus 1
curves in any maximal collection of separating curves and bounding pairs, we
can only have that φ⋆(z) is a genus 1 curve if z was a genus 1 curve to begin
with. Both statements of the proposition follow.

Note that the above proof does not work in general for surfaces with boundary.

Action on separating curves Applying Proposition 3.8 and Lemma 3.6, we
now have that φ⋆ is a superinjective map of Cs(S) defined by:

φ(T k
c ) = T k′

φ⋆(c)

Geometry & Topology, Volume 8 (2004)
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4 Nonseparating curves

We show in this section that any superinjective map φ⋆ of Cs(S) (in particular,
the one defined in Section 3) can be extended to a map φ̂⋆ of C(S); that is,
we get a natural map on nonseparating curves as well. We will then see in
Section 4.3 that φ̂⋆ in turn gives rise to an element of Mod(S).

A nonseparating curve β is uniquely determined by a pair of genus 1 separating
curves with the property that β lies on both of the corresponding genus 1
subsurfaces. This notion gives rise to the following definition.

Sharing pairs Let a and b be genus 1 curves bounding genus 1 subsurfaces
Sa and Sb of S . We say that a and b share a nonseparating curve β if Sa ∩Sb
is an annulus containing β (see Figure 3) and S − (Sa ∪ Sb) is connected. We
also say that a and b form a sharing pair for β .

β

Figure 3: A sharing pair for β

Action on nonseparating curves The map φ̂⋆ is defined on nonseparating
curves as follows. If P(β) = {a, b} is a sharing pair for a nonseparating curve β ,
then φ̂⋆(β) is the curve shared by φ⋆(P(β)), which is defined as {φ⋆(a), φ⋆(b)}.

To see that φ̂⋆ is well-defined on nonseparating curves, we must check that
φ⋆(P(β)) is a sharing pair (Section 4.1), and that φ̂⋆(β) is independent of
choice of P(β) (Section 4.2).

4.1 Preserving sharing pairs

We now give a characterization of sharing pairs. By the results of Section 3.2,
all the properties used in the characterization are preserved by φ⋆ . The ideas
here are inspired by related work of Ivanov (see [15], Lemma 1).

Geometry & Topology, Volume 8 (2004)
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Lemma 4.1 (Sharing pairs) Let a and b be genus 1 curves in S . Then a
and b are a sharing pair if and only if there exist separating curves w , x, y ,
and z in S with the following properties:

· z is a genus 2 curve bounding a genus 2 subsurface Sz .

· a and b are in Sz and intersect each other.

· x and y are disjoint.

· w intersects z , but not a and not b.

· x intersects a and z , but not b.

· y intersects b and z , but not a.

Proof One direction is proven by construction: if a and b are a sharing pair,
then the other curves can be chosen as in Figure 4.

w

x

y

z

a

b

Figure 4: Characterizing curves for a sharing pair

For the other direction, we restrict our attention to Sz . On this subsurface, a
and b are genus 1 separating curves, and each of w , x, and y is a collection of
arcs which separates Sz . Let Saz denote the genus 1 surface of Sz bounded by
a and z .

Step 1 The arcs of w are all parallel and nonseparating.

On Saz , we think of b as a collection of disjoint arcs with both endpoints on
a, and of w as a collection of disjoint arcs with both endpoints on z . By the
hypotheses, the arcs of b do not intersect the arcs of w .

Now, these arcs of b and w are nontrivial in H1(Saz , a) and H1(Saz , z), re-
spectively: if any arcs of w , say, are all parallel to z , then w and z are not in
minimal position; if they enclose a disc with one hole (namely, the hole is a),
then there is no room for the arcs of b.
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If w consists of non-parallel arcs, then Saz − w is a disk with a hole, so there
is no room for the arcs of b.

Step 2 a and b form a sharing pair.

Let Swz be the genus 1 subsurface of Sz in the complement of w . Each of the
two boundary components of Swz is made up of exactly one arc from z and one
arc from w . Since a and b are genus 1 curves, they each split Swz into a torus
with a hole and a disk with two holes (the boundary components of Swz ).

As above, at least some arcs of x and y must be nontrivial in the relative
homology of Swz , for otherwise the curves are not in minimal position, or they
are all parallel to the arcs of w , which contradicts the fact that there are curves
(a and b) which intersect x and y , but not w . We can thus ignore the arcs of
x and y which are parallel to w .

We will presently use the fact that all genus 1 curves on Swz (in particular, a
and b) are obtained by taking the boundary of a regular neighborhood in Swz

of the union of z ∪w with a defining arc connecting the boundary components
of Swz .

If the defining arcs for a and b intersect, then there are no choices for collections
of arcs x and y which do not intersect each other. Therefore, the defining arcs
for a and b do not intersect (there is only one way to achieve this, topologically),
and it follows that a and b are a sharing pair.

We remark that the collection of curves in the lemma requires genus at least 4,
hence the hypothesis in our theorems.

Lemma 4.1 implies:

Proposition 4.2 Suppose φ⋆ is a superinjective map of Cs(S). If two genus
1 curves a and b in S form a sharing pair, then so do φ⋆(a) and φ⋆(b).

Proof Since a and b share a curve, there are characterizing curves w , x,
y , and z as in Lemma 4.1. Since each property of this collection of curves
(disjointness, sides, genus) is preserved (Lemmas 3.6–3.7 and Proposition 3.8),
Lemma 4.1 implies that φ⋆(a) and φ⋆(b) share a curve.
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4.2 Well-definedness

We now have a map from the set of superinjective maps of Cs(S) to the set
of maps of C(S), given by φ⋆ 7→ φ̂⋆ . In order to show that this map is well-
defined with respect to choice of sharing pairs, it will be more convenient for
us to consider sharing pairs indirectly, via their “spines”.

Spines Given two nonseparating curves α and β with i(α, β) = 1, we define
B(α, β) to be the genus 1 separating curve which is the boundary of a regular
neighborhood of α∪ β . An ordered collection of three distinct curves {α, β, γ}
forms a spine for a sharing pair {a, b} if:

i(α, β) = i(β, γ) = 1

i(α, γ) ≤ 1

B(α, β) = a B(β, γ) = b

S − (α ∪ β ∪ γ) is connected

We denote this spine by α-β-γ .

We can always choose a spine for a given sharing pair {a, b}, although this
choice is not unique. If α-β-γ is a spine for a sharing pair with i(α, γ) = 0,
then α-β-Tβ(γ) and α-β-T−1

β (γ) are also spines for {a, b}. We observe that
every other spine for {a, b} is obtained by applying powers of Tβ (curve by
curve) to these 3 spines. However, we will not use this fact.

Moves We define a move between spines to be a change of the form:

α-β-γ 7→ α-β-γ′

where γ-β-γ′ is also a spine. We remark that only one curve in the corre-
sponding sharing pairs is changed. Note that the curves B(α, β), B(β, γ), and
B(β, γ′) form three sharing pairs for β , since α-β-γ , α-β-γ′ and γ-β-γ′ are all
spines.

A move is characterized by how many of i(α, γ), i(α, γ′), and i(γ, γ′) are 1, and
how many are 0. Using the nonseparating property of spines, it is straightfor-
ward to prove:

Lemma 4.3 Any move is topologically equivalent to one of the 4 moves shown
in Figure 5.
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Figure 5: Moves on spines

The proof of the following lemma borrows from work of Ivanov and McCarthy
(Lemma 10.11 of [16]). We will make repeated use of the following fact: if a is a
genus 1 separating curve, and α and β are any two distinct curves on the genus
1 surface bounded by a, then a curve z intersects a if and only if it intersects
at least one of α and β .

Lemma 4.4 Let β be a nonseparating curve in S . If {a, b} and {a, b′} are
sharing pairs for β which have spines differing by a move, then {φ⋆(a), φ⋆(b)}
and {φ⋆(a), φ⋆(b

′)} are sharing pairs for the same curve.

Proof Suppose that α-β-γ and α-β-γ′ differ by a move, where a = B(α, β),
b = B(β, γ), and b′ = B(β, γ′). Since a, b, and b′ pairwise share a common
curve, Proposition 4.2 implies that φ⋆(a), φ⋆(b), and φ⋆(b

′) are pairwise shar-
ing.

One can always find a separating curve z which intersects γ′ but not any of α,
β , or γ (by Lemma 4.3). It follows that z intersects b′ but not a or b, and then
by Lemma 3.6, we have that φ⋆(z) intersects φ⋆(b

′) but not φ⋆(a) or φ⋆(b).

Suppose that φ⋆(a), φ⋆(b), and φ⋆(b
′) do not all share the same nonseparating

curve. Let π-σ-τ be a spine for {φ⋆(a), φ⋆(b)}. By the assumption, φ⋆(b
′) does

not share σ with φ⋆(a) and φ⋆(b), and hence it shares curves ω and ν with
φ⋆(a) and φ⋆(b), respectively. Note that σ , ω , and ν must all be distinct,
because otherwise it follows that φ⋆(b

′) is equal to either φ⋆(a) or φ⋆(b).

We will now argue that there is no curve which intersects φ⋆(b
′) and is disjoint

from both φ⋆(a) and φ⋆(b). This will contradict our earlier statement about
φ⋆(z). Indeed, any curve c which intersects φ⋆(b

′) must also intersect at least
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one of ω or ν , say ω . Since ω lies on the genus 1 subsurface bounded by φ⋆(a),
it follows that c also intersects φ⋆(a).

By Lemma 4.4, well-definedness of φ̂⋆ is reduced to the following proposition,
which we will now deduce from general work of Harer [9].

Proposition 4.5 Any two spines α-β-γ and δ-β-ǫ differ by a finite sequence
of moves.

Harer’s complex Let F be a surface with boundary, let P be a finite set of
points in ∂F , and let P0 be a subset of P . Harer defines an abstract simplicial
complex X = X(F,P, P0) with:

Vertices Isotopy classes of arcs in F connecting points of P0 to points of
P − P0 .

Edges Two vertices are connected with an edge if the corresponding arcs are
disjoint (apart from endpoints) and their union does not separate F .

In general, a k–simplex of X is the span of k+1 pairwise connected edges with
the property that the union of the corresponding arcs does not separate F .

We remark that Harer’s original notation for this complex is BX . Let r′ denote
the number of boundary components of F which contain a point of P . Harer
proves:

Theorem 4.6 X is spherical of dimension 2g − 2 + r′ .

By an argument of Hatcher [11], we also have:

Proposition 4.7 X is chain-connected. That is, any two maximal simplices
are connected by a finite sequence of maximal simplices, where consecutive
simplices in the sequence share a simplex of codimension 1.

The key fact for this proposition is that the link of every simplex of codimension
greater than 1 is connected, as each such link is again the complex X for a
surface with 2g− 2+ r′ > 0 (obtained by cutting along the arcs represented by
the simplex). Thus, given any path between maximal simplices, one can push
the path off all simplices of codimension greater than 1. The new path gives
the sequence of maximal simplices in the statement of the proposition.

We now apply Harer’s ideas to the current situation. For β a nonseparating
curve, let F be the surface obtained by cutting S along β . Let P = {p, q}
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be a pair of points, one on each boundary component of F , and let P0 = {p}.
Vertices of the complex X = X(F,P, P0) correspond to curves which intersect
β once. Further, every edge of X is a spine of a sharing pair for β (a pair of
vertices fails to give a sharing pair only when the corresponding arcs lie in a
3–holed sphere containing ∂F ; but in this case, the arcs necessarily separate F ,
so the vertices do not form an edge). Thus, a move between spines is achieved
by changing an edge to a new edge which lies in a triangle with the old edge.

Proof of Proposition 4.5 Let α-β-γ and δ-β-ǫ be two spines for the non-
separating curve β . We think of these spines as edges in the complex X =
X(F,P, P0) defined above. Let M and N be any maximal simplices which
contain these edges. By Proposition 4.7, there is a sequence of maximal sim-
plices of X :

M =M0,M1, . . . ,Mk = N

where Mi and Mi+1 share a codimension 1 face. Using this sequence, we will
construct the desired sequence of moves. Let e0 be the edge corresponding to
α-β-γ . Now, assuming ei is an edge in Mi connecting v to w , inductively
define ei+1 as follows:

If both v and w are vertices of Mi+1 , then ei+1 is defined to be ei .

In the case that w , say, is not a vertex of Mi+1 (note then that v must be
in Mi+1 ), we define ei+1 to be the span of v with any other vertex w′ of
Mi+1 ∩Mi . Since v , w , and w′ all lie in Mi , they form a triangle, and hence
the edges vw and vw′ differ by a move.

Finally, ek differs from the edge corresponding to δ-β-ǫ by at most two moves,
since they both lie in the simplex N .

4.3 Homeomorphism

At this point, we have shown that any superinjective map φ⋆ of Cs(S) naturally
gives rise to a map φ̂⋆ of C(S). In order to show that φ̂⋆ is induced by a
homeomorphism, we now check that φ̂⋆ is a superinjective map of C(S). That
is, for any curves c and d, we show i(c, d) 6= 0 if and only if i(φ̂⋆(c), φ̂⋆(d)) 6= 0:

(1) If c and d are both separating, then apply the fact that φ̂⋆|Cs(S) = φ⋆ is
superinjective (Lemma 3.6).

(2) If c and d are both nonseparating, then it suffices to note that c and
d are disjoint if and only if there are disjoint sharing pairs representing
those curves.
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(3) If c is separating, and d is nonseparating, then c and d are disjoint if
and only if either c is part of a sharing pair for d (if d is on a genus 1
side of c) or d has a sharing pair whose curves are disjoint from c.

We appeal to the following theorem of Irmak [13]:

Theorem 4.8 For S a surface of genus g ≥ 3, any superinjective map of C(S)
is induced by an element of Mod(S).

Thus, we have that φ̂⋆ is induced by f ∈ Mod(S), which simply means that
both give the same action on C(S).

5 Proofs of main theorems

In Section 3, we showed that given any injection φ : G→ K for G a finite index
subgroup of K , there is an associated superinjective map φ⋆ of Cs(S). Then,
in Section 4, we proved that any superinjective map φ⋆ of Cs(S) gives rise to
a superinjective map φ̂⋆ of C(S), which is itself induced by a mapping class f .
Thus, we have:

φ 7→ φ⋆ 7→ φ̂⋆ 7→ f

It is immediate that φ⋆ is induced by f , and hence we have proven Theorem 1.6.
As for the original map φ, we now have that any power of a twist T k

c ∈ G
satisfies:

φ(T k
c ) = T k′

f(c)

for some k′ ∈ Z, where f is the element of Mod(S) given by Theorem 4.8.

We now show that f induces φ, by which we mean that for any h ∈ G, its
image is given by:

φ(h) = fhf−1

From this, Theorems 1.5 and 1.6, as well as Main Theorems 1 and 2, will all
follow.

Let h ∈ G. Since two mapping classes which agree on all separating curves
are equal, it suffices to show that for any separating curve c, we have fh(c) =
φ(h)f(c). Choose k so that T k

c , T
k
h(c) ∈ G. We have:

T k′

f◦h(c) = φ(T k
h(c)) = φ(hT k

c h
−1) = φ(h)φ(T k

c )φ(h)
−1 = φ(h)T k′′

f(c)φ(h)
−1

= T k′′

(φ(h)◦f)(c)

Geometry & Topology, Volume 8 (2004)



1382 Tara E Brendle and Dan Margalit

But since Dehn twists can only be equal if they are twists about the same curve,
we have:

(f ◦ h)(c) = (φ(h) ◦ f)(c)

So it is true that fh = φ(h)f , and hence φ(h) = fhf−1 .

We have thus proven Main Theorem 2, which immediately implies that φ is the
restriction to G of an element of Aut(K). In particular:

Comm(K) ∼= Aut(K)

Main Theorem 1 now follows. Indeed, the natural map η : Mod(S) → Aut(K)
is readily seen to be a right inverse of the composition of maps taking φ to f ,
and thus Mod(S) ∼= Aut(K). Theorem 1.5 follows similarly.

6 Torelli group

We will now sketch how our theorems give alternate proofs of Farb and Ivanov’s
results about Torelli groups.

Let ψ : G→ I be an injection, where G is any finite index subgroup of I . As
in Farb and Ivanov’s paper, ψ induces a superinjective map ψ⋆ of T (S) (this
follows from Proposition 3.4). In particular, ψ⋆ induces a superinjective map
φ⋆ of Cs(S) (by the proof of Lemma 3.8), and, following our paper, this gives
rise to a mapping class f which induces φ⋆ . In summary:

ψ 7→ ψ⋆ 7→ φ⋆ 7→ f

We now claim that f also induces ψ⋆ . It suffices to check (f(a), f(b)) =
ψ⋆((a, b)) for any bounding pair (a, b). Given (a, b) choose four separating
curves w , x, y , and z as in Figure 6.

We have that (f(a), f(b)) is the unique bounding pair between f(y) and f(z)
and disjoint from f(w) and f(x).

Now ψ⋆ has the same action as f on w , x, y , and z since all the curves are
separating. As in Section 3.2, ψ⋆((a, b)) must lie in between f(y) and f(z),
and it must be disjoint from f(w) and f(x). This implies that ψ⋆((a, b)) =
(f(a), f(b)).

By the same argument as in Section 5, f induces ψ . Theorems 1.7 and 1.8 now
follow, and from these it is straightforward to prove Theorems 1.3 and 1.4.
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Figure 6: Separating curves defining a bounding pair
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