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ON SOME FINITE SUMS WITH FACTORIALS

Branko Dragovich

Abstract. The summation formula

n−1
∑

i=0

εi i! (ik + uk) = vk + εn−1 n!Ak−1(n)

(ε = ±1; k = 1, 2, · · · ; uk, vk ∈ Z; Ak−1 is a polynomial ) is derived and

its various aspects are considered. In particular, divisibility with respect to

n is investigated. Infinitely many equivalents to Kurepa’s hypothesis on the

left factorial are found.

1. Introduction

The subject of the present paper is the investigation of finite sums of

the form
n−1
∑

i=0

εi i!Pk(i) , (1)

where ε = ±1, and

Pk(i) = Ck i
k + · · ·+ C1 i+ C0 (2)

is a polynomial with k, i ∈ N0 = N∪{0} and coefficients C0, C1, · · · , Ck ∈ Z.

We mainly consider the following three problems of (1): a) summation

formula, b) divisibility by n! and c) connection with the Kurepa hypothesis

(KH) on the left factorial. All these problems depend on the form of the

polynomial Pk(i) and have something in common with it.

In Sec. 2 we find a few ways to determine Pk(i) which give simple and

useful summation formulae. Sec. 3 contains divisibility properties. The

results concerning KH on the left factorial are given in Sec. 4. Infinitely

many equivalents to KH are found.
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2. Summation Formulae

Lemma 1. Let ε = ±1 and

Ak−1(n) = ak−1 n
k−1 + · · ·+ a1 n+ a0 , k ∈ N , n ∈ N0 , (3)

is a polynomial. One can find coefficients ak−1 = 1 and ak−2, · · · , a0 ∈ Z

such that identity

(n+ 1)Ak−1(n+ 1)− εAk−1(n) = nk + Ak−1(1)− εAk−1(0) (4)

holds for all n ∈ N0.

Proof. Formula (4) has the form

(n+ 1)Ak−1(n+ 1)− εAk−1(n) = nk + uk . (5)

Replacing Ak−1(n) by (3) and demanding (5) to be an identity, the following

system of linear equations must be satisfied:

(

k

0

)

ak−1 = 1

[(

k

1

)

− ε

]

ak−1 + ak−2 = 0

(

k

2

)

ak−1 +

[(

k − 1
1

)

− ε

]

ak−2 + ak−3 = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

k ak−1 + (k − 1) ak−2 + · · ·+ (2− ε) a1 + a0 = 0

ak−1 + ak−2 + · · ·+ a1 + (1− ε) a0 = uk .

(6)

Starting from the first equation, which gives ak−1 = 1, one can in a suc-

cessive way obtain solution for all ai = ai(k, ε), i = 0, · · · , k − 2. The last

equation in (6) serves to determine uk. Thus we get

uk =

k−1
∑

i=0

ai − ε a0 = Ak−1(1)− εAk−1(0) . (7)

Note that (4) is an identity if and only if the coefficients of the polyno-

mial Ak−1(n) satisfy the system of linear equations (6), where uk is given

by (7).
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The first five polynomials which satisfy (4) are:

A0(n) = 1 ,

A1(n) = n+ ε− 2 ,

A2(n) = n2 + (ε− 3)n+ 4− 5 ε ,

A3(n) = n3 + (ε− 4)n2 + 7 (1− ε)n+ 18 ε− 13 ,

A4(n) = n4 + (ε− 5)n3 + (11− 9 ε)n2 + 2 (16 ε− 11)n+ 58− 63 ε .

(8)

Theorem 1. The summation formula

n−1
∑

i=0

εi i! [ik + Ak−1(1)− εAk−1(0)] = −εAk−1(0) + εn−1 n!Ak−1(n) (9)

is valid if and only if the polynomials Ak−1(n), k ∈ N, satisfy the identity

(4).

Proof. Summation of (4), previously multiplied by εi i!, gives

n−1
∑

i=0

εi i! [ik +Ak−1(1)− εAk−1(0)]

=
n−1
∑

i=0

εi i! [(i+ 1)Ak−1(i+ 1)− εAk−1(i)] .

(10)

Since on the r. h. s. all but the first and the last term cancel we get (9).

Now one can easily show that starting from (9) one obtains (4).

Denoting uk = Ak−1(1) − εAk−1(0), vk = −εAk−1(0) we can rewrite

(9) in the form

n−1
∑

i=0

εi i! (ik + uk) = vk + εn−1 n!Ak−1(n) , k ≥ 1 . (11)

Formula (9), as well as (11), is determined by polynomial Ak−1(n) in

(3), whose coefficients are solution of (6). However, for large k, (6) becomes

inconvenient. Therefore, it is of interest to have another approach which is

more effective to get (11).

Theorem 2. If δ0k is the Kronecker symbol and

Sε
k(n) =

n−1
∑

i=0

εi i! ik , ε = ±1 , k ∈ N0 , (12)
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then

Sε
k(n) = δ0k + ε

k+1
∑

l=0

(

k + 1
l

)

Sε
l (n)− εn n!nk , k ∈ N0 , (13)

is a recurrent relation.

Proof.

Sε
k(n) = δ0k +

n−2
∑

i=0

εi+1 (i+ 1)! (i+ 1)k

= δ0k + ε

n−1
∑

i=0

εi i! (i+ 1)k+1 − εn n!nk

= δ0k + ε

k+1
∑

l=0

(

k + 1
l

)

Sε
l (n)− εn n!nk .

Relation (13) gives a simpler way to find (11) in the explicit form for a

particular index k ≥ 0.

From (13) one can obtain recurrent relations for uk and vk. In partic-

ular, when ε = 1, we have

uk+1 = −k uk −
k−1
∑

l=1

(

k + 1
l

)

ul + 1 , u1 = 0 , k ≥ 1 , (13.a)

vk+1 = −k vk −
k−1
∑

l=1

(

k + 1
l

)

vl − δ0k , k ≥ 0 . (13.b)

Some first values of uk and vk (ε = 1) are:

k 1 2 3 4 5 6 7 8 9 10 11

uk 0 1 −1 −2 9 −9 −50 267 −413 −2180 17731

vk −1 1 1 −5 5 21 −105 141 777 −5513 13209

As an illustration of the above summation formulae, the first four ex-
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amples (ε = 1) are:

(a)

n−1
∑

i=0

i! i = −1 + n! ,

(b)

n−1
∑

i=0

i! (i2 + 1) = 1 + n! (n− 1) ,

(c)
n−1
∑

i=0

i! (i3 − 1) = 1 + n! (n2 − 2n− 1) ,

(d)
n−1
∑

i=0

i! (i4 − 2) = −5 + n! (n3 − 3n2 + 5) .

(14)

Note that ik+uk in (11) is a polynomial Pk(i) in (2) in a reduced form

and suitable for generalization. Namely, (11) can be generalized to

n−1
∑

i=0

εi i!Pk(i) = Vk + εn−1n!Bk−1(n) , k ≥ 1 , (15)

where Pk(i) =
∑k

r=0 Cr i
r with

C0 =
k

∑

r=1

Cr ur, Vk =
k

∑

r=1

Cr vr, Bk−1(n) =
k

∑

r=1

Cr Ar−1(n)

and C1, · · · , Ck ∈ Z. Polynomials Pk(i) which do not have the above form

do not yield (15).

3. Divisibility

The above results enable us to investigate some divisibility properties of
∑n−1

i=0 εi i!Pk(i) with respect to all factors contained in n!. According to

(15) we have that
∑n−1

i=0 εi i!Pk(i) and Vk are equally divisible with respect

to factors of n!, as well as to those of Bk−1(n).

Proposition 1. If the polynomial Ak−1(n) satisfies the identity (4) then

we have the following congruence

n−1
∑

i=0

εi i! [ik + Ak−1(1)− εAk−1(0)] ≡ −εAk−1(0) (mod n!). (16)
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Proof. Congruence (16) is a direct consequence of (9).

From (16) it follows

n−1
∑

i=0

εi i! ik ≡ − [Ak−1(1)− εAk−1(0)]
n−1
∑

i=0

εi i!− εAk−1(0) (mod n)

and this property can be used to simplify numerical investigation of divisi-

bility of
∑n−1

i=0 εi i! ik by n.

There is a simple example of (16), e.g.

n−1
∑

i=0

i! i ≡ −1 (mod n!) , (17)

what follows from (14.a).

Proposition 2. The following statements are valid:

(i)

n−1
∑

i=0

i! i 6≡ 0 (mod n) , n > 1 ,

(ii)

p−1
∑

i=0

i! i 6≡ 0 (mod p) , p ∈ P ,

(iii)

( n−1
∑

i=0

i! i, n!

)

= 1 , n > 1 ,

(18)

where (a, b) denotes the greatest common divisor of a, b ∈ Z, and P is the

set of prime numbers.

Proof. Every of equations (i), (ii) and (iii) in (18) follows from (14.a).

One can also show that these statements are equivalent.

Due to (16) divisibility of
∑n−1

i=0 εi i! ik, k ≥ 1, by factors of n! is in

some relation to divisibility of
∑n−1

i=0 εi i! except for the case Ak−1(1) =

εAk−1(0).

4. On Kurepa’s Hypothesis

Kurepa in [1] introduced a hypothesis

(!n, n!) = 2 , 2 ≤ n ∈ N , (19)
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where

!n =

n−1
∑

i=0

i! (20)

has been called the left factorial. In spite of many papers (for a review

see [2] and references therein) on KH it is still an open problem in number

theory [3]. Many equivalent statements to KH have been obtained (for some

of them see [4]). Among very simple assertions equivalent to (19) are [1]:

!n 6≡ 0 (mod n) , n > 2 ,

!p 6≡ 0 (mod p) , p > 2 .
(21)

KH is verified by computer calculations (see [2]) for n < 223 [5].

The above obtained summation formulae give us possibility to intro-

duce infinitely many new statements equivalent to KH. The first three of

them, which follow from (14), are:

p−1
∑

i=0

i! i2 6≡ 1 (mod p) , p > 2 ,

p−1
∑

i=0

i! i3 6≡ 1 (mod p) , p > 2 ,

p−1
∑

i=0

i! i4 6≡ −5 (mod p) , p > 2 .

(22)

Theorem 3. If uk and vk satisfy (13.a) and (13.b) then

p−1
∑

i=0

i! ik 6≡ vk (mod p) , p > 2 , (23)

is equivalent to KH for such k ∈ N for which uk is not divisible by p.

Proof. Consider (11) for ε = 1 and n = p. According to KH one has

uk

∑p−1
i=0 i! 6≡ 0 (mod p) for p > 2 and p which does not divide uk 6= 0. For

such primes p it holds (23).

Starting from the Fermat little theorem, i.e. ip−1 = 1 in the Galois

field GF(p) if i = 1, 2, ..., p− 1 , one can easily show that assertion

p−1
∑

i=0

i! ir(p−1) 6≡ −1 (mod p) , p > 2 , r ∈ N (24)
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is equivalent to KH. This can be regarded as a special case of the Theorem

3. Since r may be any positive integer it means that there are infinitely

many equivalents to KH.

Note that on the basis of Fermat’s theorem one can also obtain

p−1
∑

i=0

εi i! ik+r(p−1) =

p−1
∑

i=0

εi i! ik − δ0k , k ∈ N0 , r ∈ N . (25)

Proposition 3. If uk and vk satisfy (13.a) and (13.b), respectively, the

following relations in GF(p) are valid:

(up−1 + 1)

p−1
∑

i=0

i! = vp−1 + 1 , (26.a)

up

p−1
∑

i=0

i! = vp + 1 , (26.b)

(up+1 − 1)

p−1
∑

i=0

i! = vp+1 − 1 , (26.c)

(up+2 + 1)

p−1
∑

i=0

i! = vp+2 − 1 . (26.d)

Proof. One can start from (11), then use (25) and (14).

From eqs. (13.a) and (13.b) one obtains in GF(p):

(up+2, vp+2) = (−up − 1,−vp),

(up+1, vp+1) = (1, 1),

(up, vp) = (up−1 + 1, vp−1).

Thus (26.a)−(26.d) are equivalent identities which are always satisfied owing

to the values of uk and vk. Identity (26.c) does not depend on validity of

KH.

5. Concluding remarks
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It is worth noting that for every k ∈ N there is a unique pair (uk, vk)

of integers uk and vk which connect
∑n−1

i=0 εi i! ik and
∑n−1

i=0 εi i! into simple

summation formula (11). All other results of the present paper are mainly

various consequences of this fact.

Formula (11) is also suitable to consider its limit when n → ∞ in p-adic

analysis. Namely, since |n!|p → 0 as n → ∞, one obtains

∞
∑

i=0

εi i! (ik + uk) = vk ,

valid in Qp for every p. Some p-adic aspects of the series
∑

∞

i=0 ε
i i!Pk(i)

and their possible role in theoretical physics are considered in Ref. 6.

Having infinitely many new equivalents, Kurepa’s hypothesis becomes

more challenging. Moreover, KH itself seems to be the simplest among all

its equivalents. In p-adic case KH can be also formulated as follows:

∞
∑

i=0

i! = a0 + a1p+ a2p
2 + ..., p ∈ P ,

where ai are definite digits with a0 6= 0 for all p 6= 2.
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