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Abstract

We consider topological indices I that are sums of f(deg(u))f(deg(v)),
where {u, v} are adjacent vertices and f is a function. The Randić con-
nectivity index or the Zagreb group index are examples for indices of this
kind. In earlier work on topological indices that are sums of independent
random variables, we identified the correlation between I and the edge set
of the molecular graph as the main cause for correlated indices. We prove
a necessary and sufficient condition for I having zero covariance with the
edge set.

1 Introduction

For quite some time it has been known that topological indices (graph invariants
on molecular graphs) exhibit considerable mutual correlation [1, 2]. This is
a major problem when performing structure-activity studies as the employed
statistical methods may fail or give little meaningful results on sets of correlated
data. Also, strong correlations among a set of topological indices raise doubt
whether these indices describe different and meaningful biological, chemical or
physical properties of molecules.

In an attempt to investigate the reasons for these correlations, we used ran-
dom graphs [3] as a model for chemical graphs and for topological indices of the
form

IX(G) =
1

2

∑

{u,v}∈E

XuXv

where E is the edge set of the molecular graph G = (V,E) and {Xv | v ∈ V }
is a set of independent random variables with a common expectation E(X)
[4, 5, 6]. We proved that IX, IY, and I1 are linearly dependent for independent
vertex properties X,Y with E(X) ,E(Y ) > 0 as the number of vertices tends to
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infinity. For E(X) = E(Y ) = 0 however these indices are uncorrelated. Here,
I1 denotes a topological index with Xv = 1 for all v ∈ V .

While the random graph model we used in [6] encompasses graphs of ar-
bitrary structure, including chemical graphs, the notion of vertex (or atom)
properties Xv that are independent of the molecular graph is a serious abstrac-
tion from computational chemistry where atom properties used for topological
indices are a function of the graph or even the molecule.

In this paper, we use a slightly more general random graph model than the
one used in [4]. In particular, we consider graphs on n vertices whose edges
are chosen independently with a probability proportional to 1/n. The latter
ensures that the expected number of edges increases linearly in the number of
vertices. We use this to model an approximately linear relation of bonds to
vertices present in molecules. For example, homologous series of aliphatic or
aromatic hydrocarbons with n atoms contain n+ c bonds for some constant c.
Polyphenols contain 7

6n+ c bonds as each monomer adds 6 atoms and 7 bonds.
On the other hand, there is some variation in the number of bonds for a given
number of atoms in a heterogenous set of molecules, which is also true for the
random graph model.

As a more significant difference we consider the vertex properties Xv to be
a function of the vertex degree instead of being independent. Thus, our results
are valid for important topological indices such as the Randić connectivity index
or Zagreb group index. We will focus on the crucial covariance between IX and
I1.

2 Preliminaries

First, we describe the random graph model. For a graph (V,E) let

1uv = 1{{u,v}∈E} =

{

1 if {u, v} ∈ E

0 else

be the indicator function for {{u, v} ∈ E}. For V = {1, . . . , n} let 1uv (u, v ∈ V )
be independent random variables with P (1uv = 1) = p. The space of random
graphs G (n, p) can be identified with the distribution of (1uv)u,v∈V . We set
p = α/n for a fixed parameter α > 0 so that E|E| =

(

n
2

)

p ∼ α
2n as motivated

in the introduction.
To describe the vertex properties, let f : N0 → R be a function with f(0) = 0.

We consider the topological index

IX = IX(G) =
1

2

∑

{u,v}∈E(G)

XuXv (2.1)

with
Xv = f(deg(v))
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being the vertex properties and G ∈ G (n, α/n) is a random graph. Thus,
f(0) = 0 accounts for isolated vertices being ignored. Using indicators this can
be written as

IX =
∑

u<v

XuXv1uv (2.2)

which is better suited to employ the expectation operator.
We us the following notations throughout the text:

O(f) denotes a function g with g(x) ≤ cf(x) for all large
x and some constant c > 0

Xn
D
−→ X denotes that random variable Xn converges to X

in distribution
an ր a denotes that sequence (an) is monotonically in-

creasing and converges to a

3 Expectations and Covariance

To determine expectation values, we have to eliminate the dependence among
Xu and Xv in (2.2). This is achieved by conditioning for {1uv = 1}. If the edge
{u, v} exists then the degree of u has no effect on the degree of v and vice versa:

Lemma 1.

Suppose u < v. Then the random variables (1uu′)u′>u and (1vv′)v′>v are inde-

pendent with respect to the probability measure P (· | 1uv = 1). The same claim

holds for deg(u) and deg(v).

b

u
b

v
b

u’

b

b

v’

b

Figure 1: We fix edge {u, v}

Proof. Let auu′ , avv′ ∈ {0, 1} for u′ > u, v′ > v and auv = 1. We check that for
(auu′)u′>u, (auu′)u′>u holds

P ((1uu′)u′>u = (auu′)u′>u ∧ (1vv′)v′>v = (avv′ )v′>v | 1uv = 1)

=
P ((1uu′)u′>u,u′ 6=v = (auu′)u′>u ∧ (1vv′)v′>v = (avv′ )v′>v ∧ 1uv = 1)

P (1uv = 1)

= P ((1uu′)u′>u,u′ 6=v = (auu′)u′>u ∧ (1vv′)v′>v = (avv′ )v′>v)

= P ((1uu′)u′>u,u′ 6=v = (auu′)u′>u)P ((1vv′)v′>v = (avv′)v′>v)

= P ((1uu′)u′>u = (auu′)u′>u | 1uv = 1)

· P ((1vv′)v′>v = (avv′ )v′>v | 1uv = 1)
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If auv = 0, both sides are zero. The second claim is a consequence of deg(u) or
deg(v) being functions of 1uu′ or 1vv′ , respectively.

We are going to apply lemma 1 to conditional expectations. This motivates
the definition

δ
(k)
f = E(X1 | 112113 · · · 11k+1 = 1) , k > 0 (3.1)

We shall see later why we also need k > 1. For symmetry reasons, this could as
well be defined for a vertex v 6= 1 and any set of distinct vertices {u2, . . . , uk}

different from v. As we shall see in section 4, limn→∞ δ
(k)
f exists and is a function

of α if f satisfies a condition. Thus, we may regard δ
(k)
f as almost constant for

large n.

Lemma 2.

E(IX) =
(

δ
(1)
f

)2

E|E|

Proof.

E(IX) =
∑

u<v

E(XuXv | 1uv = 1) p by (2.2)

=
∑

u<v

E(Xu | 1uv = 1)E(Xv | 1uv = 1) p by lemma 1

=
(

δ
(1)
f

)2

E|E| by (3.1)

Lemma 3.

E(IXI1) =

[

(

δ
(1)
f

)2
(

n− 2

2

)

p+ 2δ
(1)
f δ

(2)
f (n− 2)p+

(

δ
(1)
f

)2
]

E|E|

Proof. To dissect the sum

E(IXI1) =
∑

u<v

∑

u′<v′

E(XuXv1uv1u′v′)

according to |{u, v} ∩ {u′, v′}|, consider

Sk = {(u, v, u′, v′) | u < v ∧ u′ < v′ ∧ |{u, v} ∩ {u′, v′}| = k}, 0 ≤ k ≤ 2

Then

|S0| =

(

n

2

)(

n− 2

2

)

(3.2)

|S1| = 6

(

n

3

)

(3.3)

|S2| =

(

n

2

)

(3.4)
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(3.2) and (3.4) are obvious. To verify (3.3) let (u, v, u′, v′) ∈ S1. Exactly two
numbers are equal as indicated in figure 2. Cases (a), (b) allow just one way
to distribute three distinct numbers on u, v, u′, v′ while there are two ways for
cases (c), (d). For symmetry reasons, E(XuXv1uv1u′v′) = E(X1X2112113) for

b

u’

b

v’

b

u
b

v

=

<

<

(a)

b

u’

b

v’

b

u
b

v

=

<

<

(b)

b

u’

b

v’

b

u
b

v

=

<

<

(c)

b

u’

b

v’

b

u
b

v

=

<

<

(d)

Figure 2: Possibilities for (u, v, u′, v′) ∈ S1

all (u, v, u′, v′) ∈ S1. Hence, we get

E(IXI1) = |S0|E(X1X2112134)

+ |S1|E(X1X2112113)

+ |S2|E
(

X1X21
2
12

)

= |S0|E(X1X2 | 112 = 1) p2

+ |S1|E(X1X2113 | 112 = 1) p

+ |S2|E(X1X2 | 112 = 1) p

= |S0|E(X1 | 112 = 1)E(X2 | 112 = 1) p2

+ |S1|E(X1113 | 112 = 1)E(X2 | 112 = 1) p

+ |S2|E(X1 | 112 = 1)E(X2 | 112 = 1) p

(3.5)

by lemma (1). With

E(X1113 | 112 = 1) = 1/pE(X1112113) = δ
(2)
f p

(

n

3

)

=

(

n

2

)

n− 2

3

and (3.2)-(3.4), (3.5), we have

E(IXI1) =
(

δ
(1)
f

)2

E|E|

(

n− 2

2

)

p

+ 2δ
(1)
f δ

(2)
f E|E|(n− 2)p

+
(

δ
(1)
f

)2

E|E|
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Remark. With f ≡ 1, lemma 2 and the help of Mathematica follows Var(I1) =
E|E|(1− p), as it should be.

We combine the results of this section in

Theorem 4.

If δ
(1)
f , δ

(2)
f are bounded in n then

Cov (IX, I1) =







0 if δ
(1)
f = 0

[

(

δ
(1)
f

)2
(

1 + 2α

(

δ
(2)
f

δ
(1)
f

− 1

))

+O
(

1
n

)

]

E|E| else

Proof. By lemma 2 and lemma 3,

Cov (IX, I1) =

[

(

δ
(1)
f

)2
(

n− 2

2

)

p+ 2δ
(1)
f δ

(2)
f (n− 2)p

+
(

δ
(1)
f

)2

−
(

δ
(1)
f

)2

E|E|

]

E|E|

Using
(

n−2
2

)

−
(

n
2

)

= 3− 2n, this can be written as

Cov (IX, I1) =

[

(

δ
(1)
f

)2

(1 + (3− 2n)p) + 2δ
(1)
f δ

(2)
f (n− 2)p

]

E|E|

=



















0 if δ
(1)
f = 0

[

(

δ
(1)
f

)2
(

1 + 2p

(

δ
(2)
f

δ
(1)
f

n− n

))

+
(

δ
(1)
f

)2

p

(

3− 2
δ
(2)
f

δ
(1)
f

)]

·E|E| else

The assertion follows with p = α/n.

Remark. We will prove in theorem 5 in section 4 that all δ
(k)
f are in fact bounded

in n if f ∈ O(x).

Yet, it is not clear whether Cov (IX, I1) 6= 0 for δ
(1)
f 6= 0. This is dealt with

in the next section.

4 The Poisson Distribution and δ
(k)
f

For the proof of the following theorem recall that for random variables Xn, X
holds

Xn
D
−→ X

iff
E(f(Xn)) → E(f(X))

for all bounded and continuous functions f : R → R. This does not hold for
arbitrary unbounded functions f . Therefore, we require that f ∈ O(x) in this
section. While this does not seem to be the most general restriction, it facilitates
the following elaborations.
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Theorem 5.

For all f ∈ O(x) and all k holds

lim
n→∞

δ
(k)
f = E(f(k + Pα)) =

∞
∑

j=0

f(k + j)
αj

j!
e−α

where Pα is the Poisson distribution with parameter α.

Proof. By definition (3.1),

δ
(k)
f = E(f(deg(1)) | 112113 · · · 11k+1 = 1)

= E



f

(

k +

n
∑

j=k+2

11j

)



 (4.1)

Since p = α/n, Poisson’s limit theorem gives

n
∑

j=k+2

11j
D
−→ Pα (n → ∞)

The function f : N0 → R can be extended to a continuous function f : R → R

in an arbitrary way. Hence, the continuity theorem gives

f



k +

n
∑

j=k+2

11j





D
−→ f(k + Pα) (n → ∞)

For all bounded and continuous functions f∗ follows by (4.1)

δ
(k)
f∗ → E(f∗(k + Pα)) (n → ∞) (4.2)

If f is also bounded the claim follows. To prove (4.2) for unbounded f we cut f
off above a limit to divide f into a bounded and an unbounded part. We show
that the unbounded part tends to zero as the limit tends to infinity.

To begin with, let |f(x)| ≤ x for all x and let f be unbounded. Then there
is a sequence of integers (ml) such that without loss of generalityf(ml) ր ∞
for l → ∞ and f(ml) > 0 for all l. Let be

cm(x) =

{

x if |x| < m

0 else

and

c̃m(x) =

{

0 if |x| < m

x else

Let Sn := k +
∑n

j=k+2 11j. Then

|E((c̃ml
◦ f)(Sn)) | =

∣

∣E
(

f(Sn)1{f(Sn)>ml}

)∣

∣

≤ E
(

Sn1{f(Sn)>f(ml)}

)

7



since 0 ≤ f(ml) ≤ ml

= E
(

Sn1{Sn>ml}

)

since f(ml) increases monotonically

< E

(

Sn

Sn

ml

)

=
1

ml

[

Var(Sn) + (E(Sn))
2
]

=
1

ml

[

O(n) p(1− p) + (O(n) p)2
]

= O(1/ml)

By linearity of expectation follows

E((c̃ml
◦ f)(Sn)) = O(1/ml) (4.3)

for all f ∈ O(x). Thus,

lim
n→∞

δ
(k)
f = lim

l→∞
lim
n→∞

E(f(Sn))

by (4.1)

= lim
l→∞

lim
n→∞

[E((cml
◦ f)(Sn)) +E((c̃ml

◦ f)(Sn))]

= lim
l→∞

[E((cml
◦ f)(k + Pα)) +O(1/ml)]

by (4.2) and (4.3)

= E(f(k + Pα))

by the convergence theorem of Lebesgue.

With the help of theorem 5 we are able to answer the question raised at the
end of section 3:

Theorem 6.

For n → ∞ and f ∈ O(x) holds: IX and I1 have covariance zero if and only if

limn→∞ δ
(1)
f = 0.

Proof. Assume that limn→∞ δ
(1)
f 6= 0 and limn→∞ Cov (IX, I1) = 0. By theorem

4 follows

lim
n→∞

δ
(2)
f

δ
(1)
f

= 1−
2

α

8



With theorem 5 we get

∞
∑

j=0

f(2 + j)
αj

j!
=

(

1−
1

2α

) ∞
∑

j=0

f(1 + j)
αj

j!

=

∞
∑

j=0

f(1 + j)
αj

j!
−

1

2

∞
∑

j=0

f(1 + j)
αj−1

j!

We multiply by α and substitute j with j − 1 in the first two series to get

∞
∑

j=1

f(1 + j)
αj

(j − 1)!
=

∞
∑

j=1

f(j)
αj

(j − 1)!
−

1

2

∞
∑

j=0

f(1 + j)
αj

j!

Hence,

1

2
f(1)α0 +

∞
∑

j=1

[

f(1 + j)

(

1 +
1

2j

)

− f(j)

]

αj

(j − 1)!
= 0

By theorem 5, this series converges for all α > 0. By the identity theorem
for power series follows that all coefficients are zero. By induction thus follows

f ≡ 0, which contradicts limn→∞ δ
(1)
f 6= 0.

The opposite direction follows by theorem 4 and theorem 5.

5 Discussion

We have seen that δ
(1)
f is an important quantity for the covariance of the topo-

logical indices we consider. Theorem 5 shows that δ
(k)
f does not depend on n

for large n. This justifies definition (3.1) since we do not want δ
(k)
f to be very

different for graphs of different size. Also, theorem 5 provides a way to approx-

imately compute δ
(k)
f . If we substitute Xv by Xv − δ

(1)
f in (2.1), the resulting

index is uncorrelated to I1.
As a drawback, we require f ∈ O(x) in section 4. Theorem 5 may not be

valid if f increases very steeply. However, it should be possible to derive an
upper limit similar to (4.3) for functions f with a higher rate of growth than
O(x).

In [6], we proved that topological indices (with independent vertex proper-
ties) are necessarily correlated if the vertex properties have expectations not
equal to zero. Theorem 6 does not give this result as it is an assertion on co-
variance only. The next step will therefore be an examination of correlations
within this setting.
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