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A CONTROLLED APPROACH TO THE ISOMORPHISM CONJECTURE

DANIEL JUAN-PINEDA∗ AND STRATOS PRASSIDIS∗∗

Abstract. We use a hocolim approach to the Isomorphism Conjecture in K-Theory to analyze

the case of groups of the form G ⋊ Z and G1 ∗G G2. As an important corollary we prove that the

isomorphism conjecture in K-Theory holds for a finitely generated free group.

1. Introduction

The Isomorphism Conjecture is, currently, one of the most important tools in calculating alge-

braic invariants that appear in classification problems in Topology. It should be considered as an

induction technique that evaluates geometrically important obstruction groups of a space from the

virtually cyclic subgroups of the fundamental group of the space. The algebraic invariants relevant

to the rigidity problems in topology are the A and K-invariants, L−∞-invariants and pseudoiso-

topy invariants. They all can be characterized as elements of homotopy groups of the corresponding

spectrum.

More specifically, let GΓ be the class of virtually cyclic subgroups of a group Γ, EGΓ the classifying

space for the class GΓ, and

p : EΓ×ΓEGΓ → EGΓ/Γ = BGΓ

the projection map. Let S be any of the A, K, L−∞ or the pseudoisotopy spectra.

Conjecture (Isomorphism Conjecture ([10])). The assembly map

H.(BGΓ,S(p))→ S(BΓ)

induced by the commutative diagram:

EΓ×ΓEGΓ −−−−→ BΓ

p





y





y

BGΓ −−−−→ ∗

is a homotopy equivalence.
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2 DANIEL JUAN-PINEDA AND STRATOS PRASSIDIS

The homology spectrum that appears in the Isomorphism Conjecture can be computed, via a

spectral sequence, from the S-groups of the virtually cyclic subgroups of Γ.

Farrell–Jones have proved the isomorphism conjecture for a large class of geometrically significant

groups and for the pseudoisotopy spectrum ([10], [11]). That implies the isomorphism conjecture

for lower K-groups.

In this paper, we will study the Isomorphism Conjecture using homotopy colimits. The homology

spectrum in the statement of the conjecture can be described as a homotopy colimit. In this context,

the Isomorphism Conjecture reflects the extend of how much the factors mentioned above commute

with certain homotopy colimits.

Homotopy colimits in the Isomorphism Conjecture have been used before ([1], [8], [17], [20]).

In all the references the homotopy colimit machinery encodes, in a homological/homotopical way,

controlled problems.

The Isomorphism Conjecture can also be considered as a statement about a “forget control”

map. In this context, we will use Segal’s Pushdown Construction ([15]) in homotopy colimits to

capture the geometric idea of change of control. This approached is applied to two cases, with

S = K, the K-theory spectrum:

• Groups that admit an epimorphism to Z and the kernel satisfying the IC.

• Amalgamated free products where each factor satisfies the IC.

In the first case (Section 4), we will describe the part of K-theory that is controlled over the

circle and the forget control map in this case. More precisely, let Γ = G⋊αZ where G satisfies the

S-IC. The main result in this case (Theorem 4.7) states that the homology spectrum of BGΓ×S
1

is homotopy equivalent to the “controlled” part, over S1, of the theory, in analogy with the results

in [16] and [17] in K-theory. Let KR denotes the functor that maps a space X to K(R[π1(X)]).

Theorem (Semidirect Product with Z). Let Γ = G⋊αZ such that G satisfies the KR-IC. Let

qΓ : EΓ×ΓEΓ→ S1×BΓ.

Then

(1) there is an exact sequence:

. . .→ πi(BG)
1−α∗−−−→ πi(BG)→ Hi(S

1×BΓ,KR(qΓ))→ πi−1(BG)
1−α∗−−−→ πi−1(BG) . . .

(2) If RG is regular coherent, then the assembly map

Hi(BΓ,KR(pΓ))→ Ki(RΓ)

is an epimorphism for all i ∈ Z.

In the special case when Γ is a trivial extension, we derive information about the cokernel of the

forget control map i.e. the Nil-part of the theory. That leads to a proof of the IC for the K-theory
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reduced Nil-spectrum (Section 5), under the assumption that groups of the form G0×Z, with G0

virtually infinite group, satisfy the KR-IC.

Theorem (Product with Z). Let G satisfy the Bundle KR-IC and, for every virtually infinite cyclic

subgroup G0 < G, G0×Z satisfies the bundle KR-IC. Let Γ = G×Z. Then

(1) Γ satisfies the Bundle KR-IC.

(2) G satisfies the Bundle NilR-IC

In the second case (Section 6), we prove that the part of the theory that is controlled over the

interval satisfies a Mayer-Vietoris property in analogy to the result in [17].

Theorem (Amalgamated free products). Let Γ = G1 ∗G0
G2 such that Gi, i = 0, 1, 2, satisfy the

KR-IC. Let

qΓ : EΓ×ΓEΓ→ I×BΓ.

Then

(1) there is an exact sequence:

πi(BG0)→ πi(BG1)⊕πi(BG2)→ Hi(I×BΓ,KR(qΓ))→ πi(BG0)→ πi−1(BG1)⊕πi−1(BG2)

(2) If RG0 is regular coherent, then the assembly map

Hi(BΓ,KR(pΓ))→ Ki(RΓ)

is an epimorphism for all i ∈ Z.

If in addition the base groups (G in the semidirect product case and G0 in the amalgamated free

product case) are torsion free and satisfy the integral Novikov conjecture, then the assembly map

is a homotopy equivalence. Using these ideas we prove (Corollary 7.4):

Corollary. Let F be a finitely generated free group and R a regular coherent ring. Then

(1) F satisfies the KR-IC.

(2) F⋊Z satisfies the KR-IC

The authors would like to thank Tom Farrell whose suggestions improved considerably the orig-

inal form of the paper. The second author would like to thank the Instituto de Matemáticas,

UNAM, Unidad Morelia for its hospitality during the preparation of this paper.

2. Notation

Let Γ be a discrete group and CΓ a class of subgroups of Γ (i.e. a collection of subgroups of Γ

closed under taking conjugates and subgroups). The classifying space of the class CΓ, ECΓ is the

Γ-complex whose isotropy groups are in CΓ and its non-empty fixed point sets are contractible.
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A model for this space, reminiscent of the bar construction ([10]), is given as follows: It is the

realization of a semi-simplicial complex with n-simplex given by a sequence

σ = γ0Γ0(γ1Γ1, γ2Γ2, . . . , γnΓn)

with Γi∈C such that γ−1
i Γi−1γi ⊂ Γi for i = 1, . . . , n. The face operator is given by

∂iσ =











γ0γ1Γ1(γ2Γ1, . . . , γnΓn), i = 0,

γ0Γ0(γ1Γ1, . . . , γi−1Γi−1, γiγi+1Γi+1, γi+1Γi+1, . . . , γnΓn), 0 < i < n,

γ0Γ0(γ1Γ1, . . . , γn−1Γn−1), i = n.

The group Γ acts on ECΓ by

γσ = (γγ0)Γ0(γ1Γ1, γ2Γ2, . . . , γnΓn), for γ∈Γ.

We write BCΓ for the orbit space ECΓ/Γ. To ensure that BCΓ is a simplicial complex, we subdivide

ECΓ twice, i.e. BCΓ = (ECΓ)
′′/Γ.

The construction of the classifying space is functorial with respect to group homomorphisms.

Let CΓ be a class of subgroups of Γ. For if ρ : Γ→ G be a group homomorphism then ρ induces a

ρ-equivariant map

ρ̄ : ECΓ → ECG, γ0Γ0(γ1Γ1, γ2Γ2, . . . , γnΓn) 7→ ρ(γ0)ρ(Γ0)(ρ(γ1)ρ(Γ1), ρ(γ2)ρ(Γ2), . . . , ρ(γn)ρ(Γn))

where CG is a class of subgroups of G that contains the images, under ρ, of the elements of CΓ. The

map ρ̄ induces a map ρ′ to the quotient spaces.

For each simplicial complex K, we write cat(K) for the category of simplices of K, viewed as a

partially ordered set. Thus objects are the simplices of K and there is a single morphism from σ

to τ whenever σ ≤ τ .

Definition 2.1 ([1]). Let p : E → B be a map with B = |K|, the geometric realization of a

simplicial complex. The map is said to have a homotopy colimit structure if there is a functor

F : cat(K)op → Top

such that:

• E = hocolimcat(K)op(F ).

• p = hocolimcat(K)op(ν), where ν is the natural transformation from F to the constant point

functor.

Notation. Let p : E → B be a map, B = |K| and cat(K)op the category of the simplicial complex

K. We define the barycentre functor

bar(p) : cat(K)op → Top, σ 7→ p−1(σ̂)

where σ̂ is the barycentre of σ.
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Remark 2.2. We give basic examples of maps that admit a homotopy colimit structure. The proofs

follow from direct calculations (also [20]).

(1) Let p : E → B, B = |K|, be a map that admits a homotopy colimit structure relative to

the functor bar(p). Let p′ : E′ → E be a fiber bundle. Then the composition

q : E′ p′

−→ E
p
−→ B

admits a homotopy colimit structure relative to the functor bar(q).

(2) Let Γ be a discrete group, EΓ a free contractible Γ-complex and ECΓ the classifying complex

for the family of subgroups of Γ. Let

pΓ : EΓ×ΓECΓ → ECΓ/Γ = BCΓ

be the projection map to the second coordinate. Then pΓ has a homotopy colimit structure

with respect to the functor bar(pΓ). Notice that, in this case, p−1
Γ (σ̂) is a space of type

BΓσ, where Γσ is the isotropy group of σ, an element in the class CΓ.

(3) Let ρ : Γ→ G be a group epimorphism. Then the map

q : EΓ×ΓECΓ
p
−→ BCΓ

ρ′

−→ BCG

has a homotopy colimit structure with respect to the functor bar(q), where CG = ρ(CΓ), the

class of subgroups of G consisting of the images of elements of CΓ.

Let F : C → D and X : C → Top be two functors. Then Segal’s Pushdown Construction (see for

example [15]) defines a functor F∗X : D → Top such that

hocolimCX ≃ hocolimDF∗X.

We will explicitely describe the construction to the case of Part(3) in Remark 2.2. In this case, we

start with a map:

q : EΓ×ΓECΓ
p
−→ BCΓ

ρ′

−→ BCG

The map ρ′ induces a functor

P : cat(BCΓ)
op → cat(BCG)

op

We will describe the functor

P∗bar(p) : cat(BCG)
op → Top.

For each simplex σ of BCG, let P↓σ be the over category. In this case, the objects of P↓σ are

simplices τ of BCΓ such that ρ′(τ) contains σ as a face. Set

pσ = p| : p−1(|P↓σ|)→ |P↓σ|.

Then P∗bar(p)(σ) = hocolimP↓σbar(pσ). Summarizing:
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Proposition 2.3. There is a homotopy equivalence:

hocolimcat(BCΓ)op(bar(p)) ≃ hocolimcat(BCG)op(P∗bar(p)).

The class of subgroups of Γ of interest in the Isomorphism Conjecture is the class of virtually

cyclic subgroups, denoted GΓ. They naturally split into two categories:

• Finite subgroups of Γ.

• Virtually infinite cyclic subgroups of Γ i.e. subgroups which contain an infinite cyclic

subgroup of finite index.

The subgroups of the second type are two-ended subgroups of Γ ([9]) and they split into two

types:

• Groups H that admit an epimorphism to Z with finite kernel i.e.

H ∼= K⋊Z.

• Groups H that admit an epimorphism to the infinite dihedral subgroup D∞ with finite

kernel, i.e.

H ∼= A ∗B C, [B : 1] <∞, [A : B] = [C : B] = 2.

3. A Homotopy Approach to the Isomorphism Conjecture

We will present a reformulation of the IC using homotopy colimits. This approach depends

heavily on the interpretation of the homology spectrum as a homotopy colimit ([1], [20]).

Let Γ be a discrete group and S a homotopy invariant functor from spaces to spectra. As before,

let GΓ be the class of virtually cyclic (finite or infinite) subgroups of Γ. Let EGΓ be the classifying

Γ-complex for the class GΓ and

pΓ : EΓ×ΓEGΓ → EGΓ/Γ = BGΓ

be the projection map. Let cat(BGΓ)
op be the category corresponding to the partially ordered set

of simplices of BGΓ. Let bar(pΓ) be the barycentre functor. Let r : Y → BΓ be a bundle. Form

the pull-back:

Ȳ −−−−→ Y

ρ





y





y

r

EΓ×ΓEGΓ −−−−→ BΓ

pΓ





y





y

BGΓ −−−−→ ∗

Notice that

hocolimcat(BGΓ)opbar(pΓ◦ρ)
∼= Ȳ ≃ Y
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Let ∗ denote the category with a single object and a single morphism. Let

FΓ : ∗ → Top, FΓ(∗) = Y

The Bundle Isomorphism Conjecture. With the notation above, the functor from cat(BGΓ)
op to ∗,

induces a homotopy equivalence of spectra:

hocolimcat(BGΓ)opS◦bar(pΓ◦ρ)→ hocolimcat(∗)S◦bar(FΓ) ∼= S(Y ).

Remark 3.1.

(1) In the interesting cases, the functor S factors as

S : Top
S
−→ C

B
−→ Spectra

where C is the category of small categories and B is the classifying spectrum functor. Using

the notation in [21], Theorem 3.19, the left hand side can also be re-written:

hocolimcat(BGΓ)opB(S◦bar(pΓ◦ρ)) ≃ B

(

∫

cat(BGΓ)op
S◦bar(pΓ◦ρ)

)

Thus the isomorphism conjecture can be reformulated as follows:

Categorical Reformulation of the Bundle IC. The natural functor cat(BGΓ)
op → ∗ induces

a homotopy equivalence of categories:
∫

cat(BGΓ)op
S◦bar(pΓ◦ρ)→

∫

∗
S◦FΓ

∼= S(Y )

(2) Since S is homotopy invariant and Y ≃ hocolimcat(BGΓ)opbar(pΓ◦ρ) we see that the Bundle

IC states that S commutes, up to homotopy, with the homotopy colimit above, i.e.:

IC Using Homotopy Colimits. With the above notation,
∫

cat(BGΓ)op
S◦bar(pΓ◦ρ) ≃ S(hocolimcat(BGΓ)opbar(pΓ◦ρ)).

(3) The above formulation is related to the classical statement of the conjecture in [10] as

follows:

(a) If r is the identity map, then the Bundle IC is the Isomorphism Conjecture in [10].

(b) In [10], the Fibered Isomorphism Conjecture is stated under the assumption that r is

a fibration. Our assumption that r is a bundle is needed to preserve the homotopy

colimit structure of the composition pΓ◦ρ.
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As an illustration of the categorical approach to the Isomorphism Conjecture, we study the

Isomorphism Conjecture under certain group extensions.

Let S be a homotopy invariant functor from spaces to spectra and ρ : Γ → G a group epimor-

phism. Then the map ρ induces a commutative diagram (Section 2):

EΓ×ΓEGΓ −−−−→ EG×GEGG

pΓ





y





y

pG

BGΓ
ρ′

−−−−→ BGG

The top horizontal map is induced by the map between classifying spaces and the map

ρ̄ : EGΓ → EGG.

The map pΓ induces a functor:

PΓ : cat(BGΓ)
op → cat(BGG)

op.

Let [σ]G represent a simplex of BGG. The space EGG with the Gσ action is a space of type

EGGσ and the quotient EGG/Gσ is a space of type BGGσ . Since Gσ is virtually cyclic, EGG is

Gσ-contractible and BGGσ is contractible. We write

pGσ : EG×GσEGG → BGGσ

for the projection map.

Let ∆σ = ρ−1(Gσ), a subgroup of Γ. Then EGΓ, with the ∆σ action, is a space of type EG∆σ .

Consider the projection map:

p∆σ : EΓ×∆σEGΓ → EGΓ/∆σ = BG∆σ

Then the functor bar(p∆σ) induces the homotopy colimit structure on p∆σ . The map ρ induces a

commutative diagram:

EΓ×∆σEGΓ −−−−→ EG×GσEGG

p∆σ





y





y

pGσ

BG∆σ

ρσ
−−−−→ BGGσ

With this set up, the map ρσ maps simplices to simplices and induces a functor

Pσ : cat(BG∆σ)
op → cat(BGGσ)

op

Lemma 3.2. For each simplex [σ] of BGG there are homeomorphisms:

φσ : |Pσ↓[σ]G|
∼=
−→ |PΓ↓[σ]G|, Φσ : p−1

∆σ
|Pσ↓[σ]G|

∼=
−→ p−1

Γ |PΓ↓[σ]G|

natural in σ.
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Proof. We will show that the first map is a homeomorphism. The inclusion map ∆σ → Γ induces

a map

φ : BG∆σ = EGΓ/∆σ → EGΓ/Γ = BGΓ.

The restriction of φ induces a map

φσ : |Pσ↓[σ]G| → |PΓ↓[σ]G|

We will define the inverse of φσ. For this, let [τ ]Γ represent a simplex in |PΓ↓[σ]G|. Thus there is

g ∈ G such that gρ̄(τ) > σ. Let γ ∈ Γ be such that ρ(γ) = g. Define

ψσ : |PΓ↓[σ]G| → |Pσ↓[σ]G|, ψσ([τΓ]) = [γτ ]∆σ

• ψσ is well defined:

– ψσ([τΓ]) ∈ |Pσ↓[σ]G|: That follows because

ρ̄(γτ) = ρ(γ)ρ̄(τ) = gρ̄(τ) > σ.

– The definition of ψσ does not depend on the choice of γ: Let γ′ ∈ Γ be such that

ρ(γ′) = g. Then

γ−1γ′ ∈ Ker(ρ) ⊂ ∆σ.

Thus [γτ ]∆σ = [γ′τ ]∆σ .

– The definition of ψσ does not depend on the choice of the representative of the orbit of

τ : Let g′ ∈ G such that g′ρ̄(τ) > σ. Then ρ̄(τ) contains both g−1σ and (g′)−1σ. Since

BGG is a simplicial complex, that implies

g−1σ = (g′)−1σ ⇒ g′g−1 ∈ Gσ.

Since ∆σ = ρ−1(Gσ), ψσ is well defined.

• ψσ is the inverse of φσ: That follows directly from the definition of the functions.

For the construction of Φσ we start by defining a subcomplex of EGΓ:

Qσ = {τ ∈ EGΓ, ρ̄(τ) > σ}

Then

p−1
∆σ

(|Pσ↓σ|) = EΓ×∆σ∆σQσ, p−1
Γ (|PΓ↓σ|) = EΓ×ΓΓQσ.

Since each simplex in Qσ has isotropy group a subgroup of ∆σ,

p−1
Γ (|PΓ↓σ|) = EΓ×ΓΓQσ

∼= EΓ×∆σ∆σQσ.

The naturality of the homeomorphisms is immediate from their construction. �
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As in Proposition 2.3, there is a homotopy equivalence

hocolimcat(BGΓ)op(S◦bar(pΓ)) ≃ hocolimcat(BGG)op(PΓ∗(S◦bar(pΓ))).

Using Lemma 3.2, we can reformulate the description of the functor PΓ∗(S◦bar(pΓ)). For this, we

define

hΓ : cat(BGG)
op → Spectra, σ 7→ hocolimcat(BG∆σ )

op(S◦bar(p∆σ)).

Proposition 3.3. With the above notation, there is a homotopy equivalence

hocolimcat(BGΓ)op(S◦bar(pΓ)) ≃ hocolimcat(BGG)op(hΓ).

Proof. We put everything together:

• Using the commutative diagram for Gσ and Segal’s Pushdown Construction,

hocolimcat(BG∆σ )
op(S◦bar(p∆σ)) ≃ hocolimcat(BGGσ )

op(Pσ∗(S◦bar(p∆σ)))

• Since BGGσ contracts to [σ]G, which is also contractible,

hocolimcat(BG∆σ )
op(S◦bar(p∆σ)) ≃ Pσ∗(S◦bar(p∆σ))([σ]G) ≃ hocolimPσ↓[σ]G(S◦bar(p∆σ |)).

• By Lemma 3.2, the diagram

p−1
∆σ

(|Pσ↓[σ]G|) −−−−→ p−1
Γ (|PΓ↓[σ]G|)

p∆σ





y





y

pΓ

|Pσ↓[σ]G| −−−−→ |PΓ↓[σ]G|

commutes and the horizontal maps are homeomorphisms. Thus, by naturality,

hocolimPσ↓[σ]G(S◦bar(p∆σ)|)
∼= hocolimPΓ↓[σ]G(S◦bar(pΓ)|).

• Thus

hΓ(σ) = hocolimcat(BG∆σ )
op(S◦bar(p∆σ)) ≃ hocolimPΓ↓[σ]G(S◦bar(pΓ)|)

and the equivalence is natural in σ.

• Since PΓ∗bar(pΓ)(σ) = hocolimPΓ↓[σ]G(S◦bar(pΓ)|),

hocolimcat(BGΓ)op(S◦bar(pΓ)) ≃ hocolimcat(BGG)op(PΓ∗bar(pΓ)) ≃ hocolimcat(BGG)op(hΓ)

That completes the proof of the proposition. �

The next Lemma is an application of Proposition 2.3 to the barycentre functors.

Lemma 3.4. With the above notation, there is a homotopy equivalence

BΓ ≃ hocolimcat(BGG)op(β)

where β(σ) = hocolimPΓ↓[σ]Gbar(pΓ|) is a space of type B∆σ.
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Proof. Notice that a model for BΓ is given by hocolimcat(BGΓ)op(bar(pΓ)). The result follows from

applying Proposition 2.3. �

Theorem 3.5. Let S be a homotopy invariant functor from spaces to spectra and ρ : Γ → G a

group epimorphism. Assume that

(1) The Bundle S-IC is true for G.

(2) For each F∈GG, the Bundle S-IC is true for ρ−1(F ).

Then the Bundle S-IC holds for Γ.

Proof. We will give the proof when the bundle over BΓ is the identity. The general case follows

similarly. By Proposition 3.3,

hocolimcat(BGΓ)op(S◦bar(pΓ)) ≃ hocolimcat(BGG)op(hΓ)

where

hΓ([σ]G) = hocolimcat(BG∆σ )
op(S◦bar(p∆σ))

with ∆σ = ρ−1(Gσ). By Assumption (2), the functor hΓ is naturally homotopy equivalent to the

functor h′, given by

h′([σ]G) = S(B∆σ) ≃ S(β([σ]G))

The group Γ acts on EG via ρ. The action is not free because elements of the kernel fix EG.

Consider the bundle map:

BΓ = EΓ×ΓEG→ EG/G = BG

induced by projection to the second coordinate. Form the pull-back diagram:

Y −−−−→ BΓ

r





y





y

EG×GEGG −−−−→ BG

pG





y





y

BGG −−−−→ ∗

For each [σ]G a simplex in BGG, the inverse image of its barycentre under pG is a space of type

BGσ. Thus the inverse image

(pG◦r)
−1([σ̂]G) ≃ B∆σ.

Since the Bundle S-IC holds for G

S(BΓ) ≃ hocolimcat(BGG)op(S◦bar(pG◦r))

≃ hocolimcat(BGG)op(S(B∆σ))

≃ hocolimcat(BGG)op(h
′)

≃ hocolimcat(BGG)op(hΓ)

≃ hocolimcat(BGΓ)op(S◦bar(pΓ))
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proving the S-IC for Γ. �

Corollary 3.6. The proof implies that if the Bundle S-IC holds for G and the S-IC holds for the

inverse images of virtually cyclic subgroups of G, then the S-IC holds for Γ.

4. Spaces over the Circle

Let Γ = G⋊αZ. Here α is the automorphism of G induced by the action of the generator of

Z. The automorphism α is well-defined up to inner automorphisms. By choosing a suitable right

G-space for EG, there is an α-equivariant homeomorphism

ψ : EG→ EG

i.e. ψ(xg) = ψ(x)α(g). By taking quotients, we see that there is a homeomorphism

φ : BG→ BG

that induces the map α in the fundamental group, again up to inner automorphisms. Choose as a

model for BΓ the mapping torus of φ:

BΓ = BG×[0, 1]/∼, (φ(x), 0) ∼ (x, 1).

Then a model for EΓ is the infinite mapping telescope of ψ:

EΓ = EG×[0, 1]×Z/∼, (x, 1, n) ∼ (ψ(x), 0, n + 1).

The right action of Γ on EΓ is given by:

(x, t, n)(g,m) = (xαn(g), t, n +m).

The map

Φ : BG×[0, 1]→ BΓ, Φ(x, t) = [x, t]

has the property that:

Φ(x, 0) = [x, 0], Φ(x, 1) = [x, 1] = [φ(x), 0]

i.e., it defines a homotopy between the identity map and the map φ on BG inside BΓ. Also, the

natural projection map to the second coordinate:

ρ : BΓ→ S1

is a bundle. Consider the commutative diagram

EΓ×ΓEGΓ −−−−→ EΓ×ΓEGΓ

qΓ





y





y

pΓ

S1×BGΓ −−−−→ BGΓ

In the applications the spectrum S has an infinite loop space structure. Let CF be the homotopy

cofiber:

S(BG)
1−φ∗

−−−→ S(BG) → CF
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Since idBG and φ are homotopic in BΓ, there is an induced map:

f : CF → S(BΓ).

This is the map that ‘forgets the control’ over S1. We will give a homological description of CF .

With the above notation:

• Every simplex σ of EGΓ defines an equivalence relation on Z,

m1∼σm2 ⇐⇒ Γσ∩(1,m1)G(1,−m2) 6= ∅.

• For each t ∈ S1, m ∈ Z, a map

im : (EG×{t}×{m})×Γσ∩Gσ̂ → (EG×{t}×Z)×ΓΓσ̂, [(x, t,m), σ̂] 7→ [(x, t,m), σ̂]

here EG×{t}×Z ⊂ EΓ. Notice that the image of im depends on the choice of t ∈ S1.

Lemma 4.1. Fix t ∈ S1. Let σ be a simplex of EGΓ and t ∈ S1. Then:

(1) im is a monomorphism for each m ∈ Z.

(2) Im(im1
) = Im(im2

) if and only if m1∼σm2.

(3) The images of im1
and im2

are either equal or disjoint.

(4) The induced map:

i =
∐

[mk]

imk
:
∐

[mk]

Im(ik)→ (EG×{t}×Z)×ΓΓσ̂

where mk runs over a complete set of representatives of ∼σ, is a homeomorphism.

Proof. For (1), assume that im([(x, t,m), σ̂]) = im([(y, t,m), σ̂]). Then, there is (g, n) ∈ Γ, such

that

((x, t,m), σ̂) = ((y, t,m)(g, n), (g, n)−1 σ̂) = ((yαm(g), t,m + n), (g, n)−1σ̂).

That implies that (g, n) ∈ Γσ and n = 0. Thus (g, n) ∈ Γσ∩G and [(x, t,m), σ̂] = [(y, t,m), σ̂].

Similar calculations show that in Im(im1
) = Im(im2

) thenm1 ∼σ m2. If we assume thatm1∼σm2,

then there is g ∈ G such that (g,m1 −m2) ∈ Γσ. Then, if [(x, t,m1), σ̂] ∈ Im(im1
), then

[(x, t,m1), σ̂] = [(x, t,m1), (g,m1 −m2)σ̂] = [(xαm1(g), t,m2), σ̂] ∈ Im(im2
),

proving (2).

For (3), assume that m1 and m2 are not equivalent and let [(x,mt), σ̂] ∈ Im(im1
)∩Im(im2

). But

by (2), m∼σm1 and m∼σm2. Thus m1∼σm2, contrary to our assumption.

It is immediate that i is surjective. Parts (1)–(3) show that i is a bijection. The inverse of i is

given by:

i−1 : (EG×{t}×Z)×ΓΓσ̂ →
∐

[mk]

Im(ik), [(x, t,m), (g, n)σ̂] 7→ [(xαm(g), t,m + n), σ̂] ∈ Im(im+n),

and thus i is a homeomorphism. �
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The following result is immediate from the proof.

Lemma 4.2. Fix σ ∈ EGΓ and t ∈ S1. Then the map

χ : EG×GG(1,m)σ̂ → EG×ΓEGΓ, [x, (g,m)σ̂] 7→ [(xg, t,m), σ̂]

induces a homeomorphism onto Im(im).

We will study the homotopy colimit structure of the quotient map:

qΓ : EΓ×ΓEGΓ → BGΓ×S
1.

Equip S1 with the structure of a simplicial complex with three 0-simplices vi, i = 0, 1, 3 and three

1-simplices ei = {vi, vi+1}, where i is taken mod 3. The projection map induces a functor:

ρ : cat(S1×BGΓ)
op → cat(S1)op.

Using Segal’s Pushdown Construction we get a homotopy equivalence:

hocolimcat(S1×BGΓ)op(S◦bar(qΓ)) ≃ hocolimcat(S1)op(P∗ρ).

We will describe explicitely the functor P∗ρ on cat(S1)op:

For each simplex t of S1, let

S◦bar(qΓ)(t,−) : cat(BGΓ)
op → Spectra, σ 7→ S◦bar(qΓ)(t, σ)

and thus

P∗ρ(t̂) = hocolimcat(BGΓ)op(S◦bar(qΓ)(t,−)).

So if we fix t, the functor bar(qΓ) associates to σ, the space

q−1
Γ (t̂×σ̂) = (EG×{t̂}×Z)×ΓΓσ̂ ∼= (EG×{t̂}×Z)×Γσ σ̂,

after subdividing.

The inclusion map G→ Γ induces a commutative diagram:

EG×GEGΓ
f

−−−−→ (EG×{t̂}×Z)×ΓEGΓ

pG





y





y

qΓ

EGΓ/G = BGG
u

−−−−→ t̂×BGΓ = t̂×EGΓ/Γ

where u is just the quotient map. Notice that EGΓ is a model for the space of type EGG. Then u

induces a functor:

U : cat(BGG)
op → cat(BGΓ)

op

Let [σ]Γ denote the Γ-orbit of the simplex σ of EGΓ. Then the over category:

U↓[σ]Γ = {[γτ ]G : τ ≥ σ, γ ∈ Γ} = {[(1,m)τ ]G : τ ≥ σ,m ∈ Z},

where [−]G denotes the G-orbit of the simplex.
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Lemma 4.3. With the above notation,

(1) |U↓[σ]Γ| =
∐

[mk]

|Id↓[(1,mk)σ]G|.

(2) p−1
G (|U↓[σ]Γ|) =

∐

[mk]

p−1
G (|Id↓[(1,mk)σ]G|) =

∐

[mk]

EG×GG(|Id↓(1,mk)σ|) ∼=
∐

[mk ]

EG×Γσ∩G|Id↓(1,mk)σ|.

where mk runs over a complete set of representatives of ∼σ.

Proof. Notice that:

[γ1σ]G = [γ2σ]G ⇐⇒ Γσ∩γ1Gγ
−1
2 6= ∅

In this case, each orbit admits a representative of the form (1,m)τ , with m ∈ Z,

[(1,m1)σ]G = [(1,m2)σ]G ⇐⇒ Γσ∩(1,m1)G(1,−m2) 6= ∅ ⇐⇒ m1∼σm2,

which implies that |U↓[σ]Γ| is equal to the union on the right side. Since we used the double

subdivision of the original object, it follows that σ and γσ are equal or there is no chain of simplices

containing both of them. That proves Part (1).

The first equality for Part (2) follows from (1), and the last homeomorphism is standard. �

Now we have all the basic tools to apply Segal’s Theorem on the functor U .

Lemma 4.4. Assume that G satisfies the S-IC. Then for each t ∈ cat(S1)op, there is a natural

homotopy equivalence:

P∗ρ(t) = hocolimcat(BGΓ)op(S◦bar(qΓ)(t,−)) ≃ S(BG).

Proof. We will show that

hocolimcat(BG)op
G
(S◦bar(pG)) ≃ hocolimcat(BGΓ)op(S◦bar(qΓ)(t,−)).

Since G satisfies the S-IC, the result will follow.

Segal’s Theorem implies that

hocolimcat(BG)op
G
(S◦bar(pG)) ≃ hocolimcat(BG)op

Γ

(h)

where, for each simplex σ of EGΓ,

h([σ]Γ) = hocolimcat(|U↓[σ]Γ|)op(S◦bar(pG|))

where [σ]Γ is the Γ-orbit of σ and

pG| : (pG)
−1(|U↓[σ]Γ|)→ |U↓[σ]Γ|
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is the restriction of pG. Using Lemma 4.3,

h([σ]Γ) = hocolimcat(|U↓[σ]Γ|)op(S◦bar(pG|))

≃
∨

[mk]

hocolimcat(|Id↓[(1,mk)σ]G|)op(S◦bar(pG|)), from Lemma 4.3, Part (1)

≃
∨

[mk]

hocolimcat(|[(1,mk)σ]G|)op(S◦bar(pG|)), because |Id↓[(1,mk)σ]Γ| ≃ [(1,mk)σ]G

≃
∨

[mk]

S(p−1
G ([(1,mk)σ̂]G)), from the definition

≃ S





∐

[mk ]

p−1
G ([(1,mk)σ̂]G)





= S





∐

[mk ]

EG×GG(1,mk)σ̂





≃ S





∐

[mk ]

Im(ik)



, from Lemma 4.2

≃ S((EG×{t̂}×Z)×ΓΓσ̂), from Lemma 4.1

= S◦bar(qΓ)(t, [σ]Γ)

(the wedge is the coproduct in the category of spectra). Therefore

S(BG) ≃ hocolimcat(BG)op
G
(S◦bar(pG)) ≃ hocolimcat(BG)op

Γ

(h) ≃ hocolimcat(BG)op
Γ

(S◦bar(qΓ)(t,−))

completing the proof. �

Proposition 4.5. If the S-IC holds for G, then the homotopy cofiber of 1−φ∗ is H.(S
1×BGΓ,S(qΓ)).

Thus there is a long exact sequence:

· · · → πi(S(BG))
1−φ∗

−−−→ πi(S(BG))→ Hi(S
1×BGΓ,S(qΓ))→ πi−1(S(BG))→ . . .

Proof. We use the fact that qΓ has a homotopy colimit structure and

Hi(S
1×BGΓ,S(qΓ)) ∼= πi(hocolimcat(S1×BGΓ)op(S◦bar(qΓ)))

Using the multiplicative properties of homotopy colimits and Lemma 4.4,

Hi(S
1×BGΓ,S(qΓ)) = πi(hocolimcat(S1)op(S(BG)))

The result follows as in Section 3 in [17]. �

The commutative diagram

EΓ×ΓEGΓ −−−−→ EΓ×ΓEGΓ −−−−→ BΓ

qΓ





y





y

pΓ





y

S1×BGΓ −−−−→ BGΓ −−−−→ ∗



A CONTROLLED APPROACH TO THE ISOMORPHISM CONJECTURE 17

induces a map of spectra

f : H.(S1×BGΓ,S(qΓ))→ S(BΓ).

Corollary 4.6. The following diagram commutes, up to homotopy:

S(BG) −−−−→ H.(S1×BGΓ,S(qΓ))

id





y





y
f

S(BG) −−−−→ S(BΓ)

Proof. This is because the inclusion induced map S(BG) → S(BΓ) factors through the spectrum

H.(S1×BGΓ,S(qΓ)) because of the commutative diagram

BG ←−−−− EG×GEGΓ −−−−→ EΓ×ΓEGΓ −−−−→ EΓ×ΓEGΓ −−−−→ BΓ




y

pG





y

qΓ





y





y

pΓ





y

∗ ←−−−− BGG −−−−→ S1×BGΓ −−−−→ BGΓ −−−−→ ∗

Notice that the map in the second square is not natural because it depends on the choice of an

element of S1 but the composition induced by the third square is not affected by that choice. �

We set up the notation for the Bundle version of Proposition 4.5. Start with a commutative

diagram:

¯̄Y −−−−→ ¯̄Y −−−−→ Ȳ −−−−→ Y

¯̄ρ





y

¯̄ρ





y

ρ̄





y





y

ρ

EG×GEGΓ −−−−→ EG×GEGΓ −−−−→ EΓ×ΓEGΓ −−−−→ BΓ

qG





y

pG





y

pΓ





y





y

S1×BGG −−−−→ BGG −−−−→ BGΓ −−−−→ ∗

where ρ is a bundle and the top diagrams are pull-back diagrams. Then ¯̄ρ is also a bundle. The

proofs of Lemma 4.4 and Proposition 4.5 also work in this case.

Theorem 4.7. Assume that the Bundle S-IC holds for G. Then there is an exact sequence:

· · · → πi(S(
¯̄Y ))

1−φ∗

−−−→ πi(S(
¯̄Y ))→ Hi(S

1×BGΓ,S(ρ̄◦qΓ))→ πi−1(S(
¯̄Y ))→ . . .

where φ : ¯̄Y → ¯̄Y is the homeomorphism induced by α.
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We specialize to the case S = KR, the K-theory spectrum with coefficients in a ring R. Then

Corollary 4.6 implies that there is a commutative diagram of exact sequences for each i:

Hi(S
1×BGΓ,KR(qΓ))

))RRRRRRRRRRRRR

f

��

Ki(RG)
1−φ∗

// Ki(RG)

((RRRRRRRRRRRRR

66mmmmmmmmmmmmm

Ki−1(RG)
1−φ∗

// Ki−1(RG)

Ki(RΓ)

55llllllllllllll

Proposition 4.8. Let RG be a regular coherent ring. Then

f : Hi(S
1×BGΓ,KR(qΓ))→ Ki(RΓ)

is an isomorphism for all i ∈ Z.

Proof. This follows from the analogue of the Bass–Heller–Swan formula for semidirect products

([22], [23]). The top sequence is exact by Proposition 4.5. The bottom sequence is exact because

the assumption on RΓ implies that the Nil-groups vanish. �

¿From the definition of f we have that f factors as:

f : Hi(S
1×BGΓ,KR(qΓ))

p
−→ Hi(BGΓ,KR(pΓ))

A
−→ Ki(RΓ)

where p is induced by the projection to the second coordinate and A is the assembly map.

Proposition 4.9. Let RG be a regular coherent ring. Then

A : Hi(BGΓ,KR(pΓ))→ Ki(RΓ)

is an epimorphism.

Proof. It follows from Proposition 4.8. �

5. A Special Case

Let Γ = G×Z. Then a model for EΓ can be chosen to be EG×R, where EG is any model for

the classifying space of G. In this case, Proposition 4.5 has a much simpler interpretation. The

assumption for this section is that:

Assumption (IC): The S-IC holds for groups of the form G0×Z where G0 is a virtually infinite

cyclic subgroup of G.

Remark 5.1. For S the pseudoisotopy spectrum the result follows from [10] because the G0×Z is

virtually abelian. For the K-theory spectrum it is not known if the K-IC holds for such groups.

Partial results in this direction are in [5] and [12].
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Proposition 5.2. Let Γ = G×Z. Assume that the S-IC holds for G. Then, in the notation of the

last section, there is a homotopy equivalence:

H.(S1×BGΓ,S(qΓ)) ≃ S(BG)×Ω−1(S(BG)).

The projection map Γ→ G induces a commutative diagram

(EG×R)×ΓEGΓ −−−−→ (EG×R)×ΓEGG

pΓ





y





y

q

BGΓ
u

−−−−→ BGG

where Γ acts on EGG through the projection Γ→ G.

Lemma 5.3. Let [x] be a point in BGG. Then q−1([x]) ∼= p−1
G ([x])×S1.

Proof. Let [x]∈BGG, with x the G-orbit of a point x∈EGG. Then a point [(e, r), y]∈(EG×R)×ΓEGG
is in q−1(x), if there is g∈G such that gy = x. Define a map

α : q−1([x])→ p−1
G ([x])×S1, [(e, r), y] 7→ ([e, y], [r])

where [r] is the Z-orbit or r. The map is a well-defined homeomorphism. �

The map u induces a functor U : cat(BGΓ)
op → cat(BGG)

op. Let σ be a simplex BGG with

isotropy group G0. We will describe the category U↓σ. Let [σ]G be the G-orbit of a simplex σ of

EGG with isotropy group G0 < G. A simplex [σ̄]Γ of BGΓ will be an object of U↓σ if u([σ̄]Γ) ≥ [σ]G.

The homotopy invariant functor S induces a functor

S[S1] : Top→ Spectra, S[S1](X) = S(X×S1)

which is also homotopy invariant.

Proposition 5.4. Assume that G satisfies Assumption (IC). With the above notation, there is a

homotopy equivalence of spectra:

hocolimcat(BGΓ)op(S◦bar(pΓ)) ≃ hocolimcat(BGG)op(S[S
1]◦bar(pG)).

Proof. We will use Segal’s Pushdown Theorem for comparing the two homotopy colimits. The map

u induces a functor U : cat(BGΓ)
op → cat(BGG)

op. Let [σ]G be a simplex in BGG, with isotropy

group G0 (defined up to conjugation). We choose the classifying spaces of G0 and G0×Z:

(1) Since G0 is in GG, BGG0
can be chosen to be a representative σ and EGG0

= |σ|.

(2) Since G0×Z < Γ, we choose EGG0×Z to be the subcomplex of EGΓ consisting of all simplices

with isotropy group a subgroup of a G0×Z-conjugate of G0×Z i.e. of the form γHγ−1, with

γ ∈ G0×Z and H < G0×Z. Set BGG0×Z = EGG0×Z/G0×Z.
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With the above choices, we get a commutative diagram:

(EG×R)×G0×ZEGG0×Z −−−−→ (EG×R)×G0×Z|σ|
≃

−−−−→ B(G0×Z)

pG0×Z





y

qG0×Z





y





y

BGG0×Z

u0−−−−→ |[σ]G| −−−−→ ∗

Since the S-IC holds for G0×Z, the induced map

hocolimcat(BGG0×Z)op(S◦bar(pG0×Z))→ hocolim∗(S◦∗) = S(B(G0×Z))

is a homotopy equivalence. Since in the right square the horizontal maps are homotopy equivalences,

the induced maps

hocolimcat(BGG0×Z)op(S◦bar(pG0×Z))→ hocolimcat([σ]G)op(S◦bar(qG0×Z)) ≃ S(B(G0×Z)) (∗)

are also homotopy equivalences. The map u0 induces a functor U0 between the corresponding

categories. We will apply Segal’s Pushdown Theorem on the functor U0. For each [τ ]G < [σ]G,

define the following map, which is the restriction of pG0×Z:

pτ : (EG×R)×G0×Zp
−1
G0×Z

(|U0↓[τ ]G|)→ |U0↓[τ ]G|

Define a functor

hσ : cat([σ]G)
op → Spectra, h(τ) = hocolimU0↓[τ ]G(S◦bar(pτ )).

Then Segal’s Pushdown Construction implies that

hocolimcat(BGG0×Z)op(S◦bar(pG0×Z)) ≃ hocolimcat([σ]G)oph.

But the category cat([σ]G)
op has a unique minimal element, namely [σ]G. Thus

hocolimcat(BGG0×Z)op(S◦bar(pG0×Z)) ≃ hocolimcat([σ]G)oph ≃ hocolimU0↓[σ]G(S◦bar(qG0×Z)).

Each simplex of U↓[σ]G has isotropy group that it is contained in G0×Z. Thus, the natural map

induces a commutative diagram

(EG×R)×G0×Zp
−1
G0×Z

(|U0↓[σ]G|) −−−−→ (EG×R)×Γp
−1
Γ (|U↓[σ]G|)

pG0×Z|





y





y
pΓ|

|U0↓[σ]G| −−−−→ |U↓[σ]G|

and the horizontal maps are homeomorphisms. Therefore,

hocolimU0↓[σ]G(S◦bar(pG0×Z)) ≃ hocolimU↓[σ]G(S◦bar(pΓ)).

Combining with (*),

S(B(G0×Z)) ≃ hocolimU↓[σ]G(S◦bar(pG0×Z))

which implies that

S(B(G0×Z)) ≃ hocolimU↓[σ]G(S◦bar(pG0×Z)) (∗∗)
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and the homotopy equivalence is natural for [σ]G a simplex in BGG.

Now we apply Segal’s Pushdown Construction to the functor U . Then

hocolimcat(BGΓ)op(S◦bar(pΓ)) ≃ hocolimcat(BGG)op(χ)

where, for each simplex [σ]G of BGG,

χ(σ) = hocolimU↓[σ]G(S◦bar(pG0×Z)).

¿From (**), we have that

hocolimcat(BGΓ)op(S◦bar(pΓ)) ≃ hocolimcat(BGG)op(ψ)

where ψ([σ]G) = S(B(Gσ×Z)). The result follows from the definition and the homotopy invariance

of the functor S. �

We now specialize to the case that S = KR is the K-theory spectrum with coefficients in a

ring R. Then Proposition 5.4 provides an alternative description of the homology term in the IC,

corresponding to the Bass-Heller-Swan splitting of K-theory ([3], [14], [19]). For the definition of

the Nil-spectrum functor we use ideas from the Bass-Heller-Swan Formula:

NilR(−) = Cofiber[KR(−)→ KR[t](−)]

where R[t] is the polynomial ring. The Bass-Heller-Swan Formula implies that there are natural

homotopy equivalences:

KR[t](−) ≃ KR(−)×NilR(−)

KR[t−1](−) ≃ KR(−)×NilR(−)

KR[t,t−1](−) ≃ KR(−)×Ω
−1

KR(−)×NilR(−)×NilR(−)

The following result is the homological analogue of the Bass-Heller-Swan Formula.

Lemma 5.5 (Bass–Heller–Swan Formula). Let G be a group that satisfies Assumption (IC). Then

there is a homotopy equivalence:

H.(BGΓ,KR(pΓ)) ≃

H.(BGG,KR(pG))×H.(BGG,Ω
−1

KR(pG))×H.(BGG,NilR(pG))×H.(BGR,NilR(pG)).

Proof. Proposition 5.4 shows that

H.(BGΓ,KR(pΓ)) ≃ H.(BGG,KR[t,t−1](pG)).

The Bass-Heller-Swan Formula applies to the coefficient spectrum. The result follows. �

The homotopy groups of the homology spectra can be computed using spectral sequences. Using

this description, we immediately have that:

H.(BGG,Ω
−1

KR(pG)) ≃ Ω−1
H.(BGG,KR(pG)).
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Corollary 5.6. Let G be a group as in Lemma 5.5. Then there is a homotopy equivalence:

H.(BGΓ,KR(pΓ)) ≃

H.(BGG,KR(pG))×Ω
−1

H.(BGG,KR(pG))×H.(BGG,NilR(pG))×H.(BGR,NilR(pG)).

The following summarizes certain immediate consequences of the calculations above.

Corollary 5.7. Let G be a torsion free group that satisfies the KR-IC and Assumption (IC). Let

Γ = G×Z. If R is a regular coherent ring, then there are homotopy equivalences:

KR(BG)×Ω
−1

KR(BG) ≃ H.(S1×BGΓ,KR◦bar(q
′
Γ)) ≃ H.(BGΓ,KR◦bar(pΓ)).

Furthermore, the commutative diagram

EΓ×EGΓ −−−−→ EΓ×EGΓ

q′
Γ





y





y

pΓ

S1×BGΓ −−−−→ BGΓ

induces the second homotopy equivalence.

Proof. Since G is torsion free, the virtually cyclic subgroups of G are infinite cyclic. But, since R

is regular coherent the Nil-groups of R and R[Z] vanish ([18], [23]). Therefore the Nil-spectrum of

the corresponding spaces is contractible. Lemma 5.5 and Corollary 5.6 imply that

H.(BGΓ,KR(pΓ)) ≃ H.(BGG,KR(pG))×H.(BGG,Ω
−1

KR(pG)) ≃

H.(BGG,KR(pG))×Ω
−1

H.(BGG,KR(pG)) ≃ KR(BG)×Ω
−1

KR(BG).

The result follows from Proposition 5.2.

For the second part of the Corollary, let φ be the map induced from the commutative diagram.

Notice that there are commutative diagrams:

EG×GEGΓ −−−−→ (EG×Zt)×ΓEGΓ −−−−→ EΓ×EGΓ −−−−→ EΓ×EGΓ

pG





y

q′
Γ
|





y

q′
Γ





y

pΓ





y

BGG −−−−→ {t}×BGΓ −−−−→ S1×BGΓ −−−−→ BGΓ

The composition map induced by the commutative diagrams induce the inclusion

KR(BG)→ H.(BGΓ,KR(pΓ)).

The map induced from the first two diagrams induce the map

KR(BG)→ H.(S1×BGΓ,KR(q
′
Γ)).

Thus the diagram commutes:

KR(BG) −−−−→ H.(BGΓ,KR(pΓ))
∥

∥

∥





y
φ

KR(BG) −−−−→ H.(S1×BGΓ,KR(q
′
Γ))

.
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The result follows. �

Theorem 5.8. Let RG be a regular coherent ring, the KR-IC holds for G, and G satisfies Assump-

tion (IC). Then the KR-IC holds for Γ.

Proof. That follows from the Bass-Heller-Swan Formula for KR([18]):

KR(BΓ) ≃ KR(BG)×Ω
−1

KR(BG)

because RG is regular coherent. The result follows from Corollary 5.7 because G must be torsion

free for RG to have finite cohomological dimension. �

For the Bundle KR-IC the regularity of RΓ is not needed.

Proposition 5.9. Let G a group that satisfies the bundle KR-IC and the bundle version of As-

sumption (IC). Then the bundle KR-IC holds for Γ.

Proof. The proof follows from Corollary 3.6. �

Another application of the methods coming from the Bass-Heller-Swan Formula is the IC for the

NilR-spectrum.

Theorem 5.10. Let G be a group that satisfies the Bundle KR-IC and the bundle version of

Assumption (IC). Then G satisfies the Bundle NilR-IC.

Proof. Again we will give the proof when the bundle map is the identity. The general case follows

similarly. For F < G a virtually cyclic subgroup, its inverse image under the projection map Γ→ G

are of the form F×Z. Since G and the inverse image of its virtually cyclic subgroups satisfy the

Bundle KR-IC, Γ does too (Theorem 3.5). Since KR-IC holds for G, Proposition 4.5 and Lemma

5.5 imply that

H.(S1×BGΓ,KR(qΓ))×H.(BΓ,NilR(pΓ))×H.(BΓ,NilR(pΓ))
≃

−−−−→ H.(BΓ,KR(pΓ))




y





y

H.(S1×BGΓ,KR(qΓ))×NilR(BΓ)×NilR(BΓ)
≃

−−−−→ KR(BΓ)

where the bottom horizontal map is a homotopy equivalence by the Bass-Heller-Swan Splitting.

The vertical maps are induced by the assembly map and the right one is a homotopy equivalence

because the KR-IC holds for Γ. That implies that the left map, which is the product of the identity

and two assembly maps, is an isomorphism. Thus, the assembly map

H.(BΓ,NilR(pΓ))→ NilR(BΓ)

is a homotopy equivalence. �

Remark 5.11. In Theorem 5.10 we can not remove the bundle assumption even if only the NilR-IC

is to be proved.
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6. Controlled Groups over the Interval

Let Γ = G1 ∗G0
G2, where H is a subgroup of G1∩G2. Let BGi, i = 0, 1, 2, be classifying spaces

for the corresponding groups with BG0 a subcomplex of BG1∩BG2. Choose BΓ to be the double

mapping cylinder of the inclusion maps. Then there is a natural map ρ : BΓ → I, where I is the

unit interval. Let EΓ be the universal cover of BΓ. Let

EΓ×ΓEGΓ
qΓ−→ I×BGΓ

be maps induced by the natural projection.

We work as in Section 4. Choose coset representatives:

∆i = {γi,j : γi,j ∈ Ai}, i = 0, 1, 2.

In other words,

Γ =
∐

j∈Ai

Giγi,j, i = 0, 1, 2.

With the above notation:

• Every simplex σ of EGΓ defines an equivalence relation on ∆i,

γi,j∼σγ
′
i,j ⇐⇒ Γσ∩γi,jGi(γ

′
i,j)

−1 6= ∅.

• Let t ∈ I. Set i = 0 if t ∈ Int(I) and i = t if t ∈ ∂I. For each γi,j ∈ ∆i, a map

ιγi,j : EGi×Γσ∩Gi
gi,jσ̂ → EGiΓ×ΓΓσ̂, [x, γi,j σ̂] 7→ [x, γi,j σ̂]

here EGiΓ ⊂ EΓ. Notice that the image of ιγi,j depends on the choice of t ∈ I.

The analogues of Lemmata 4.1 and 4.2 hold in this case. Thus there is a homeomorphism:

χi : EGi×Gi
Giγi,jσ̂ → EΓ×ΓEGΓ

onto Im(ιγi,j ).

Equip I with the structure of a simplicial complex with one 1-simplex I, and two 0-simplices

0, 1. The projection map induces a functor:

ρ : cat(I×BGΓ)
op → cat(I)op

We will use Segal’s Pushdown Construction. We start by giving a description of the functor P∗ρ

on cat(I)op. For each simplex t of I, define a functor:

S◦bar(qΓ)(t,−) : cat(BGΓ)
op → Spectra, σ 7→ S◦bar(qΓ)(t, σ)

Then the functor P∗ρ is defined as:

P∗ρ : cat(I)op → Spectra, P∗ρ(t) = hocolimcat(BGΓ)op(S◦bar(qΓ)).

So if we fix t, the functor bar(qΓ) associates to σ, the space

q−1
Γ (t̂×σ̂) = (EGi)Γ×ΓΓσ̂ ∼= (EGi)Γ×Γσ σ̂,
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after subdividing, where i = 0 if t is an interior point and Gi = Gt+1 when t ∈ ∂I. Actually, the

inverse image for t ∈ Int(I), is

q−1
Γ (t̂×σ̂) = (EGi×{t})Γ×ΓΓσ̂

The inclusion map Gi → Γ induces a commutative diagram:

EGi×Gi
EGΓ

f
−−−−→ EGiΓ×ΓEGΓ

pG





y





y

qΓ

EGΓ/Gi = BGGi

u
−−−−→ t̂×BGΓ = t̂×EGΓ/Γ

where u is just the quotient map. The analogue of Lemma 4.4 also works here.

Lemma 6.1. Suppose that the S-IC holds for Gi, i = 0, 1, 2. For each t ∈ cat(I)op, there is a

natural homotopy equivalence:

P∗ρ(t) = hocolimcat(BGΓ)op(S◦bar(qΓ)(t,−)) ≃ S(BGi).

The analogue of Proposition 4.5 works in this case too.

Proposition 6.2. Assume that the S-IC holds for Gi, i = 0, 1, 2. Then the following is a homotopy

cartesian diagram:

S(BG0) −−−−→ S(BG1)




y





y

S(BG1) −−−−→ H.(I×BGΓ,S(qΓ))

Proof. The proof works as in Proposition 4.5. The only difference is that for the final result [17],

Section 2 is used. �

We also have the analogue of Propositions 4.8 and 4.9 when S = KR.

Proposition 6.3. Let R be a ring such that RG0 is regular coherent. Then

(1) the forgetful map

f : H.(I×BGΓ : KR(qΓ))→ KR(BΓ)

is a homotopy equivalence.

(2) the assembly map

A : H.(BGΓ,KR(pΓ))→ KR(BΓ)

induces an epimorphism on homotopy.

Proof. The proof follows from the splitting theorem in [22] and [23]. The assumption on the ring

guarantees that the Waldhausen’s Nil- groups vanish. �
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7. Applications

We will apply the results to prove that KR-IC is true for certain types of groups. Before we start

we state the Novikov Conjecture for a discrete group Γ. Let CΓ be the classifying space for the

class of finite subgroups of Γ. Again, there is a commutative diagram:

EΓ×ΓECΓ −−−−→ BΓ

p





y





y

BCΓ −−−−→ ∗

A group Γ satisfies the integral S-Novikov Conjecture if the assembly map

AC : H.(BCΓ,S(p))→ S(BΓ)

induces a split injection on the homotopy groups. It is an open question if all the torsion free groups

satisfy the integral KR-Novikov Conjecture. It was proved that groups of finite cohomological

dimension that also have finite asymptotic dimension satisfy the integral KR-Novikov Conjecture

([4]), generalizing the calculations in [7].

A connection between the integral Novikov conjecture and the Isomorphism conjecture is given

in the following statement.

Lemma 7.1. Let R be a regular coherent ring. Let G be a torsion free group that satisfies the

integral KR-Novikov Conjecture. Then the assembly map

AC : H.(BCG,KR(p))→ KR(BΓ)

induces a monomorphism on the homotopy groups.

Proof. Following the ideas in the Appendix in [10], notice that AC = A◦AC,G because of the com-

mutative diagram
EG×GECG −−−−→ EG×GEGG −−−−→ BG

p





y





y

pG





y

BCG −−−−→ BGG −−−−→ ∗
The relative assembly map is the map induced by the first commutative square. Theorem A.10 in

[10] states that AC,G is an equivalence if the assembly map ACS is an equivalence for all virtually

cyclic subgroups S of G (a similar calculation appears in [8]). Since G is torsion free, the only

finite subgroup of G is the trivial group and the only virtually cyclic subgroups are infinite cyclic

subgroups. Thus ACS is the assembly map in the integral KR-Novikov conjecture for S ∼= Z. Since

R is regular coherent, this map is an equivalence ([10], Remark A.11). Therefore, since AC induces

a monomorphism on homotopy groups, so does A. �

Theorem 7.2. Let G be a torsion free group and R a regular coherent ring. Assume that G satisfies

the KR-IC, and that RG is a regular ring. Let Γ be a torsion free group defined by:
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(i) Γ = G⋊Z, or

(ii) Γ = G1 ∗G G2, such that Gi, i = 1, 2, satisfy the KR-IC,

such that Γ satisfies the integral KR-Novikov conjecture. Then Γ satisfies the KR-IC.

Proof. Using Lemma 7.1, we see that the assembly map A induces a monomorphism on the homo-

topy groups. Using Proposition 4.9 for case (i) and Proposition 6.3 for case (ii), we see that A is

an epimorphism. Thus A is an equivalence. �

Now we give applications of the Theorem.

Corollary 7.3. Let G be a torsion free group and R a regular coherent ring. Assume that:

(1) G satisfies the KR-IC,

(2) G has finite asymptotic dimension,

(3) RG is a regular ring.

Let Γ be a torsion free group defined by:

(i) Γ = G⋊Z, or

(ii) Γ = G1 ∗G G2, such that Gi, i = 1, 2, satisfy the KR-IC and they have finite cohomological

and asymptotic dimensions.

Then Γ satisfies the KR-IC.

Proof. The assumptions on the groups imply that Γ has finite asymptotic dimension ([6]). Also, Γ

has finite cohomological dimension and thus it admits a finite dimensional BΓ. By [4], Γ satisfies

the integral KR-Novikov conjecture. The result follows from Theorem 7.2. �

Corollary 7.4. Let F be a finitely generated free group and R a regular coherent ring. Then

(1) F satisfies the KR-IC.

(2) F⋊Z satisfies the KR-IC

Proof. The first statement follows by induction on the number k of generators of F : If k = 2, then

F = Z ∗ Z and the result follows from 7.3. For k > 2, F = Fk−1 ∗ Z, where Fk−1 is the free group

on (k − 1) generators. All the assumptions of Corollary 7.3 are satisfied and thus F satisfies the

KR-IC.

For the second statement, we use again Corollary 7.3. Part (1) implies that assumption (1) is

satisfied. Also, the free group has finite asymptotic dimension and thus assumption (2) is satisfied.

Assumption (3) follows because R is regular Noetherian ring. �

Remark 7.5. In [2] and [13], there was a special assumption for groups of type F⋊Z to satisfy the

fibered pseudoisotopy IC. Essentially the assumption was that the action of Z on F has certain

geometric properties. Corollary 7.4 is more general because such an assumption is not needed but

it only gives the KR-IC and not the fibered version. A general fibered version could not follow
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along the same lines because the assumption in Corollary 7.3 guarantee that all the Nil-groups that

appear vanish.
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