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EQUIVARIANT EMBEDDINGS OF TREES

INTO HYPERBOLIC SPACES

MARC BURGER, ALESSANDRA IOZZI, AND NICOLAS MONOD

1. Introduction

For every cardinal α ≥ 2 there are three complete constant curvature model
manifolds of Hilbert dimension α: the sphere Sα, the Euclidean space Eα and
the hyperbolic space Hα. Studying isometric actions on these spaces corresponds
in the first case to studying orthogonal representations and in the second case to
studying cohomology in degree one with orthogonal representations as coefficients.
In this paper we address the third case and, in particular, we study isometric
actions of automorphisms groups of trees on Hα.

The goal of this paper is twofold: first we exhibit, for every tree T , a one-
parameter family of equivariant embeddings (with respect to appropriate repre-
sentations of Aut(T )) into an infinite dimensional hyperbolic space which are,
up to rescaling, asymptotically isometric and have convex cobounded image. Sec-
ondly, in the case in which the tree is regular of finite valence at least 3 and
G < Aut(T ) is a closed subgroup satisfying appropriate transitivity properties,
we show that the representations constructed above give the unique irreducible
nonelementary actions of G by isometries on a hyperbolic space of appropriate
infinite dimension.

Quadratic forms of finite index, and in particular of index one, can be studied
on real vector spaces of arbitrary dimension. A quadratic form of index one leads,
via its cone of negative vectors, to a geodesic CAT(-1) space which is then com-
plete if and only if the quadratic form satisfies a strong nondegeneracy condition.
For any dimension α, there is one such space Hα with ideal boundary ∂Hα and
bordification H

α
= Hα ∪ ∂Hα. Then we have:

Theorem A. Let V be the set of vertices of a tree T with |V | = α + 1. Then
for every λ > 1 there is an embedding Ψλ : V → Hα and a representation
πλ : Aut(T ) → Isom(Hα) such that:

(i) The map Ψλ is πλ-equivariant and extends equivariantly to a boundary
map ∂Ψλ : ∂T → ∂Hα which is a homeomorphism onto its image.
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(ii) For any two vertices x, y ∈ V there is a precise relation between the com-
binatorial distance dT and the Riemannian distance dHα :

λdT (x,y) = cosh dHα(Ψλx,Ψλy) .

(iii) The set Ψλ(V ) has finite codiameter in the convex hull C ⊆ Hα of the
image of ∂Ψλ.

This result is the outcome of our attempt to understand certain claims of Gro-
mov [G, Section 6.A], to the extent that nontrivial amalgams admit actions with
unbounded orbits on infinite dimensional hyperbolic spaces.

Theorem A applies in particular to the automorphism group Aut(Tr) of an r-
regular tree Tr. By taking products and by denoting by H∞ the real hyperbolic
space of countable dimension α = ℵ0, we obtain a family of metrically proper
convex cobounded actions of Aut(Tr ×Ts) on H∞×H∞. This leads immediately
to the following:

Corollary B. Any cocompact lattice Γ < Aut(Tr × Ts) admits a metrically
proper convex cobounded action on the product H∞ × H∞ of two hyperbolic
spaces of countable dimension.

Recall that in [BM1] and [BM2] these type of lattices were studied systematically
and examples of torsion-free simple groups Γ were obtained. These Γ’s are then
fundamental groups of finite aspherical (two-dimensional) complexes; on the other
hand, the question to which extent there are compact aspherical manifolds (with
or without boundary) with simple fundamental group is open. Here we obtain
metrically proper convex cobounded actions of Γ on H∞ × H∞; in particular,
Γ\(H∞ × H∞) retracts to a convex bounded (infinite dimensional) aspherical
manifold with boundary. In contrast with the algebraic aspect of this situation,
observe that if Λ is a group acting in a metrically proper convex cobounded way
on H∞, then Λ is a nonelementary Gromov hyperbolic group, and hence SQ-
universal [O]; in particular, it admits many normal subgroups.

Turning to the classification of isometric actions, we recall that an action of
a group G on Hα by isometries is elementary if it preserves a point in H

α
or a

geodesic. Hence the study of elementary actions on Hα reduces essentially to the
the study of isometric actions on the Euclidean space Eα−1 or on the sphere Sα−1.
(Conversely, as observed by Gromov [G, 7.A], any isometric action on Eα−1 can be
extended to an elementary action on Hα by realizing Eα−1 as a horosphere based
at a fixed point at infinity; similarly, isometric actions on Sα−1 extend obviously
to actions with a fixed point in Hα.)

Since any nonelementary action admits a unique minimalG-invariant hyperbolic
subspace (Proposition 4.3), we say that a (nonelementary) action G→ Isom(Hα)
is irreducible if there is no G-invariant hyperbolic subspace other than Hα.
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Let now Tr be the regular tree of finite valence r ≥ 3, G < Aut(Tr) a closed
subgroup and π : G → Isom(Hα) a nonelementary action of G on Hα. If G acts
triply transitively on ∂Tr, we shall see that the image π(g) of any hyperbolic
automorphism g ∈ G is a hyperbolic isometry of Hα of translation length ℓπ
independent of g, provided g is of translation length one in Tr. With this in mind,
we can state the following:

Theorem C. Let G < Aut(Tr) be a closed subgroup which acts triply transitively
on ∂Tr . For every ℓ > 0 there exists, up to equivalence, a unique irreducible
nonelementary continuous homomorphism π : G→ Isom(H∞) with ℓπ = ℓ.

It follows that the representation π in Theorem C is exactly the irreducible
component of πλ|G for λ = eℓπ in Theorem A.

The structure and unitary representation theory of closed subgroups of Aut(Tr)
with some transitivity conditions on their action at infinity is the object of intensive
study. We refer to [FN], [A], and the references therein for a more comprehensive
picture. A first notable set of examples to which Theorem C applies is given by
the topological group G = PGL2(k), where k is a non-Archimedean local field;
indeed, if q is the cardinality of the residue field of k, then the action of PGL2(k)
on the associated Bruhat–Tits tree Tq+1 identifies it with a closed subgroup of
Aut(Tq+1) which acts triply transitively on ∂Tq+1.

Another important class of examples of closed subgroups of Aut(Tr) are the
universal groups introduced in [BM1]. Recall that when Tr = (X, Y ) is a r-
regular tree, one can label its edges in such a way that for every vertex the edges
issued from it are labelled {1, 2, . . . , r}. Thus, for any g ∈ Aut(Tr) and vertex
x ∈ X , one obtains a permutation c(g, x) ∈ Sr representing g “locally” at x. To
a permutation group F < Sr one can then associate U(F ), the closed subgroup
of Aut(Tr) consisting of all g ∈ Aut(Tr), such that c(g, x) ∈ F for all x ∈ X .
Then U(F ) does not depend, up to conjugation, on the labelling of the edges. It
acts transitively on X and at every vertex it induces the full permutation group
F on the edges issued from x and is, by construction, maximal with respect to
this property. The group U(F ) satisfies Tits’ independence condition [T] and, in
fact, all closed vertex transitive subgroup of Aut(Tr) satisfying Tits’ independence
condition are of the form U(F ).

Many properties of U(F ) can be read off the finite permutation group F < Sr.
For example, for n = 2 and 3, U(F ) is n-transitive on ∂Tr if and only if F is
n-transitive. In the case in which F is doubly transitive, the unitary dual of U(F )
has been determined by O. Amann [A]. When F is triply transitive, the above
Theorem C applies to U(F ).

Remark. We have been informed by A. Valette that the algebraic part of the
construction of Theorem A can also be derived elegantly from the “tree cocycles”
that he proposes in [V].
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The structure of the paper is as follows. In Section 2, modelling on the finite
dimensional case, we discuss basic properties of quadratic forms of finite index on
a real vector space of arbitrary dimension, we single out the notion of strongly
nondegenerate form and show that strongly nondegenerate forms are determined
by their signature. In Section 3 we associate a hyperbolic space to every non-
degenerate quadratic form of index one; this is a geodesic CAT(-1) space which
is complete if and only if the form is strongly nondegenerate. This leads to the
existence and the uniqueness of Hα for every cardinal α. In Section 4 we discuss
the existence of irreducible hyperbolic subspaces (Proposition 4.3) and establish
the description of elementary actions in terms of orthogonal representations and
cocycles in degree one (Proposition 4.4). In Section 5, 6 and 7 we turn more
specifically to the study of actions on Hα of automorphisms groups of trees. In
Sections 5 and 6 we study more closely actions on Hα of certain locally compact
groups occurring as stabilizers of ends of trees, i.e. topological ascending HNN-
extensions. These actions turn out to be elementary and hence substantial use of
Section 4 is made. In Section 7 the proof of Theorem C is completed by showing
that the irreducible part of the action under consideration is determined by its
restriction to any parabolic subgroup. In Section 8 we give the explicit construc-
tion in Theorem A. Finally, the Appendix contains some of the explicit matrix
representations used throughout the paper.

2. Quadratic Forms of Finite Index

A quadratic space is a pair (H , Q) consisting of a real vector space H and a
quadratic form Q : H → R. As usual, Q is positive definite if Q(x) > 0 for all
x 6= 0 and negative definite if −Q is positive definite; dimH denotes the cardinal
of any R-basis of H . Define

i±(Q) = sup
{
dimW : W is a subspace of H and Q|W is pos./neg. definite

}

and the index of Q as

i(Q) = sup
{
dimW :W is an isotropic subspace of H

}
.

Let B : H ×H → R be the bilinear (symmetric) form associated to Q. For any
subset S ⊆ H write

⊥S =
{
x ∈ H : B(x, s) = 0 ∀ s ∈ S

}
.

We say that Q is nondegenerate if ⊥H = 0 and that the quadratic space is of
finite index if i(Q) ∈ N (we agree that 0 ∈ N).

Just like in the case of finite dimensional quadratic spaces, we have:

Proposition 2.1. Let (H , Q) be a nondegenerate quadratic space of finite index.
Then

(i) i(Q) = min{i−(Q), i+(Q)}.



TREES AND HYPERBOLIC SPACES 5

Assume now i(Q) = i−(Q).

(ii) If W− ⊆ H is a negative definite subspace with dimW− = i(Q), then
W+ := ⊥W− is positive definite and H =W− ⊕W+.

(iii) If H = W ′
−⊕W ′

+ is an orthogonal direct sum with W ′
± pos./neg. definite,

then dimW ′
− = i(Q).

We precede the proof of the proposition by a couple of lemmas.

Lemma 2.2. Let (H , Q) be a quadratic space and W ⊆ H a finite dimensional
subspace such that Q|W is nondegenerate. Then H = W ⊕ ⊥W . If moreover Q is
nondegenerate then Q|⊥W is so too.

Proof. The kernel of the linear map H → W ∗ induced by B is ⊥W ; since W has
finite dimension we have

(2.1) dim (H /⊥W ) ≤ dimW ∗ = dimW .

On the other hand, since W ∩ ⊥W = 0, the canonical projection W → H /⊥W is
injective; hence it is an isomorphism by (2.1). �

Lemma 2.3. Let (H , Q) be a quadratic space with Q(x) ≥ 0 for all x ∈ H . Then
⊥H = {x ∈ H : Q(x) = 0}.
Proof. If Q(x) = 0, then for all y ∈ H and all λ ∈ R we have

0 ≤ Q(λx+ y) = 2λB(x, y) +Q(y)

hence B(x, y) = 0 for all y. �

Proof of Proposition 2.1. Let A± ⊆ H be pos./neg. definite subspaces of finite
dimension and set A = A− + A+. Then i(Q|A) ≤ i(Q) and the theory of finite
dimensional quadratic spaces implies

min{dimA−, dimA+} ≤ i(Q|A) ≤ i(Q),

whence min{i−(Q), i+(Q)} ≤ i(Q). Assume without loss of generality that i−(Q) ≤
i+(Q), pick a negative definite subspace W− of dimension i−(Q) and let W+ :=
⊥W−. Since Q|W−

is nondegenerate, H = W− ⊕W+ and Q|W+
is nondegener-

ate (Lemma 2.2). Since dimW− = i−(Q), we have Q(x) ≥ 0 for all x ∈ W+

and hence, by Lemma 2.3, W+ is positive definite. If now W is an isotropic sub-
space with dimW = i(Q), then W ∩W+ = 0 and thus the canonical projection
W → H /W+

∼= W− is injective; hence i(Q) ≤ i−(Q). This proves (1) and (2). As
for (3), if W− is negative definite with dimW− = i(Q), then W− → H /W ′

+
∼= W ′

−

is injective and hence an isomorphism since dimW ′
− ≤ i−(Q) = i(Q). �

In view of Proposition 2.1 we call ±-decomposition of (H , Q) any orthogonal
direct sum decomposition H = W− ⊕W+ where W± are pos./neg. definite. We
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associate to such a decomposition the scalar product 〈 , 〉± defined for x, y ∈ H

by
〈x, y〉± := B(x+, y+)−B(x−, y−)

where x = x− + x+, y = y− + y+ are the corresponding decompositions.

Lemma 2.4. Let (H , Q) be a nondegenerate quadratic space of finite index and
H = W−⊕W+ =W ′

−⊕W ′
+ two ±-decompositions. Then (H , 〈 , 〉±) is a Hilbert

space if and only if (H , 〈 , 〉′±) is a Hilbert space, in which case the two scalar
products are equivalent.

We need the following:

Lemma 2.5. Let H be a real vector space, 〈 , 〉1, 〈 , 〉2 two scalar products and
H ′ ⊆ H a subspace such that

(1) 〈 , 〉1, 〈 , 〉2 coincide on H ′ and H ′ is complete;
(2) H ′ is of finite codimension.

Then 〈 , 〉1, 〈 , 〉2 are equivalent and H is a Hilbert space.

Proof. Let H ′
1 be the orthogonal of H ′ for 〈 , 〉1. Since H ′ is complete, we have

H = H ′ ⊕ H ′
1 . But H ′

1 is complete because it is finite dimensional and hence
(H , 〈 , 〉1) is a Hilbert space. For any x ∈ H , write x = x′ + x′1 according to
the above decomposition. Since ‖ ‖1 and ‖ ‖2 are equivalent on H ′

1 , there is c > 0
with ‖x′1‖21 ≥ c‖x′1‖22 for all x. We may chose c ≤ 1 and now

‖x‖21 = ‖x′‖21 + ‖x′1‖21 ≥ ‖x′‖21 + c‖x′1‖22 ≥
≥ c

(
‖x′‖21 + ‖x′1‖22

)
≥ c

2

(
‖x′‖1 + ‖x′1‖2

)2 ≥ c

2
‖x‖22.

�

Proof of Lemma 2.4. Assume i(Q) = i−(Q). Since B is continuous with respect
to both ‖ ‖± and ‖ ‖′±, all subspaces considered are closed for both topologies and
so is in particular W+∩W ′

+. Moreover, the latter is of codimension at most 2i(Q),
hence we conclude by Lemma 2.5. �

Definition 2.6. A nondegenerate quadratic space of finite index (H , Q) is strongly
nondegenerate if for some (hence any) ±-decomposition H =W−⊕W+ the space
(H , 〈 , 〉±) is a Hilbert space.

We denote by d(L ) the cardinal of any Hilbert basis of a Hilbert space L .
Observing that d(L ) depends only on the equivalence class of the scalar product,
we deduce that the pair (d(W+), d(W−)) is independent of the choice of a ±-
decomposition H = W− ⊕ W+. We call (d(W+), d(W−)) the signature of the
strongly nondegenerate quadratic space (H , Q).

Two quadratic spaces (H1, Q1) and (H2, Q2) are isomorphic if there is a vector
space isomorphism T : H1 → H2 with Q1 = Q2 ◦ T . Observe that if (H1, Q1)
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is nondegenerate of finite index, then so is (H2, Q2). Since the image of a ±-
decomposition for Q1 is a ±-decomposition for Q2, we see that Q2 is strongly
nondegenerate if Q1 is so; in that case T is automatically continuous. In particular
the orthogonal group O(Q) of a strongly nondegenerate form Q of finite index
consists of bounded linear operators.

Proposition 2.7. For strongly nondegenerate forms of finite index, the signature
is a complete invariant of isomorphisms.

Proof. Using ±-decompositions, this follows immediately from the fact that d(L )
determines completely the Hilbert spaces L up to isomorphisms. �

Let (H , Q) be a strongly nondegenerate form of finite index, H ∗ the topological
dual and A : H → H ∗ the continuous morphism associated to B. Applying the
Riesz representation theorem to the restrictions of B toW± for a ±-decomposition
H = W−⊕W+, we deduce that A is an isomorphism (of topological vector spaces).

Proposition 2.8. Let (H , Q) be a strongly nondegenerate form of finite index
and V ⊆ H a closed subspace such that Q|V is nondegenerate. Then (V,Q|V ) is
strongly nondegenerate and H = V ⊕ ⊥V .

Proof. Assume i(Q) = i−(Q) and let V = U− ⊕ U+ be a ±-decomposition of V
with U± pos./neg. definite (which exists by Proposition 2.1). Since V is closed
and B continuous, U+ = ⊥U− ∩ V is closed. Let now H = W− ⊕W+ be any
±-decomposition of H . Then W+ ∩ U+ is closed, of finite codimension in V and
B coincides with 〈 , 〉± on it. By Lemma 2.5 with 〈 , 〉1 = 〈 , 〉2, we deduce that
V is a Hilbert space and hence (V,Q|V ) is strongly nondegenerate. To conclude,
the nondegeneracy of (V,Q|V ) implies, as observed above, that the morphism
AV : V → V ∗ associated to B|V is a topological isomorphism. In particular, for
every x ∈ H there is xV = A−1

V B(x, ·)|V ∈ V ∗ such that B(x, y) = B(xV , y) for
all y ∈ V . Thus x ∈ ⊥V + xV and the claim follows. �

3. Real Hyperbolic Space

Let (H , Q) be a nondegenerate quadratic space of index one; we assume more
specifically that i(Q) = i−(Q) = 1. Let C− :=

{
x ∈ H : Q(x) < 0

}
be the cone

of negative vectors and H := R∗\C− the set of negative lines. One proves as usual
the reverse Cauchy–Schwartz inequality

B(x, y)2 ≥ Q(x)Q(y) , ∀ x, y ∈ C−

with equality if and only if R∗x = R∗y. This allows to define d̃ : C− × C− → R+

by

cosh2 d̃(x, y) =
B(x, y)2

Q(x)Q(y)
,

which descends to a well defined function d : H×H → R+.
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Remark 3.1. A useful geometric fact is that for any finite set S of negative lines,
the restriction Q|HS

of Q to the span HS ⊆ H of S is equivalent to the standard
real quadratic form of signature (dimHS−1, 1) and that, under this isomorphism,
the restriction of d to the image HS of HS in H corresponds to the standard
distance on the finite dimensional real hyperbolic space of dimension |S| − 1.

As a consequence of the above remark and [BH, Theorem 10.10], we have the
following:

Proposition 3.2. The function d is a distance function with respect to which H

is a geodesic CAT(-1) space. �

Let ℓ− be a vector of length −1 and let H = H+ ⊕ Rℓ− be the orthogonal
decomposition, where Q|H+

is positive definite (see Proposition 2.1). The expo-
nential map exp : H+ → H is defined as follows. For every v ∈ H+ there is a
unique t > 0 such that x := v + tℓ− has length −1; we define exp(v) := [x] to be
the image of x in H. A straightforward computation gives

cosh d
(
exp(v), exp(w)

)
=

∣∣− B(v, w) +
√
1 +Q(v)

√
1 +Q(w)

∣∣ ,

and, in particular, cosh d(exp(v), [ℓ−]) =
√
1 +Q(v).

Proposition 3.3. The CAT(-1) space H is complete if and only if (H , Q) is
strongly nondegenerate.

Proof. Using the above formulæ, on checks that exp is for all R > 0 a bi-Lipschitz
bijection between the ball in (H+, Q|H+

) of radius (sinhR)2 centered at 0 and the
ball in (H, d) of radius R centered at [ℓ−]. Thus (H, d) is complete if and only if
H+ is complete, which in view of Lemma 2.5 (with 〈 , 〉1 = 〈 , 〉2) is equivalent to
the quadratic space (H , Q) being strongly nondegenerate. �

Observe that any orthogonal transformation T ∈ O(Q) preserves C− and de-
scends to an isometry of H. The group O(Q) is a direct product O+(Q) · {±Id},
where O+(Q) is the subgroup preserving the (two) connected components of C−.
Let PO(Q) = O(Q)/± Id . Then:

Proposition 3.4. The homomorphism O(Q) → Isom(H) induces isomorphisms

O+(Q) → PO(Q) → Isom(H) .

Remark 3.5. Let G be a topological group and π : G→ O(Q) a group homomor-
phism. We call π continuous if the action map G×H → H is continuous; then,
the resulting action G × H → H is continuous. Conversely, given a continuous
action G × H → H, one verifies that the resulting homomorphism G → O+(Q)
deduced from Proposition 3.4 is continuous.

Lemma 3.6. The O(Q)-action on H is transitive.
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Proof of the lemma. Let L, L′ ⊆ H be two negative lines. Then L ⊕ ⊥L and
L′ ⊕ ⊥L′ are two ±-decompositions, and ⊥L, ⊥L′ are isomorphic Hilbert spaces.
Hence there is (compare also Proposition 2.7) an isomorphism of (H , Q) bringing
L to L′. �

Proof of Proposition 3.4. Let T ∈ Isom(H). By Lemma 3.6, we may assume that
T fixes [ℓ−]. Define a map U : H+ → H+ by exp(U(v)) = T (exp(v)). It follows
from the above formulæ that U is a bijection, fixes 0 and preserves B|H+

. Hence U
is a linear orthogonal transformation of H+. Defining S := U⊕Id , one verifies that
S ∈ O+(Q) corresponds to T via O(Q) → Isom(H) and the statement follows. �

One proves similarly:

Proposition 3.7. Let (Hi, Qi) be strongly nondegenerate quadratic spaces of
signature (αi, 1) and let Hi be the associated hyperbolic spaces (for i = 1, 2). The
following are equivalent:

• (H1, Q1) is isomorphic to (H2, Q2).
• α1 = α2.
• H1 is isometric to H2. �

Thus we obtain for each cardinal α “the” real hyperbolic space Hα.

3.1. Bordification. Let again H = R∗\C− be the real hyperbolic space associ-
ated to a strongly nondegenerate quadratic space (H , Q) of signature (α, 1). Let
∂H be the boundary of the CAT(-1) space (H, d) defined as usual as classes of
asymptotic rays. Set

C0 :=
{
x ∈ H : Q(x) = 0, x 6= 0

}
, C≤0 :=

{
x ∈ H : Q(x) ≤ 0, x 6= 0

}
.

Using that any configuration of finitely many geodesics in H is contained in a
finite dimensional hyperbolic subspace (see Remark 3.1),we obtain a bijection
identifying the bordification H = H ⊔ ∂H with the set R∗\C≤0. We relate this
to the description of H in terms of Busemann cocycles: for every x ∈ C≤0, define

b̃x : C− × C− → R by

(3.1) b̃x(y, z) :=

{
d̃(x, y)− d̃(x, z) if x ∈ C−,
1
2
ln B(x,y)2Q(z)

B(x,z)2Q(y)
if x ∈ C0 .

Then, for every x ∈ C≤0, b̃x satisfies the cocycle identity

b̃x(y2, y3)− b̃x(y1, y3) + b̃x(y1, y2) = 0.

Moreover, b̃x gives a well defined function b : R∗\C≤0×H×H → R which coincides
on H×H×H with (x, y, z) 7→ d(x, y)− d(x, z).

For every x ∈ R∗\C≤0 and z1, z2 ∈ H, the cocycle property implies that the
continuous functions y 7→ bx(y, z1) and y 7→ bx(y, z2), defined onH, differ by a con-
stant. Thus we obtain, for every x ∈ R∗\C≤0, a well defined class B(x) ∈ C(H)/R,
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where C(H) is the space of continuous functions on H. Endowing C(H)/R
with the topology coming from the topology on C(H) of uniform convergence

on bounded sets, and denoting by B(H) the closure of B(H) in C(H)/R, we have
the following:

Proposition 3.8. The map B : R∗\C≤0 → B(H) is a homeomorphism when
R∗\C≤0 is endowed with the quotient of the norm topology.

One can verify that in this topology H is compact if and only if H is finite
dimensional.

By a slight abuse of terminology, we call horospheres in H (respectively, in H)

centered at x ∈ C0 (respectively, at ξ ∈ ∂H) the level sets of b̃x(·, z) (respectively,
B(ξ)).

4. Nonelementary and Elementary Actions

In this section we study basic properties of group actions on hyperbolic spaces.
First we establish that any nonelementary action has a unique minimal invariant
hyperbolic subspace, and then we turn to the description of elementary actions in
terms of orthogonal representations, characters, and continuous cocycles.

Let X be a metric space. Recall that a semicontraction is a map T : X → X
such that d(Tx, Ty) ≤ d(x, y) for all x, y ∈ X . Recall the

Proposition 4.1. Let X be a complete CAT(-1) space and T : X → X a semi-
contraction. Then one of the following holds:

(i) The set {T nx : n ≥ 1} is bounded for some (hence any) x ∈ X and the set
XT ⊆ X of T -fixed points is not empty.

(ii) The set {T nx : n ≥ 1} is unbounded for some (hence any) x ∈ X and
there exists a subsequence {nk}k≥1 and ξ ∈ ∂X with limk→∞ T nkx = ξ and
Tξ = ξ. Moreover, |(∂X)T | = 1 or 2.

(A general semicontraction need not extend to infinity; the notation Tξ = ξ
means that T : X → X extends by continuity to X ∪ {ξ} endowed with the
topology induced byX .)

Proof of the proposition. The case (ii) follows from the argument given by A. Karls-
son (proof of [K, 5.1]); see [KN, §3] for the additional statement on |(∂X)T |. If on
the other hand the T -orbits are bounded, then it is known that XT is non-empty;
indeed, one verifies that for any x ∈ X the circumcentre of the set {T k(x) : k ≥ n}
converges to a T -fixed point as n→ ∞. �

This result applies in particular to the case where T is an isometry and is the
basis for the classification of isometries.

Definition 4.2. An isometry T is called:
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– Elliptic if {T nx : n ≥ 1} is bounded.
– Parabolic if {T nx : n ≥ 1} is unbounded and |(∂X)T | = 1.
– Hyperbolic if {T nx : n ≥ 1} is unbounded and |(∂X)T | = 2.

If T is hyperbolic, then (∂X)T = {ξ−, ξ+} with limn→±∞ T nx = ξ± for all
x ∈ X (see again [KN, §3]). However, when X is not proper and T is parabolic,
the sequence T nx might not converge in X .

As usual a group action G × X → X by isometries is called elementary if G
preserves a nonempty finite subset of X . This is equivalent to saying that either
G fixes a point in X or it preserves a geodesic.

Let now H be the hyperbolic space associated to a strongly nondegenerate qua-
dratic space (H , Q) of signature (α, 1). In the sequel we shall study nonelementary
and elementary actions and we shall prove the following

Proposition 4.3. Let π : G → O(Q) be a homomorphism. Then, one of the
following holds:

(i) G preserves an isotropic line and all horospheres in H centered at it.
(ii) G preserves a negative line.
(iii) There is a unique minimal nondegenerate closed G-invariant subspace

H1 ⊆ H of index one. Any nondegenerate closed G-invariant subspace of
index one contains H1.

First we prove the proposition in the case where the associated action on H

is nonelementary, which excludes of course (i) and (ii). The remaining will be a
consequence of a closer analysis of elementary actions.

Proof in the nonelementary case. We need to show that (iii) holds. Let P be the
set of G-invariant closed positive definite subspaces of H , ordered by inclusion,
let C ⊆ P be a maximal chain and L :=

⋃
C . Then L is closed, G-invariant, and

Q|L ≥ 0. By Lemma 2.3 applied to L, we have that {x ∈ L : Q(x) = 0} = L∩ ⊥L;
if the latter were not zero, it would be a G-invariant isotropic line, contradicting
the assumption that the action is nonelementary. Thus L is a G-invariant closed
maximal positive definite subspace of H . Set H0 := L, H1 := ⊥L. Then, by
Proposition 2.8, H = H0 ⊕ H1 and H1 is a G-invariant closed nondegenerate
subspace of index one which is minimal with respect to these properties.

Let now H = H ′
0 ⊕H ′

1 be any other orthogonal decomposition into G-invariant
closed subspaces where H ′

0 is positive definite and H ′
1 of index one. We need to

show that H ′
1 ⊇ H1. Consider J := H1 ∩ H ′

1 . Again, since the G-action is not
elementary, J is nondegenerate. There are two cases:

J is indefinite. Since J ⊆ H1, we have either J = H1, whence H ′
1 ⊇ H1 and

we are done; or J = 0.
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J is positive definite. Then H0 ⊕ J would be a G-invariant closed positive
definite subspace and, by maximality, we would have H0 ⊕ J ⊆ H0 and hence,
once again, J = 0.

Thus, we may assume (for a contradiction) H1 ∩ H ′
1 = 0. Let H1,H

′
1 ⊆ H be

the corresponding hyperbolic subspaces and consider the orthogonal projections
p : H → H1 and p′ : H → H′

1 given by the nearest point retraction. Since
H1 ∩H′

1 = ∅ and H is CAT(-1), both p|H′

1
and p′|H1

are contractions. Hence the
map f : H1 → H1, defined by f := p|H′

1
◦ p′|H1

, is a G-equivariant contraction,
that is, d(f(x), f(y)) < d(x, y) for all distinct x, y ∈ H1. If for some x ∈ H1

the set {d(fn(x), x) : n ≥ 1} were bounded, Proposition 4.1(i) would imply the
existence of an f -fixed point in H. Since f is G-equivariant, the set of its fixed
points H

f
1 is G-invariant. However, since f is a contraction, Hf

1 consists of one
point, which is hence G-fixed, contradicting the assumption that the G-action is
nonelementary.

Thus, the f -orbits are unbounded and by Proposition 4.1(ii) there is a subse-
quence {nk} and ξ ∈ ∂H1 with limk→∞ fnk(x) = ξ. However, for every given
g ∈ G and for x ∈ H1

d(gfn(x), fn(x)) = d(fn(gx), fn(x)) < d(gx, x)

is bounded independently of n, thus, by passing to subsequences, the sequences
gfn(x) and fn(x) are at bounded distance and hence define the same point at
infinity, namely gξ = ξ. Since this contradicts again the assumption that the
action is nonelementary, the proof in this case is complete. �

4.1. Elementary Actions. As before, let (H , Q) be a strongly nondegenerate
quadratic space of signature (α, 1). We shall study, for a topological group G, the
elementary actions onHα, and more specifically, the actions fixing a point in ∂Hα.
Thus, fix L+ a isotropic line in H , let OL+

(Q) be its stabilizer in O(Q), and let
Rep(G,OL+

(Q)) be the set of continuous representations (see Remark 3.5). Then
G acts on L+ by multiplication by a continuous character χ : G → R∗. The
bilinear form B induces a Hilbert space structure of Hilbert dimension α − 1
on ⊥L+/L+ and we may thus fix a real Hilbert space E of Hilbert dimension
α − 1 and an isomorphism i : ⊥L+/L+ → E. Since π : G → OL+

is continuous
and G preserves L+ and ⊥L+, it induces on ⊥L+/L+ a continuous orthogonal
representation which we transport to E via i, obtaining ̺ : G → O(E). The
space H /⊥L+ is one-dimensional; since G preserves B, it acts on that space by
multiplication by χ−1.

We define a new G-module structure on H by means of the continuous repre-
sentation χ⊗ π. Then we have a short exact sequence of G-modules

0 −→ ⊥L+/L+ −→ H /L+ −→ H /⊥L+ −→ 0
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in which the last term is a trivial G-module of dimension one. Thus, applying the
corresponding transgression map in degree zero, the image of the trivial module
H /⊥L+ in the continuous cohomology H1

c(G,
⊥L+/L+) yields via i a subspace

R · η ⊆ H1
c(G, χ⊗ ̺) .

Thus, with i fixed, we associated to every continuous homomorphism π : G →
OL+

(Q) the following data:

– a continuous homomorphism χπ ∈ Homc(G,R
∗),

– a continuous orthogonal representation ̺π ∈ Homc(G,O(E)), and
– a continuous class ηπ ∈ H1

c(G, χ⊗ ̺), well defined up to scalar multiplica-
tion.

Denoting by Z (G,E) the set of all triples (χ, ̺, η) with χ ∈ Homc(G,R
∗),

̺ ∈ Homc(G,O(E)) and η ∈ H1
c(G, χ ⊗ ̺), we have that O(E) × R∗ acts on

Z (G,E) by (T, λ)(χ, ̺, η) = (χ, T̺T−1, λTη).

Proposition 4.4. (i) The map Rep(G,OL+
(Q)) → Z (G,E), π 7→ (χπ, ̺π, ηπ)

induces a bijection

Rep(G,OL+
(Q))

/
OL+

(Q)
∼=−−→

[
O(E)×R∗

]∖
Z (G,E) .

(ii) The representation π leaves all horospheres centered at L+ invariant if and
only if |χπ| = 1.

Proof. Given χ : G → R∗, ̺ : G → O(E) and η ∈ H1
c(G, χ⊗ ̺), we indicate how

to reconstruct π ∈ Rep(G,OL+
(Q)). Fix an isotropic line L− 6= L+ and let f :

G → E be a continuous cocycle representing η. Set F = ⊥(L+ ⊕ L−), and denote
by j the isomorphism of Hilbert spaces obtained by composing F → ⊥L+ → E.
Fix ℓ± ∈ L± with B(ℓ−, ℓ+) = 1. Using the notation of Appendix A, we define

π(g) =


 π(g)1

π(g)+2
0

0 π(g)−3 π(g)4




by

π(g)1 =

(
χ(g) a(g)
0 χ(g)−1

)

where

(4.1)

a(g) = −1

2
χ(g)‖f(g)‖2E

π(g)+2 (v) = −〈̺(g)j(v), f(g)〉E, ∀ v ∈ F

π(g)−3 = χ(g)−1j−1(f(g))

π(g)4 = j−1̺(g)j.
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The rest of the proposition is now a verification left to the reader and uses the
fact that |χπ| is the exponential of the Busemann character associated to the fixed
point L+. �

We turn now to representations π : G→ OL+
(Q) for which |χ| is not identically

1 (write χ = χπ). We fix once and for all χ and a ∈ G such that |χ(a)| 6= 1.

Definition 4.5. We shall say that a continuous cocycle f : G → E for χ ⊗ ̺ is
standard if f(a) = 0.

Lemma 4.6. Let ̺ : G → O(E) be a continuous orthogonal representation and
χ : G→ R× a continuous homomorphism with |χ(a)| 6= 1.

(i) Every class in H1
c(G, χ⊗ ̺) admits a unique standard representative.

(ii) If M < G is a compact subgroup normalised by a, then any standard
cocycle vanishes on M .

Proof. (i) Set τ = χ⊗ ̺. Recall that |χ(a)| 6= 1 implies that 1− τ(a) is invertible
and hence H1(〈a〉, τ) vanishes. Therefore, for any cocycle f ′ : G→ E there exists
v ∈ E such that f ′(an) = τ(an)v − v. Now f(g) := f ′(g) + v − τ(g)v defines a
standard cocycle. If f1 and f2 are any two cohomologous cocycles, there exists
v ∈ E such that f1(g) = f2(g) + τ(g)v − v. If in addition f1 and f2 are standard,
then τ(a)v = v, which implies, since |χ(a)| 6= 1, that v = 0 and hence f1 = f2.

(ii) Let f be a standard cocycle. Since M is compact, C := supk∈M ‖f(g)‖ is
finite. We have for all k ∈M

f(k) = τ(k)f(a)+f(k) = f(ka) = f(aa−1ka) = τ(a)f(a−1ka)+f(a) = τ(a)f(a−1ka),

which implies that C = |χ(a)|C and hence C = 0. �

Let η ∈ H1
c(G, χ⊗̺) and let π : G→ OL+

(Q) be the homomorphism associated
to (χ, ̺, η) by the above construction. Then π(a) is hyperbolic with fixed points
L− and L+. If f : G→ E is the standard cocycle representing the class η, define

Iη := 〈f(g) : g ∈ G〉 ,
which is a closed G-invariant subspace of E. With these definitions, we have the
following:

Proposition 4.7. There is a G-invariant orthogonal decomposition

H = H1 ⊕ H0,

where
H1 = (L+ ⊕ L−)⊕ j−1(Iη), H0 =

⊥
H1.

Moreover, the subspace H1 is nondegenerate of index one, H0 is positive definite
and if H ′

1 ⊆ H is any closed nondegenerate G-invariant subspace of index one,
then H ′

1 ⊃ H1.
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Proof. We verify the last assertion: let H′
1 ⊆ H1 be the hyperbolic subspace

associated to H ′
1 . Without loss of generality, |χ(a)| > 1. Then limn→±∞ π(an)x =

L± for all x ∈ H′
1, hence L± ∈ ∂H′

1. If L := L+ ⊕ L− and PrL : H → L is
the orthogonal projection, this implies that π(g)ℓ− −PrL(π(g)ℓ−) is in H ′

1 for all
g ∈ G; therefore, using the formulæ in (4.1) and Appendix A, H ′

1 ⊇ j−1(Iη). �

End of proof of Proposition 4.3. We know already that the alternative (iii) of the
proposition holds in the nonelementary case. If the G-action is elementary, then
there are the following possibilities:
G fixes a point in H. This corresponds to (ii).
G leaves a geodesic line in H invariant. Denote this line byH1 ⊆ H. This means

that there is a G-invariant two-dimensional subspace H1 ⊆ H of index one. In
fact, H1 = L+⊕L−, where ∂H1 = {L−, L+}. We may assume that G has no fixed
point in H1, so there is g ∈ G acting hyperbolically: say, limn→±∞ π(g)nx = L±.
But then, if H ′

1 is any G-invariant closed nondegenerate subspace of index one and
H′

1 ⊆ H the associated hyperbolic subspace, we get ∂H′
1 ∋ L±, hence H ′

1 ⊇ H1.
G fixes an isotropic line L+. Let then χ : G → R∗ be the associated charac-

ter. Either |χ| = 1 and we are in alternative (i), or |χ| 6= 1 and we can apply
Proposition 4.7, so that alternative (iii) holds once again. �

5. Actions of Certain HNN-Extensions

Let P = 〈a〉 ⋉N be a locally compact group, semidirect product of an infinite
cyclic subgroup 〈a〉 with generator a and a closed normal subgroup N =

⋃
n∈ZKn

which is the increasing union of compact open subgroups Kn < Kn+1 such that
aKna

−1 = Kn+1 for all n ∈ Z. In other words, P is the topological ascending
HNN-extension P = K0∗a.

In this section we study more in detail elementary actions of P on a hyperbolic
space H, using the results in Section 4, in particular Proposition 4.4. We begin
with the following general fact:

Lemma 5.1. Let X be a complete CAT(-1) space and P ×X → X a continuous
action by isometries. Then there is a P -fixed point in X and, in fact, one of the
following holds:

(i) a is elliptic and XP 6= ∅.
(ii) a is parabolic and |(∂X)P | = 1.
(iii) a is hyperbolic and the attracting fixed point of a is P -fixed.

Proof. For (i), we have for all x ∈ X

sup
g∈N

d(gx, x) = sup
k∈K0,n≥0

d(ka−nx, a−nx).

Since by assumption a has bounded orbits and K0 is compact, the latter quantity
is bounded and hence N has bounded orbits; the setwise decomposition P = 〈a〉·N
implies that P itself has bounded orbits and hence admits a fixed point in X .
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In cases (ii) and (iii), the set {anx : n ≥ 0} is unbounded for all x ∈ X . Pick
ξ ∈ ∂X and a subsequence {nk} of N with limk→∞ ankx = ξ for all x ∈ X (see

Proposition 4.1). It is enough to show that ξ is P -fixed. Setting Fj := X
Kj
, we

have

Fj ∩X 6= ∅ ∀ j ∈ Z

Fj ⊇ Fℓ ∀ j ≤ ℓ

anFj = Fj+n ∀ j, n ∈ Z .

Picking x ∈ Fj, we have ankx ∈ Fj+nk
⊆ Fj for all k ≥ 0 and hence ξ =

limk→∞ ankx ∈ Fj since Fj is closed in X . Thus ξ ∈ ⋂
j∈Z Fj = X

N
. It follows

that ξ is indeed P -fixed. �

We now turn back to the particular case whereX = H is the hyperbolic space at-
tached to a strongly nondegenerate quadratic space (H , Q) of signature (α, 1). We
will focus on the study of continuous elementary representations π : P → OL+

(Q)
for which π(a) is hyperbolic with attracting fixed point L+; that is, |χ(a)| > 1.

Proposition 5.2. Let χ : P → R∗ be a continuous homomorphism with |χ(a)| >
1, let ̺ : P → O(E) be a continuous orthogonal representation and τ := χ⊗ ̺.

(i) The orthogonal complement EK−1 ⊖EK0 of EK0 in EK−1 is isomorphic to
H1

c(P, τ), with isomorphism given by v 7→ fσ(v), where for v ∈ EK−1 ⊖EK0 ,

σ(v) :=
∑

n≤−1

τ(a)n+1v

and fσ(v) is the standard cocycle uniquely determined by

fσ(v)(k) = τ(k)σ(v)− σ(v) . (∀ k ∈ K0)

(ii) For η ∈ H1
c(P, τ), let fσ(v) be the standard cocycle representing η (with

v ∈ EK−1 ⊖ EK0). Then the subspace Iη = 〈fσ(v)(p) : p ∈ P 〉 coincides
with the closed cyclic subspace generated by v and, in fact,

Iη = 〈fσ(v)(n) : n ∈ N \
⋂

j∈Z

Kj〉 .

Proof. (i) The proof consists of two steps.
Claim 1: There is an isomorphism of topological vector spaces

{
v ∈ E : (Id − τ(a))v ∈ EK0

}/
EK0 −→ H1

c(P, τ)

v 7−→ [fv]

where fv is the standard cocycle determined uniquely by

fv(k) := τ(k)v − v ∀ k ∈ K0.
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Though this follows immediately from the Mayer-Vietoris sequence associated to
topological HNN-extensions in continuous cohomology, we give an explicit proof:

Let f be a standard cocycle. Then repeated applications of the cocycle identity
imply that for all n ∈ Z and g ∈ P one has

(5.1) f(anga−n) = τ(a)f(g) ,

which, applied to n ≥ 0 and g ∈ K0 shows that f is determined by its restriction
to K0. Since K0 is compact, there is v ∈ E, uniquely determined modulo EK0 ,
such that, for all k ∈ K0,

(5.2) f(k) = τ(k)v − v .

Substituting (5.2) into (5.1) with n = −1 and g ∈ K0, we get

(5.3) (Id − τ(a))v ∈ EK0 .

Conversely, any cocycle f on K0 defined by (5.2) with v satisfying (5.3) extends
uniquely to a standard cocycle on P , which hence completes the proof of Claim 1.

Claim 2: The map

σ : EK−1 ⊖EK0 −→
{
v ∈ E : (Id − τ(a))v ∈ EK0

}/
EK0

v 7−→
∑

n≤−1

τ(a)n+1v mod EK0

is an isomorphism of topological vector spaces.
To start the proof of the Claim, observe that, since |χ(a)| > 1, the operator

S := Id − τ(a) = τ(a)(τ(a)−1 − Id) has a (bounded) inverse given by S−1 =
−∑∞

n=0 τ(a)
−(n+1) . Since τ(a)ℓEK0 = EKℓ , this implies that

(5.4) J :=
⋃

ℓ≤−1

EKℓ ⊇
{
v ∈ E : Sv ∈ EK0

}
.

Defining Ej := EKj ⊖EKj+1 , we have an orthogonal decomposition

(5.5) J = EK0 ⊕
∧⊕

j≤−1

Ej .

Let v = v0 +
∑

j≤−1 vj with Sv ∈ EK0; since we need to determine v mod EK0 ,
we may assume v0 = 0. Then

Sv = −τ(a)v−1 −
∞∑

j=1

(τ(a)v−(j+1) − v−j)

where τ(a)v−1 ∈ EK0 and τ(a)v−(j+1) − v−j ∈ E−j . In view of (5.4) and (5.5),
saying that Sv ∈ EK0 is equivalent to saying that

τ(a)v−(j+1) = v−j, j ≥ 1
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which implies v =
∑

n≤−1 τ(a)
n+1v−1 and hence yields Claim 2.

(ii) It is clear that Iη is contained in 〈τ(p)v : p ∈ P 〉. Conversely, since for
k ∈ K0 we have fσ(v)(k) = τ(k)σ(v)− σ(v), it follows that

−
∫

K0

fσ(v)(k) dk = σ(v)− PrEK0 (σ(v)) = σ(v)

and

−
∫

K−1

τ(u)

∫

K0

fσ(v)(k) dk du = v.

Thus v ∈ Iη, which is a closed invariant subspace, and hence contains the closure of

its orbit 〈τ(p)v : p ∈ P 〉. The additional formula for Iη follows since fσ(v) vanishes
on M =

⋂
j∈ZKj by Lemma 4.6(ii). �

6. Representations of Certain Parabolic Subgroups

6.1. Gelfand Pairs. We start this section recalling some definitions and facts
about Gelfand pairs which will be essential in the sequel. We refer to [Si, Sec. 24],
for example, for a complete discussion and proofs. Whilst this theory is generally
presented for unitary representations, it carries over without changes to orthogonal
representations; this will be our viewpoint here.

Let G be a locally compact group, K < G a compact subgroup and let Cc(G)
♮K

be the convolution algebra of bi-K-invariant functions on G with compact support.
Then (G,K) is a Gelfand pair if Cc(G)

♮K is commutative. It is easy to see that
the condition x−1 ∈ KxK for all x ∈ G is sufficient for (G,K) to be a Gelfand
pair.

If (G,K) is a Gelfand pair, a continuous bi-K-invariant function ϕ ∈ C(G)♮K is
a spherical function if

(1) ϕ(e) = 1, and
(2) for all f ∈ Cc(G)

♮K there exists a constant cf such that ϕ ∗ f = cfϕ.

An irreducible orthogonal representation of G is K-spherical if there exists a
nonzero K-invariant vector. If (G,K) is a Gelfand pair and (π,H ) is any ir-
reducible orthogonal representation of G, then dimH K ≤ 1, and hence (π,H )
is K-spherical if and only if dimH K = 1. Moreover, (equivalence classes of)
K-spherical representations of a Gelfand pair (G,K) are in bijective correspon-
dence with positive definite spherical functions, with the correspondence given by
ϕ(g) = 〈π(g)v, v〉, where v ∈ H is a K-invariant vector of norm one and 〈 , 〉 is
the inner product in H .

6.2. In the remainder of this section, we shall consider a closed subgroup P <
Aut(T ) of the automorphism group of a locally finite tree T satisfying the fol-
lowing conditions:

(1) P fixes a point ξ ∈ ∂T ;
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(2) P acts doubly transitively on ∂T \ {ξ}.
We shall assume throughout that the vertices of T have valence at least three;

observe that under these hypotheses it follows that P acts transitively on the
vertices of T , which is therefore a regular tree (and ξ is uniquely determined).
Fix a geodesic line c : Z → T with c(+∞) = ξ; by (2) there is a hyperbolic
element a ∈ P with axis c, translation length one and attracting fixed point ξ.
We denote by Kj the stabilizer of c(j) in P for j ∈ Z. Then P has the structure
P = 〈a〉⋉N as in Section 5.

Let now (H , Q) be strongly nondegenerate of signature (ℵ0, 1) and let L be an
isotropic line. The main objective of this section is to prove:

Theorem 6.1. For every continuous homomorphism χ : P → R∗ with |χ(a)| > 1,
there is up to conjugation a unique continuous representation λ : P → OL(Q)
such that

(i) P acts on L by multiplication by χ.
(ii) There is no proper closed P -invariant subspace of H which is nondegen-

erate of index one.

This result is based on Section 4, Section 5 and on the following generalization
of [N]:

Proposition 6.2. Let Px be the stabilizer in P of a vertex x ∈ T . Then there is
a unique (up to equivalence) irreducible orthogonal representation of P having a
Px-fixed vector and whose restriction to N is nontrivial.

We precede the proof with some intermediate results. For j ∈ Z, we denote
by Hj the horosphere centered at ξ passing through c(j); furthermore, for ℓ ≥ 0,
let Hj(2ℓ) be the intersection of Hj with the sphere or radius 2ℓ centered at c(j).
Notice that for r ≤ j, the group Kr acts on Hj(2ℓ) for every ℓ > 0, and moreover:

Lemma 6.3. The group Kr acts transitively on Hj(2ℓ) for all r ≤ j and ℓ ≥ 0.

Proof. Write ξ± := c(±∞) and pick a, b ∈ Hj(2ℓ). Complete the geodesic segments
[c(j+ℓ), a] and [c(j+ℓ), b] to infinite rays [c(j+ℓ), α] and [c(j+ℓ), β] respectively,
where α, β ∈ ∂T . We may assume ℓ 6= 0, thus α, β 6= ξ−. By double transitivity,
there is g ∈ P with g(α) = β and g(ξ−) = ξ−. The center of the tripods (ξ+, α, ξ−)
and (ξ+, β, ξ−) is c(j+ ℓ), hence g fixes that point. But since g fixes ξ± and hence
preserves c(Z), it follows that g ∈ ⋂

n∈ZKn. �

Corollary 6.4. (N,Kj) is a Gelfand pair for all j ∈ Z. �

Proof. As mentioned Section 6.1, it is enough to prove that n−1 ∈ KjnKj for all
n ∈ N and j ∈ Z. We may assume that n /∈ Kj. Then n ∈ Kℓ \ Kℓ−1 for some
ℓ ≥ j + 1 and n(c(j)), n−1(c(j)) ∈ Hj(2(ℓ− j)). By Lemma 6.3, this implies the
existence of k ∈ Kj with kn(c(j)) = n−1(c(j)) and hence n−1 ∈ KjnKj . �
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Let N̂ be the set of (equivalence classes of) irreducible orthogonal representa-

tions of N ; the group 〈a〉 acts on N̂ by a∗π(g) = π(aga−1), thus preserving the

subset N̂1 of representations that have a Kj-fixed vector for some j ∈ Z. In fact,
if we set

N̂1
j :=

{
(π,H ) ∈ N̂1 : H

Kj 6= 0,H Kj+1 = 0
}
,

then N̂1 =
⊔

j∈Z N̂
1
j and a∗N̂

1
j = N̂1

j−1, so that any N̂1
j is a fundamental domain

for the action of 〈a〉 on N̂1.

Lemma 6.5. |N̂1
j | = 1 for all j ∈ Z.

Proof. Since Kℓ ≤ Kj for ℓ ≤ j, for any Kj-spherical representation (π,H ) we
have that H Kℓ ⊃ H Kj ; since (N,Kj) is a Gelfand pair, these spaces are of

dimension one and hence H Kℓ = H Kj . Thus, in order to show that |N̂1
j | = 1, it

is sufficient to show that there is a unique positive definite Kj-spherical function
ϕ with ∫

Kj+1

ϕ(kg)dk = 0, ∀g ∈ N .

Since it suffices to show that |N̂1
0 | = 1, we start by showing that the space

S0 :=
{
ϕ ∈ (C(N)♮)K0 :

∫

K1

ϕ(kg) dk = 0 ∀ g ∈ N
}

is of dimension one. By identifying N/K0 with the horosphere H0, we can identify
S0 with the space of K0-invariant functions on H0 =

⊔
ℓ≥0H0(2ℓ), and by applying

Lemma 6.3 we deduce that any function ϕ ∈ S0 can be written as

ϕ =
∞∑

ℓ=0

κℓ11H0(2ℓ) ,

where κℓ ∈ R. The condition defining S0 means that the sum of the values of ϕ
over any K1-orbit in H0 is zero; denoting by q the valence of T , this implies that
κℓ = 0 for all ℓ ≥ 2 and κ0 + (q − 2)κ1 = 0, thus proving the claim.

Thus, let ϕ0 ∈ S0 be the unique function such that ϕ(e) = 1. To complete the
proof we need to show that for all f ∈ Cc(G)

♮K there exists a constant cf such that
ϕ ∗ f = cfϕ. To this end, observe that any f ∈ Cc(G)

♮K is a linear combination
of characteristic functions 11K0

and 11Kn\Kn−1
:= χn for n > 0. In this notation we

have that

ϕ0 = 11K0
− 1

q − 2
11K1\K0

.

Moreover, a direct computation shows that

χn ∗ χm =

{
µ(Kn \Kn−1)χm if n < m

µ(Kn \Kn−1)11Kn
− µ(Kn−1)χn if n = m,
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wherein µ is the Haar measure implicit in the chosen convolution structure on
Cc(G). Now it follows that

ϕ0 ∗ χm = 0 if m > 1

ϕ0 ∗ χ1 = −µ(K0)ϕ0

ϕ0 ∗ 11K0
= µ(K0)ϕ0 ,

and hence shows that ϕ0 is spherical.
Finally, observe that since ϕ0 is compactly supported, it follows from the identity

ϕ0 ∗ ϕ̌0 = cϕ̌0
ϕ0 ,

where as usual ϕ̌0(x) := ϕ0(x
−1), that ϕ0 is positive definite. �

Proof of Proposition 6.2. The is no loss of generality in assuming x = c(0), so

that Px = K0. Let πj be a representative of the unique equivalence class in N̂1
j

and observe that a∗πj ∼= πj−1. Thus the N -representation π := ⊕j∈Zπj extends
canonically to a P -representation. To verify that π is irreducible, observe that if σ
is any sub-P -representation of π, then σ|N is a direct sum of sub-N -representations
σj of πj , because the πj are irreducible and pairwise inequivalent. Therefore, each
σj is either zero or irreducible. The a-invariance of σ shows that either σ is
zero or it coincides with π, hence π is irreducible as a P -representation. The
uniqueness of π follows from Lemma 6.5 and the existence of a K0-fixed vector by
construction. �

Proof of Theorem 6.1. Existence: Let π : P → O(E) be the continuous orthog-
onal representation of P constructed in Proposition 6.2 with underlying Hilbert
space E. Let ̺ := |χ| ⊗ π⊗χ−1 and endow E with the P -action defined by χ⊗ ̺.
Since we have by construction that EK−1 ⊖ EK0 6= 0, then Proposition 5.2(i) im-
plies that H1

c(P, χ ⊗ ̺) 6= 0 and hence Proposition 4.4 (with G = P ) gives us a
representation λ : P → OL(Q) ⊆ O(Q), so that (χ⊗ ̺)|N = π|N acting on L by
χ. By Proposition 4.3(iii), one can extract the corresponding “irreducible” part
and hence the existence is proved.
Uniqueness: Let us set L+ = L. Since |χ(a)| 6= 1, λ(a) is hyperbolic; let L−

be the isotropic line representing the repelling fixed point and ̺ : P → O(E)
be the orthogonal representation obtained as in Section 4.1 via the identification
E → ⊥L+/L+ and η ∈ H1

c(P, χ ⊗ ̺) the cohomology class defined by the above
action. The irreducibility hypothesis, Propositions 4.7 and 5.2 then imply that

E = 〈fσ(v)(p) : p ∈ P 〉 ,

where fσ(v) is the standard cocycle representing η and moreover E is the cyclic
subspace generated by v ∈ EK−1 ⊖EK0 .
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Consider the orthogonal representation ψ := |χ|−1⊗χ⊗̺ on E and let π denote
the orthogonal representation of P given by Proposition 6.2. Then

ψ = mπ ⊕ π1 ⊕ π2,

where π1|N = 11 and π2 does not have any nonzero Kn-invariant vectors. Since
v ∈ EK−1 ⊖ EK0 , the projections of v to the components of π1 and π2 is zero.
Being a cyclic vector, this implies ψ = mπ and therefore also m = 1. It now
follows that ̺ = |χ| ⊗χ−1 ⊗ π; in the notation of Proposition 5.2, τ = |χ| ⊗ π. By
Proposition 5.2, we have H1

c(P, τ)
∼= EK−1 ⊖EK0 . Let now (πn,Hn) be the unique

Kn-spherical representation of N that is not Kn+1-spherical. Then it follows from
Lemma 6.5 that τ |N = π|N = ⊕n∈Zπn. Hence,

EK−1 =

∧⊕

n≥−1

H
K−1
n , EK0 =

∧⊕

n≥0

H
K0

n .

Observing that H K−1
n = H K0

n for all n ≥ 0, we deduce that EK−1 ⊖ EK0 has
dimension one. Hence dimH1

c(P, τ) = 1, which implies now by Proposition 4.4
that, up to conjugation, λ : P → OL(Q) is completely determined by χ. �

7. Representations of G into O(Q)

7.1. In this section T denotes a regular or biregular tree of finite bivalency (r, s)
with r, s ≥ 3. A subgroup G < Aut(T ) satisfies the property T+

2 if for every
ξ1 6= ξ2 in ∂T and η1, η2 ∈ ∂T \ {ξ1, ξ2} such that the distance between the
projections of η1 and η2 on the geodesic [ξ1, ξ2] is even, there exists h ∈ G fixing
ξ1, ξ2 and h(η1) = η2.

This property is implied by triple transitivity of the G-action on ∂T and implies
double transitivity. The main result of this section is:

Theorem 7.1. Let G < Aut(T ) be a closed subgroup satisfying property T+
2 ,

ξ ∈ ∂T and P the stabilizer of ξ in G. Let (H , Q) be a strongly nondegenerate
quadratic space of index 1 and π : G → O(Q) a continuous, nonelementary
representation. Then π|P has an irreducible indefinite component H1,P and the
canonical orthogonal decomposition H = H1,P ⊕ H0,P is G-invariant.

Let π1, π2 : G → O(Q) be nonelementary continuous representations such that
π1|P = π2|P . Then the restriction of π1 and π2 to the indefinite irreducible com-
ponents of P coincide.

7.2. Let G be a locally compact group boundedly generated by {s} ∪ P , where
s ∈ G and P < G is a closed subgroup with the structure considered in Section 5;
assume further that:

(1) 〈s〉 is relatively compact, and
(2) {ansans−1 : n ≥ 1} is relatively compact.



TREES AND HYPERBOLIC SPACES 23

(We recall that a group G is said boundedly generated by a subset X ⊆ G if there
is n ∈ N with Xn = G.)

Proposition 7.2. Let X be a complete CAT(-1) space and G ×X → X a con-
tinuous, nonelementary isometric action. Then a acts as a hyperbolic element, s
exchanges both fixed points of a and (∂X)P is the attracting fixed point of a.

Proof. We use Lemma 5.1 and we distinguish the three cases for a.

a is elliptic: Then XP 6= ∅ and since 〈s〉 is relatively compact and G is bound-
edly generated by 〈s〉 and P , the G-orbits in X are bounded. Hence XG 6= ∅,
contradicting non-elementarity.

a is parabolic: Then ∂XP = {ξ}. Let {ni}i≥1 be a sequence such that anix →
ξ; then a−nix → ξ, and since {ansans−1 : n ≥ 1} is bounded, we have that
sanis−1x → ξ which, in view of the fact that anis−1x → ξ, implies that s(ξ) = ξ
and hence Gξ = ξ, contradiction.

Thus, a is hyperbolic. Let now ξ−, ξ+ be respectively the repelling and the
attracting fixed points of a on ∂X . Since anx→ ξ+, a

−nx→ ξ−, and {ansans−1 :
n ≥ 1} is bounded, we deduce that sans−1x → ξ− and hence s(ξ+) = ξ− and
s(ξ−) = ξ+.

Finally, we know (∂X)P ∋ ξ+ from Lemma 5.1; since (∂X)〈a〉 = {ξ±}, it remains
only to observe that ξ− is not P -fixed, since otherwise the set {ξ±} would be
preserved by G. �

7.3. Let now G < Aut(T ) be any closed subgroup which acts doubly transitively
on ∂T . Then (see [BM2] Sec. 4.1 and 0.4):

– For every ξ ∈ ∂T , the Busemann character χξ : Gξ → Z has image Z or
2Z depending on whether G is vertex transitive or not;

– For every geodesic c : Z → T there is s ∈ G and n0 ∈ Z with s(c(±∞)) =
c(∓∞) and s(c(n0)) = c(n0);

– For any ξ 6= η in ∂T and s ∈ G exchanging ξ and η, we have G =
Gξ ∪GξsGξ.

Lemma 7.3. Let G < Aut(T ) be a closed subgroup satisfying T+
2 , c : Z → T a

geodesic, ξ± = c(±∞), and S = {s ∈ G : s(ξ±) = (ξ∓), s(c(0)) = c(0)}. Let also
Kj = Gξ ∩ G(c(j)). Then, given j ∈ Z, n ∈ Kj \ Kj−1 and s ∈ S, there exists
h ∈ G such that:

(i) For all q ∈ Z, hc(q) = c(q − 2j);
(ii) For all s′, s′′ ∈ S, s′nshns′′ ∈ K−j \K−j−1.

Proof. Since n ∈ Kj \Kj−1, then Pr[ξ+,ξ−](nξ−) = c(j) and Pr[ξ+,ξ−](s
−1n−1ξ−) =

c(−j). Thus property T+
2 implies that there exists h ∈ Gξ+ ∩ Gξ− such that

hnξ− = s−1n−1ξ− so that (i) follows. Let now s′, s′′ ∈ S and set g = s′nshns′′.
Then we have:
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(◦) gξ+ = s′nshns′′ξ+ = s′nshnξ− = s′nss−1n−1ξ− = s′ξ− = ξ+.

(◦) gc(−j) = s′nshns′′c(−j) = s′nshnc(j) = s′nshc(j) = s′nsc(−j) = s′nc(j) =
s′c(j) = c(−j). Thus g ∈ K−j.

(◦) gc(−j − 1) = s′nshns′′c(−j − 1) = s′nshnc(j + 1) = s′nshc(j + 1) =
s′nsc(−j + 1) = s′nc(j − 1). But since n ∈ Kj, we have that nc(j − 1) 6= c(j + 1)
and hence s′nc(j − 1) 6= c(−j − 1). Thus g /∈ K−j−1. �

7.4. We are finally ready to give the

Proof of Theorem 7.1. Let π : G → O(Q) → Isom(H) be a continuous nonele-
mentary action. Being the stabilizer of ξ ∈ ∂T , P has the structure of Section 5;
we shall use the corresponding notation for a. In view of Section 7.3, we can
choose s and a parametrisation c : Z → T of the axis of a such that sc(0) = c(0)
and sc(±∞) = c(∓∞). Observe further that these notations also put us in the
setting of Section 7.2. By Proposition 7.2, π(a) is hyperbolic and hence cannot fix
a point in H or preserve any horosphere. It follows from Proposition 4.3 applied
to P that π|P has an irreducible indefinite component H1,P .

We need to show that H1,P is G-invariant and that, on H1,P , the representation
π is determined by π|P . Let L± be the attr./repell. fixed points of π(a) and let
L = L+ ⊕ L−, F = ⊥L. We are in the setting of Proposition 4.3 for P (instead
of G) and we adopt its notation. By Proposition 4.7, H1,P = L ⊕ j−1(Iη). By
Proposition 7.2, π(s) exchanges L±. It is enough to show that π(s) preserves
j−1(Iη) and that its restriction to H1,P is determined by π|P .

We adopt the notation of Appendix A with ℓ±. Then

π(s) =




0 µ 0
µ−1 0 0
0 0 π0(s)


 ,

where π0(s) is orthogonal and µ ∈ R∗.
Fix j ∈ Z, n ∈ Kj \ Kj−1 and h as in Lemma 7.3 such that g := snshns ∈

K−j \K−j−1. We write

π(n) =



χ(n) α(n) N+

2

0 χ(n)−1 0
0 N−

3 π0(n)


 ,

and likewise

π(g) =



χ(g) α(g) M+

2

0 χ(g)−1 0
0 M−

3 π0(g)


 .

As to π(h), since it fixes both L±, it is of the form
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π(h) =



χ(h) 0 0
0 χ(h)−1 0
0 0 π0(h)


 .

Computing g = snshns we find

(7.1) χ(g) = µ−1χ(n−1h)α(n) ,

and

(7.2) M−
3 = χ(hn)π0(s)N

−
3 .

Equation (7.1) shows that µ is determined in terms of π|P . We are left to
determine π0(s). Write f for the standard cocycle associated to η; then (7.2) gives

π0(s)f(n) = χ(gh)−1f(g) .

We obtain such a formula for every n ∈ N \ ∩j∈ZKj. Thus we are done since by
Proposition 5.2(ii), Iη is spanned by these f(n). �

Proof of Theorem C. By Proposition 3.4, we are reduced to study homomorphisms
from G into O+(Q) and can thus apply the results obtained so far. The existence
statement in Theorem C follows from Theorem A and Proposition 4.3(iii).

For the uniqueness part, let ξ ∈ ∂Tr, P the stabilizer of ξ in G and a ∈ P
a hyperbolic element with attracting fixed point ξ and translation length 1. Let
π : G→ O+(Q) be a nonelementary continuous representation. Let c : Z → Tr be
a parametrization of the axis of a, and let Kn be, as usual, the stabilizer in P of
c(n). Using that G is doubly transitive on ∂Tr, we see that any other hyperbolic
element b with translation length 1 is conjugate to an element of the form a · k,
where k ∈ ∩n∈ZKn. Since π(a) is hyperbolic (Proposition 7.2), and using that a
normalises ∩n∈ZKn, one sees that π(k) fixes pointwise the axis of π(a) and hence
π(a) and π(b) have the same translation length, say ℓπ. Let L+ be the attractive
fixed point of π(a) and χ the character by which P acts on L+. Then, since π
takes values in O+(Q), we have that χ takes values in R+ which implies first that
χ(a) = eℓπ and then that χ is trivial on N , since N is an increasing union of
compact groups. This shows that χ is completely determined by ℓπ.

Assume now that π is irreducible. Then Theorem 7.1 implies that π|P is irre-
ducible, Theorem 6.1 that it is completely determined by χ (and hence by ℓπ),
and Theorem 7.1 again that π is completely determined by ℓπ.

�

8. Explicit Constructions

8.1. Let T be any simplicial tree. Let α + 1 be the cardinal of the vertex set
V of T and let (H , Q) be a strongly nondegenerate quadratic space of signature
(α, 1); let H be the corresponding hyperbolic space. Denote by G the (abstract)
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group G = Aut(T ). We denote by d both the metric on H and the metric on (the
geometric realization of) T that gives unit length edges.

Theorem 8.1. For every λ > 1 there is an embedding Ψ : T → H and a repre-
sentation π : G→ O(Q) → Isom(H) such that:

(i) The map Ψ is G-equivariant for π.
(ii) λd(x,y) = cosh d(Ψx,Ψy) for any two vertices x, y of T

(iii) Ψ extends to an equivariant boundary map ∂Ψ : ∂T → ∂H which is a
homeomorphism onto its image.

(iv) Ψ(V ) is cobounded in the convex hull C ⊆ H of the image of ∂Ψ.

Remark 8.2. The formula in (ii) shows in particular that d(Ψx,Ψy) is asymp-
totically proportional to d(x, y). If we denote by bT the Busemann cocycle for T

and b is the one for H as in Section 3, we have

bΨξ(Ψx,Ψy) = bTξ (x, y) lnλ ∀ ξ ∈ ∂T , ∀ x, y ∈ V.

We can give right away the construction of Ψ; the remainder of the section will
be devoted to proving the properties stated in Theorem 8.1.

Fix a vertex w ∈ V . By Proposition 2.7, we may identify H with ℓ2(V ) in such
a way that the bilinear form B associated to Q reads

B(f, g) =
∑

v∈V,v 6=w

f(v)g(v)− f(w)g(w).

We define a map V → H , v 7→ fv as follows. Denote for u ∈ V by δu the unit
function supported on u; then

fv := λd(w,v)δw +
√
λ2 − 1

d(w,v)∑

k=1

λd(w,v)−k δuk
,

where w, u1, u2, . . . , ud(w,v) = v is the geodesic from w to v (it is understood that the
right hand side summation is zero when v = w). A computation gives Q(fv) = −1
so that fv is in the negative cone C−; now Ψ is the resulting map V → C− → H

extended to T by sending each edge to a geodesic segment. Each element ξ ∈ ∂T
can be realized by a unique geodesic ray of vertices {vk}∞k=0 with v0 = w; we define
(∂Ψ)(ξ) by considering the element fξ of the isotropic cone C0 given by

fξ := δw +
√
λ2 − 1

∞∑

k=1

λ−kδvk .

Observe that one obtains a multiple of fxk
, hence the same point Ψxk, by truncat-

ing the above sum at k. It follows that the resulting map T → H is continuous;
the claim (iii) now follows from Remark 8.2 and claim (i). The formula of claim (ii)
can be verified by inspection; however, we shall see that it can be reduced to the
obvious case u = w.
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The strategy for the proof of Theorem 8.1 is first to construct π in the case
where T is regular, that is, G acts transitively on V . The general case will follow
by the naturality of our construction with respect to the pointed tree (T , w).

8.2. Regular Case. We assume that G = Aut(T ) acts transitively on V . Fix a
neighbour z of w and denote by K < G the stabilizer of w, by L the subgroup of G
preserving the set {w, z} and by E = K∩L the pointwise stabilizer of {w, z}. The
K-action on V preserves B and hence induces a representation π : K → O(Q) by
π(g)δu = δgu (g ∈ K). We extend now π by defining π : L = E ⊔ (L \E) → O(Q)
as follows: the map is already defined on E = K ∩ L; for every g ∈ L \ E and
every u ∈ V , set

(8.1) π(g)δu :=





λδw +
√
λ2 − 1δz if u = w.

−
√
λ2 − 1δw − λδz if u = z.

δgu otherwise.

It is a matter of computation to verify that π(g) is in O(Q).

Proposition 8.3. The map π : L→ O(Q) extends uniquely to a homomorphism
π : G→ O(Q).

Proof. We start by showing that the map π : L→ O(Q) is a homomorphism; that
is, we need to verify that π(g)π(g′) = π(gg′) holds on L, which we do by discussing
the cases according to where g, g′ are in the coset decomposition L = E ⊔ (L \E).
There is nothing to do if g, g′ are both in E since π is a homomorphism on K.
We shall write out the verification in the case g, g′ ∈ L \ E; the two remaining
cases are simpler and similar. Let thus g, g′ ∈ L \E. Then π(gg′)δu = δgg′u for all
u ∈ V since gg′ ∈ E (as E has index two in L). On the other hand, we have:

Case u = w:

π(g)π(g′)δw = π(g)(λδw +
√
λ2 − 1δz) =

= λ(λδw +
√
λ2 − 1δz) +

√
λ2 − 1(−

√
λ2 − 1δw − λδz) = δw,

which is indeed δgg′u since E fixes w.
Case u = z:

π(g)π(g′)δz = π(g)(−
√
λ2 − 1δw − λδz) =

= −
√
λ2 − 1(λδw +

√
λ2 − 1δz)− λ(−

√
λ2 − 1δw − λδz) = δz,

which is indeed δgg′u since E fixes z.
Case u 6= w, z: then we have also g′u 6= w, z and hence

π(g)π(g′)δu = π(g)δg′u = δgg′u = π(gg′)δu.

To show that the map π defined on L extends uniquely to a homomorphism on
G, observe the G-action on (the first barycentric subdivision of) T determines a
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splitting of G into an amalgamation G = K ∗
E
L. Therefore the statement follows

from the universal property of amalgamations. �

Remark 8.4. The definition of π on G is independent of the choice of z: Indeed,
observe first that K acts transitively on the set of neighbours of w. If k is any
element of K, we obtain another neighbour kz of w and another amalgamation
G = K ∗

kEk−1
kLk−1. With π defined as before using L, one checks immediately

that for g ∈ kLk−1\kEk−1 the formula (8.1) for π(g) remains valid upon replacing
z with kz.

We turn to point (i) in Theorem 8.1. Pick a vertex v ∈ V and let n = d(v, w).
There is a hyperbolic element a of translation length one admitting an axis {uk}k∈Z
such that u0 = w, un = v and auk = uk+1 for all k ∈ Z. Notice that K and a
generate G; since moreover Ψ is K-invariant by its construction, we need only
verify that Ψ(av) = π(a)Ψ(v). By Remark 8.4 there is no loss of generality in
assuming that z = u1. Let s be an element of L \ E preserving {uk}; that is,
suk = u1−k for all k ∈ Z. Then a = st for t ∈ K such that tuk = u−k for all k ∈ Z,
and thus an immediate computation using (8.1) for π(s) shows that we have for
all k ∈ Z

π(a)δuk
= π(s)π(t)δuk

=





λδw +
√
λ2 − 1δu1

if k = 0.

−
√
λ2 − 1δw − λδu1

if k = −1.

δuk+1
otherwise.

Now we can compute

π(a)fv = π(a)
(
λnδw +

√
λ2 − 1

n∑

k=1

λn−kδuk

)

= λn(λδw +
√
λ2 − 1δu1

) +
√
λ2 − 1

n∑

k=1

λn−kδuk+1

= λn+1δw +
√
λ2 − 1

n+1∑

k=1

λn+1−kδuk
= fuk+1

= fav,

and claim (i) is proved. Now the transitivity of G reduces (ii) to the case where one
of the vertices is w, which is an immediate computation. As (iii) was addressed
before, we are left with proving (iv).

Proposition 8.5. Every point x ∈ C is at distance at most cosh−1
√
1 + λ of

some element of Ψ(V ).

Proof. Every element of H is represented by a unique function in ℓ2(V ) with value
one on w. In fact, if D′ denotes the unit ball in ℓ2(V \ {w}), the set of such
functions is D := δw +D′. This gives the Klein model in finite dimensions, and
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thus it follows that geodesics in H correspond to affine lines in D. It is therefore
enough to show the claim for any finite convex combination x =

∑
ξ∈S sξfξ where

S ⊆ ∂T is a finite set and s : S → (0, 1) is any function ξ 7→ sξ of sum one
(observe that S must contain at least two points since 0 < sξ < 1).

We write β = b(·, δw) for Busemann function on H normalised at δw and βT =
bT (·, w) for the analogous Busemann function on T . Consider the function ψs :
V → R∗

+ defined by

ψs(v) :=
∑

ξ∈S

sξλ
βT
ξ

(v).

This function admits a minimum v0 ∈ V ; indeed, outside a finite subset of V
determined by the configuration of S, it increases monotonically with the distance
to this subset. We shall see that Ψ(v0) is at distance at most cosh−1

√
1 + λ of x.

Pick g ∈ G such that gv0 = w; then w is a minimum of the function v 7→
ψs(g

−1v), which in view of βT
ξ (g−1v) = βT

gξ (v)− βT
gξ (gw) reads

ψs(g
−1v) =

∑

η∈gS

sg−1ηλ
βT
η (v)−βT

η (gw).

Thus, setting (g⋆s)ξ := λ−βT
ξ

(gw)sg−1ξ, it follows that w is also a minimum of the
function ψs′ for s

′ := g⋆s/
∑

ξ(g⋆s)ξ. Setting

σv :=
∑{

s′ξ : v is in the ray [w, ξ]
}

∀ v ∈ V

the minimality implies for every neighbour v of w

1 = ψs′(w) ≤ ψs′(v) =λ
−1

∑
{s′ξ : v ∈ [w, ξ]}+ λ

∑
{s′ξ : v /∈ [w, ξ]} =

λ−1σv + λ(1− σv) ,

and hence σv ≤ λ/(1 + λ). This in turn implies

σv ≤
λ

1 + λ
∀ v ∈ V, v 6= w.

The formula (3.1) in Section 3 shows that for every g ∈ G and h ∈ C0 we have

βgh(gδw) = ln
B(gh, gδw)

√
−Q(δw)

B(gh, δw)
√

−Q(gδw)
= ln

B(h, δw)

B(gh, δw)
= ln

h(w)

(gh)(w)
.

Thus we have for all ξ ∈ ∂T

(gfξ)(w)fξ(w)e
−βgfξ

(gδw)
= fξ(w)λ

−βT
gξ

(gw)

and since gfξ is proportional to fgξ we deduce gfξ = λ−βT
gξ

(gw)fgξ. We conclude
that gx is represented in H by the element y :=

∑
ξ∈gS s

′
ξfξ of D. We proceed
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now to compute

cosh d(δw, y) = − B(δw, y)√
Q(δw)Q(y)

=
1√

−Q(y)
.

If Sk is the sphere of radius k around w, we deduce from the definition of fξ

y = δw +
√
λ2 − 1

∞∑

k=1

∑

v∈Sk

λ−kσvδv

and therefore

Q(y) = −1 + (λ2 − 1)

∞∑

k=1

λ−2k
∑

v∈Sk

σ2
v ≤ −1 + (λ2 − 1)

λ

1 + λ

∞∑

k=1

λ−2k
∑

v∈Sk

σv.

Using
∑

v∈Sk
σv = 1 one gets finally Q(y) ≤ −1/(1 + λ). It follows that

d(Ψv0, x) = d(Ψw, gx) = d(δw, y) ≤ cosh−1
√
1 + λ.

�

This proposition completes the proof of Theorem 8.1 in the regular case. �

8.3. General Case. Suppose now that T is a general tree with vertex set V of
cardinal α + 1 and G = Aut(T ). Complete T to a regular tree T ′ with vertex
set V ′ ⊇ V of cardinal α′ + 1. We keep the notation of Section 8.1 and define
likewise H ′ = ℓ2(V ′), H′, B′, G′ = Aut(T ′), etc.; take w′ := w ∈ V ⊆ V ′ and
observe that H is a hyperbolic subspace of H′. Let Ψ′, π′ be the maps associated
to T ′ by the proof for the regular case.

Denote by L0 < L < G′ the pointwise stabilizer, respectively stabilizer, of T ;
since any automorphism of T can be extended to some automorphism(s) of T ′,
we have a natural identification G = L/L0. It follows at once from the definition
of Ψ,Ψ′ and π, π′ that the restriction of Ψ′ gives Ψ, while π′ descends to π. In
fact, as all definitions for T ′ vanish on V ′ \V when restricted to T , the only part
of Theorem 8.1 for T that does not follows immediately from the case of T ′ is
point (iv). But the proof given above, when applied to T ′ and to the corresponding
convex hull C ′, shows in fact that whenever x ∈ C ⊆ C ′ is a finite affine convex
combination of elements in Ψ(∂T ), then the vertex v0 ∈ V ′ is actually in V . This
follows indeed from the definition of the function ψs and thus concludes the proof
of Theorem 8.1. �

Appendix A. Matrix Representations

Let (H , Q) a strongly nondegenerate quadratic space of signature (α, 1). If
L−, L+ are two distinct isotropic lines, define L := L+ ⊕ L− and F = ⊥L, so that

H = L⊕ F.
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On L and F we consider the restrictions B|L×L and B|F×F , and if A is a continuous
linear operator between any of these spaces, A∗ denotes the adjoint with respect to
these strongly nondegenerate bilinear forms. For any continuous linear operator
T : H → H , define

A1 = pLT |L, A2 = PLT |F ,
A3 = PFT |L, A4 = pFT |F .

Then T ∈ O(Q) if and only if the following conditions are satisfied:

A∗
1A1 + A∗

3A3 = IdL;
A∗

2A2 + A∗
4A4 = IdF .

A∗
1A2 + A∗

3A4 = 0;
A∗

2A1 + A∗
4A3 = 0;

Observe that by taking adjoints, the last two conditions are equivalent.
We shall look more closely at OL+

(Q), the stabilizer in O(Q) of L+. For this,
let L± = Rℓ±, with B(ℓ+, ℓ−) = 1. We represent A1 by a two-by-two real matrix;
A2 : F → L will be represented by two linear forms A+

2 and A−
2 given by A2(e) =

A+
2 (e)ℓ+ +A−

2 (e)ℓ−; A3 : L→ F will be represented by two vectors A+
3 = A3(ℓ+),

A−
3 = A3(ℓ−), and hence

T =


 A1

A+
2

A−
2

A+
3 A−

3 A4


 .

Then T ∈ OL+
(Q) if and only if it has the form



λ α A+

2

0 λ−1 0
0 A−

3 A4




with λ ∈ R×, A−
3 ∈ F , A4 ∈ O(F ) and α,A+

2 are determined by

α = −λ
2
Q(A−

3 ) ,

and

A+
2 (v) = −λB(A4(v), A

−
3 ), for all v ∈ F .

The inverse of

S =



µ β B+

2

0 µ−1 0
0 B−

3 B4


 ∈ OL+

(Q)

is given by

S−1 =



µ−1 β −µ−1B+

2 B
−1
4

0 µ 0
0 −µB−1

4 (B−
3 ) B−1

4
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and the conjugate STS−1 of T by S has the following entries

(STS−1)1,1 =λ = (STS−1)−1
2,2

(STS−1)2,1 =(STS−1)2,3 = (STS−1)3,1 = 0

(STS−1)1,2 =λµβ + µ2α− µ2A+
2 B

−1
4 B−

3 + λ−1µβ − µB+
2 A

−
3 − µB+

2 A4B
−1
4 B−

3

(STS−1)1,3 =− λB+
2 B

−1
4 + µA+

2 B
−1
4 +B+

2 A4B
−1
4

(STS−1)3,2 =λ
−1µB3 + µB−1

4 A−
3 − µB4A4B

−1
4 B−

3

(STS−1)3,3 =B4A4B
−1
4

In particular, if |λ| 6= 1, by choosing µ = 1, B4 = Id , there exists B−
3 such that

A−
3 + (λ−1 − A4)(B

−
3 ) = 0 .

Then, using the relations (i) and (ii), one can see that T is conjugate to


λ 0 0
0 λ−1 0
0 0 A4


 .

and is hence hyperbolic; conversely, one can show that if |λ| 6= 1, T is hyperbolic.
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