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THOM PROSPECTRA FOR LOOPGROUP REPRESENTATIONS

NITU KITCHLOO AND JACK MORAVA

Abstract. This is very much an account of work in progress. We sketch
the construction of an Atiyah dual (in the category of T-spaces) for the free
loopspace of a manifold; the main technical tool is a kind of Tits building for
loop groups, discussed in detail in an appendix. Together with a new local-
ization theorem for T-equivariant K-theory, this yields a construction of the
elliptic genus in the string topology framework of Chas-Sullivan, Cohen-Jones,
Dwyer, Klein, and others. We also show how the Tits building can be used to
construct the dualizing spectrum of the loop group. Using a tentative notion
of equivariant K-theory for loop groups, we relate the equivariant K-theory of
the dualizing spectrum to recent work of Freed, Hopkins and Teleman.

Introduction

If P → M is a principal bundle with structure group G then LP → LM is a
principal bundle with structure group

LG = Maps(S1, G),

and if the tangent bundle of M is defined by a representation V of G then the
tangent bundle of LM is defined by the representation LV of LG. The circle group
T acts on all these spaces.

This is a report on the beginnings of a theory of differential topology for such
objects. Note that if we want the structure group LG to be connected, we need G
to be 1-connected; thus SU(n) is preferable to U(n). This helps explain why Calabi-
Yau manifolds are so central in string theory, and this note is written assuming this
simplifying hypothesis.

Alternately, we could work over the universal cover of LM ; then π2(M) would act
on everything by decktranslations, and our topological invariants become modules
over the Novikov ring Z[H2(M)]. From the point of view we’re developing, these
translations seem to be what really underlies modularity, but this issue, like several
others, will be backgrounded here.

The circle action on the free loopspace defines a structure much closer to classi-
cal differential geometry than one finds on more general (eg) Hilbert manifolds;
this action defines something like a Fourier filtration on the tangent space of this
infinite-dimensional manifold, which is in some sense locally finite. This leads to
a host of new kinds of geometric invariants, such as the Witten genus; but this
filtration is unfamiliar, and has been difficult to work with [17]. The main concep-
tual result of this note [which was motivated by ideas of Cohen, Godin, and Segal]
is the definition of a canonical equivariant ‘thickening’ of a free loopspace, where
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2 NITU KITCHLOO AND JACK MORAVA

the pulled-back tangent bundle admits a canonical filtration by finite-dimensional
equivariant bundles. This thickening involves a contractible LG-space called the
affine Tits building A(LG). This space occurs under various guises in nature: it
is a homotopy colimit of homogeneous spaces with respect to a finite collection of
compact Lie subgroups of LG. It is also the affine space of principal G-connections
on the trivial bundle over S1. We explore its structure in the appendix.

In the first section below, we recall why the Spanier-Whitehead dual of a finite CW-
space is a ring-spectrum, and sketch the construction (due to Milnor and Spanier,
and Atiyah) of a model for that dual, when the space is a smooth compact manifold.
Our goal is to produce an analog of this construction for a free loopspace, which
captures as much as possible of its string-topological algebraic structure. In the
second section, we introduce the technology used in our construction: pro-spectra
associated to filtered infinite-dimensional vector bundles, and the topological Tits
building which leads to the construction of such a filtration for the tangent bundle.

In §3 we observe that recent work of Freed, Hopkins, and Teleman on the Verlinde
algebra can be reformulated as a conjectural duality between LG-equivariant K-
theory of a certain dualizing spectrum for LG constructed from its Tits building,
and positive-energy representations of LG. In §4 we use a new strong localization
theorem to study the equivariant K-theory of our construction, and we show how
this recovers the Witten genus from a string-topological point of view.

We plan to discuss actions of various string-topological operads [15] on our con-
struction in a later paper; that work is in progress.

We would like to thank R. Cohen, V. Godin, and A. Stacey for many helpful
conversations, and we would also like to acknowledge work of G. Segal and S.
Mitchell as motivation for many of the ideas in this paper.

1. The Atiyah dual of a manifold

If X is a finite complex, then the function spectrum F (X,S0) is a ring-spectrum
(because S0 is). If X is a manifold M , Spanier-Whitehead duality says that

F (M+, S
0) ∼ M−TM .

If E → X is a vector bundle over a compact space, we can define its Thom space
to be the one-point compactification

XE := E+ .

There is always a vector bundle E⊥ over X such that

E ⊕ E⊥
∼= 1N

is trivial, and following Atiyah, we write

X−E := S−NXE⊥ .

With this notation, the Thom collapse map for an embedding M ⊂ RN is a map

SN = RN
+ → Mν = SN M−TM ,
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and the midpoint construction

M+ ∧Mν → RN
+ = SN

defines the equivalence with the functional dual. More generally, a smooth map
f : M → N of compact closed orientable manifolds has a Pontrjagin-Thom dual
map

fPT : N−TN → M−TM

of spectra; in particular, the map S0 → M−TM dual to the projection to a point
defines a kind of fundamental class, and the dual to the diagonal of M makes
M−TM into a ring-spectrum [13].

Prospectus: Chas and Sullivan [10] have constructed a very interesting product
on the homology of a free loopspace, suitably desuspended, motivated by string
theory. Cohen and Jones [15] saw that this product comes from a ring-spectrum
structure on

LM−TM := LM−e∗TM

where
e : LM → M

is the evaluation map at 1 ∈ S1. Unfortunately this evaluation map is not T-
equivariant, so the Chas-Sullivan Cohen-Jones spectrum is not in general a T-
spectrum. The full Atiyah dual constructed below promises to capture some of
this equivariant structure. The Chas-Sullivan Cohen-Johes spectrum and the full
Atiyah dual live in rather different worlds: our prospectrum is an equivariant object,
whose multiplicative properties are not year clear, while the CSCJ spectrum has
good multiplicative properties, but it is not a T-spectrum. In some vague sense
our object resembles a kind of center for the Chas-Sullivan-Cohen-Jones spectrum,
and we hope that a better understanding of the relation between open and closed
strings will make it possible to say something more explict about this.

2. Problems & Solutions

For our constructions, we need two pieces of technology:

Cohen, Jones, and Segal [16](appendix) associate to a filtration

E : · · · ⊂ Ei ⊂ Ei+1 ⊂ . . .

of an infinite-dimensional vector bundle over X , a pro-object

X−E : · · · → X−Ei+1 → X−Ei → . . .

in the category of spectra. [A rigid model for such an object can be constructed
by taking E to be a bundle of Hilbert spaces, which are trivializable by Kuiper’s
theorem. Choose a trivialization E ∼= H ×X and an exhaustive filtration {Hk} of
H by finite-dimensional vector spaces; then we can define

X−Ei = limS−HkXHk∩E⊥
i ,

with E⊥
i the orthogonal complement of Ei in the trivialized bundle E.] This pro-

object will, in general, depend on the choice of filtration. We will be interested in the
direct systems associated to such a pro-object by a cohomology theory; of course
in general the colimit of this system can be very different from the cohomology of
the limit of the system of pro-objects.
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Example 2.1. If X = CP∞, η is the Hopf bundle, and E is

∞η : · · · ⊂ (k − 1)η ⊂ kη ⊂ (k + 1)η ⊂ . . .

then the induced maps of cohomology groups are multiplication by the Euler classes
of the bundles Ei+1/Ei, so

H∗(CP−∞η
∞ ,Z) := colim{Z[t], t−mult} = Z[t, t−1] .

We would like to apply such a construction to the tangent bundle of a free loopspace.
Unfortunately, these tangent bundles do not, in general, possess any such nice
filtration by finite-dimensional (T-equivariant) subbundles [17]! However, such a
splitting does exist in a neighborhood of the constant loops:

M = LMT ⊂ LM

has normal bundle

ν(M ⊂ LM) = TM ⊗C (C[q, q−1]/C)

(at least, up to completions; and assuming things complex for convenience). Here
small perturbations of a constant loop are identified with their Fourier expansions

∑

n∈Z

anq
n,

with q = eiθ. The related fact, that TLM is defined by the representation LV of
LG looped up from the finite-dimensional representation V of G, will be important
below: for LV is not a positive-energy representation of LG.

The main step toward our resolution of this problem depends on the following result,
proved in §7 below. Such constructions were first studied by Quillen, and were
explored further by S. Mitchell [26]. The first author has studied these buildings
for a general Kac-Moody group [23]; most of the properties of the affine building
used below hold for this larger class.

Theorem 2.2. The topological affine Tits building

A(LG) := hocolimI LG/HI

of LG is T×̃LG-equivariantly contractible. In other words, given any compact

subgroup K ⊂ T×̃LG, the fixed point space A(LG)K is contractible.

[Here I runs over certain proper subsets of roots of G, and the HI are certain
compact ‘parabolic’ subgroups of LG (see §7.2).]

Remark 2.3. The group LG admits a universal central extension LG. The natural
action of the rotation group T on LG lifts to LG, and the T-action preserves the
subgroups HI . Hence A(LG) admits an action of T×̃LG, with the center acting
trivially. We can therefore express A(LG) as

A(LG) = hocolimI LG/HI

where HI is the induced central extension of HI .
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Other descriptions of A(LG)

This Tits building has other descriptions as well. For example:

1. A(LG) can be seen as the classifying space for proper actions with respect to
the class of compact Lie subgroups of T×̃LG.

2. It also admits a more differential-geometric description as the smooth infinite
dimensional manifold of holonomies on S1 × G (see Appendix): Let S denote the
subset of the space of smooth maps from R to G given by

S = {g(t) : R → G, g(0) = 1, g(t+ 1) = g(t) · g(1)} ;

then S is homeomorphic to A(LG). The action of h(t) ∈ LG on g(t) is given by
hg(t) = h(t) · g(t) · h(0)−1, where we identify the circle with R/Z. The action of
x ∈ R/Z = T is given by xg(t) = g(t+ x) · g(x)−1.

3. The description given above shows that A(LG) is equivalent to the affine space
A(S1 × G) of connections on the trivial G-bundle S1 × G. This identification
associates to the function f(t) ∈ S, the connection f ′(t)f(t)−1. Conversely, the
connection∇t on S1×G defines the function f(t) given by transporting the element
(0, 1) ∈ R ×G to the point (t, f(t)) ∈ R× G using the connection ∇t pulled back
to the trivial bundle R×G.

Remark 2.4. These equivalent descriptions have various useful consequences. For
example, the model given by the space S of holonomies says that given a finite
cyclic group H ⊂ T, the fixed point space SH is homeomorphic to S. Moreover,
this is a homeomorphism of LG-spaces, where we consider SH as an LG-space and
identify LG with LGH in the obvious way. Notice also that ST is G-homeomorphic
to the model of the adjoint representation of G defined by Hom(R, G).

Similarly, the map S → G given by evaluation at t = 1 is a principal ΩG bundle,
and the action of G = LG/ΩG on the base G is given by conjugation. This allows us
to relate our work to that of Freed, Hopkins and Teleman in the following section.

Finally, the description of A(LG) as the affine space A(S1 × G) implies that the
fixed point space A(LG)K is contractible for any compact subgroup K ⊆ T×̃LG.

If E → B is a principal bundle with structure group LG, then (motivated by ideas
of [14]) we construct a ‘thickening’ of B:

Definition 2.5. The thickening of B associated to the bundle E is the LG-space

B!(E) = E ×LG A(LG) = hocolimI E/HI .

We will omit E from the notation, when the defining bundle is clear from context.

Remark 2.6. If P → M is a principal G bundle, then LP → LM is a principal
LG bundle. In this case, the description above gives L!M := LM!(LP ) a smooth
structure:

L!M = {(γ, ω) | γ ∈ LM, ω ∈ A(γ∗(P ))}

where A(γ∗(P )) is the space of connections on the pullback bundle γ∗(P ).

Let T×̃LG be the extension of the central extension of LG by T acting as rota-
tions. On restriction to the subgroup T×̃HI , a unitary representation U of T×̃LG
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decomposes into a sum of finite dimensional representations. We want to construct
a Thom T×̃LG-prospectrum A(LG)−U .

We consider the decomposition of the restriction of U to T×̃HI as a sum of irre-
ducibles:

U |
T×̃HI

∼= ⊕ UI(α)

and let

UI(k) = ⊕ {UI(α) | dimUI(α) ≤ k} .

Then we can define S−U
I to be the Thom T×̃HI -prospectrum associated to the

filtered (equivariant) vector bundle

UI : · · · ⊂ UI(k) ⊂ UI(k + 1) ⊂ . . .

over a point. If I ⊂ J then HI maps naturally to HJ , and there is a corresponding
morphism

UJ → UI

of filtered vector bundles, given by inclusions UJ(k) → UI(k).

Definition 2.7. We define A(LG)−U to be the T×̃LG-prospectrum

A(LG)−U = hocolimI LG+ ∧HI
S−U
I ,

where LG+ denotes LG, with a disjoint basepoint.

Homotopy colimits in the category of prospectra can be defined in general, using
the model category structure of [11].

Remark 2.8. Given any principal LG-bundle E → B, and a representation U
of LG, we define the Thom prospectrum of the virtual bundle associated to the
representation −U to be

B−U
! = E+ ∧LG A(LG)−U = hocolimI E+ ∧HI

S−U
I .

In particular, if P is the refinement of the frame bundle of M via a representation
V of G, then the tangent bundle of LM is defined by the representation LV of LG.

Definition 2.9. The Atiyah dual LM−TLM of LM is the pro-spectrum L!M
−LV .

We will explore this object further in §6.

3. The dualizing spectrum of LG

The dualizing spectrum of a topological group K is defined [24] as the K-homotopy
fixed point spectrum:

DK = KhK
+ = F (EK+,K+)

K

where K+ is the suspension spectrum of the space K+, endowed with a right K-
action. The dualizing spectrum DK admits a K-action given by the residual left
K-action on K+. If K is a compact Lie group, then it is known that DK is the one
point compactification of the adjoint representation SAd(K). It is also known that
there is a K ×K-equivariant homotopy equivalence

K+
∼= F (K+, DK) .
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It follows from the compactness of K+ that for any free K+-spectrum E, we have
the K-equivariant homotopy equivalence

E ∼= F (K+, E ∧K+
DK) .

It is our plan to understand the dualizing spectrum for the (central extension of
the) loop group.

Theorem 3.1. There is an equivalence

DLG
∼= holimI LG+ ∧HI

SAd(HI)

of left LG-spectra.

Proof. We have the sequence of equivalences:

DLG = F (ELG+, LG+)
LG ∼= F (ELG+ ∧A(LG)+, LG+)

LG .

The final space may be written as

holimI F (ELG+ ∧HI
LG+, LG+)

LG = holimI F (ELG+, LG+)
HI .

Now recall the equivalence of HI ×HI -spectra:

(1) LG+
∼= F (HI+, LG+ ∧HI

DHI
) .

Taking HI -homotopy fixed points implies a left HI -equivalence

F (ELG+, LG+)
HI = (LG+)

hHI ∼= LG+ ∧HI
SAd(HI) ;

where we have used equation (1) at the end. Replacing this term into the homotopy
limit completes the proof. �

Similarly, we have:

Theorem 3.2. There is an equivalence

DLG
∼= holimI LG+ ∧HI

SAd(HI)

of left LG-spectra.

Remark 3.3. The diagram underlying DLG or DLG can be constructed in the cat-
egory of spaces. Given an inclusion I ⊆ J , the orbit of a suitable element in Ad(HJ )
gives an embedding HJ/HI ⊂ Ad(HJ ), and the Pontrjagin-Thom construction for
this embedding defines an HJ -equivariant map

SAd(HJ ) −→ HJ+ ∧HI
SAd(HI)

which extends to the map

LG+ ∧HJ
SAd(HJ ) −→ LG+ ∧HI

SAd(HI)

required for the diagram. Moreover, composites of these maps can be made com-
patible up to homotopy.
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A conjectural relationship with the work of Freed, Hopkins and

Teleman

The discussion below assumes the existence of a hypothetical LG-equivariant K-
theory, whose value on a point in degree zero is the Grothendieck group of positive
energy representations (or equivalently, the group of characters of integrable repre-
sentations). The symmetric monoidal category whose objects are finite direct sums
of irreducible positive energy representations, and whose morphism spaces consist
of the (nonequivariant) isomorphisms of the vector spaces underlying the represen-
tation (given the compactly generated topology) defines a candidate for a spectrum
representing such a functor: this is a topological category with an LG-action which
respects the symmetric monoidal structure.

This hypothesis provides us with a convenient language. We expect to return to
the underlying technical issues in a later paper.

The center of LG acts trivially on DLG, defining a second grading on K∗
LG(DLG);

we will use a formal variable z to keep track of the grading, so

K∗
LG(DLG) =

⊕

n

K∗,n
LG (DLG)z

n.

The spectral sequence for the cohomology of a cosimplicial space, in the case of
K∗

LG(DLG), has

Ei,j
2 = colimi

I Kj
HI
(SAd(HI)) .

This spectral sequence respects the second grading given by powers of z. In a sequel
to this paper, we will show that this spectral sequence collapses to give

K∗
LG(DLG) = colimI K∗

HI
(SAd(HI)) ∼= colimI K∗−r−1

HI
(pt) ,

where r is the rank of G. Therefore, this group admits a natural Thom class given
the system {S(Ad(HI))} of spinor bundles for the adjoint representations of the
parabolics HI . In section 11 of [19], the authors construct an explicit map between
the Verlinde algebra and this colimit, as follows:

To a positive energy representation corresponding to a dominant character λ, we
associate the LG-equivariant bundle given by L−λ−ρ ⊗ S(N), where L−λ−ρ is the
canonical line bundle over the coadjoint orbit of the regular element λ + ρ, and
S(N) is the spinor bundle of the normal bundle to the coadjoint orbit. Such an
orbit is of the form LG/H for some parabolic subgroup H, and its normal bundle
is Ad(H), so this element defines a class in KLG(DLG). The same can be done for
antidominant weights. This suggests the following:

Conjecture 3.4. For following map is an isomorphism in homogeneous degree zn,
for n 6= 0:
⊕

k≥0

Vkz
k+h

⊕

k≥0

Vkz
−(k+h) ∼= colimI KHI

(pt) → Kr+1
LG (DLG) =

⊕

n

K∗,n
LG (DLG)z

n

where Vk is the Verlinde algebra of level k, h is the dual Coxeter number of G, and
r is its rank.

Example 3.5. To illustrate this in an example, consider the case G = SU(2). In
this case r = 1, h(G) = 2. Here the groups HI are given by

H0 = SU(2)× S1, H1 = S1 × SU(2), H0 ∩H1 = T = S1 × S1 .
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The respective representation rings may be identified by restriction with subalgebras
of KT (pt) = Z[u±1, z±1] :

KH0
(pt) = Z[u+ u−1, (z/u)±1], KH1

(pt) = Z[z±1, u+ u−1] .

Now consider the two pushforward maps involved in the colimit:

ϕ0 : KT (pt) → KH0
(pt), ϕ1 : KT (pt) → KH1

(pt)

A quick calculation shows that for k > 0, we have

ϕj(z
k) =

{

(z/u)kSymk(u+ u−1), j = 0

zk, j = 1

ϕj(z
ku−1) =

{

(z/u)kSymk−1(u + u−1), j = 0

0, j = 1 ,

where Symk(V ) denotes the k-th symmetric power of the representation V , e.g.
Symk(u+ u−1) = uk + · · ·+ u−k.

We also have a similar formula for negative exponents:

ϕj(z
−k) =

{

−(u/z)kSymk−2(u+ u−1), j = 0

z−k, j = 1

ϕj(z
−ku−1) =

{

−(u/z)kSymk−1(u + u−1), j = 0

0, j = 1 .

The colimit is the cokernel of

ϕ1 ⊕ ϕ0 : KT (pt) −→ KH1
(pt)⊕KH0

(pt)

Now consider the decomposition

Z[u±1, z±1] = Z[u+ u−1, z±1]⊕ u−1Z[u+ u−1, z±1] .

It is easy to check from this that the cokernel for nontrivial powers of z is isomorphic
to the cokernel of ϕ0 restricted to u−1Z[u+ u−1, z±1] and hence is

⊕

k≥0

Z[u+ u−1]

〈Symk+1(u+ u−1)〉
(z/u)k+2

⊕

k≥0

Z[u+ u−1]

〈Symk+1(u+ u−1)〉
(u/z)k+2

which agrees with the classical result [18].

Remark 3.6. We can calculate the equivariant K-homology KLG∗(A(LG)) using
the same spectral sequence. This establishes an isomorphism between K∗

LG(DLG)
and KLG∗(A(LG)). Results of [19] suggest that the latter group calculates the
Verlinde algebra, which is yet another motivation for the conjecture. Recall also
that A(LG) is the classifying space for proper actions (i.e. with compact isotropy)
so our conjecture is a topological analog of the Baum-Connes conjecture for finite
groups [7]

Question. Given a manifold LM , with frame bundle LP , we can construct a
spectrum

DLM := holimI LP+ ∧HI
SAd(HI)

It would be very interesting to understand something about KT(DLM ).
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4. Localization Theorems

If E is a T-equivariant complex-oriented multiplicative cohomology theory, and X is
a T-space, we have contravariant (j∗) and covariant (j!) homomorphisms associated
to the fixedpoint inclusion

j : XT ⊂ X ,

satisfying

j∗j!(x) = x · eT(ν) ;

if the Euler class of the normal bundle ν is invertible, this leads to a close relation
between the cohomology of X and XT.

More generally, if f : M → N is an equivariant map, then its Pontrjagin-Thom
transfer is related to the analogous transfer defined by its restriction

fT : MT → NT

to the fixedpoint spaces, by a ‘clean intersection’ formula:

j∗N ◦ f !(−) = fT!(j∗M (−) · eT(ν(f)|MT)) .

Definition 4.1. The fixed-point orientation defined by the Thom class

Th†(ν(fT)) = Th(ν(fT)) · eT(ν(f)|MT

for the normal bundle of the inclusion of fixed-point spaces is the product of the usual

Thom class with the equivariant Euler class of the full normal bundle restricted to

the fixed-point space.

Since fT!(−) = fT∗
PT (− · Th(ν(fT))), in this new notation the clean intersection

formula becomes

j∗N ◦ f ! = fT† ◦ j∗M
with a new Pontrjagin-Thom transfer

fT†(−) = fT∗
PT (− · Th†(ν(fT))) .

In the case of most interest to us (free loopspaces), we identified the normal bundle
above, in §2; using that description, we have

eT(ν(M ⊂ LM)) =
∏

06=k∈Z;i

(e(Li) +E [k](q)),

where the Li are the line bundles in a formal decomposition of TM , q is the Euler
class of the standard one-dimensional complex representation of T, and +E is the
sum with respect to the formal group law defined by the orientation of E. It may
not be immediately obvious, but it turns out that such a formula implies that the
fixed-point orientation defined above will have good multiplicative properties.

Such Weierstrass products sometimes behave better when ‘renormalized’, by divid-
ing by their values on constant bundles [2]. If E is KT with the usual complex
(Todd) orientation, we have

e(L) +K [k](q) = 1− qkL ;

but for our purposes things turn out better with the Atiyah-Bott-Shapiro spin
orientation; in that case the corresponding Euler class is

(qkL)1/2 − (qkL)−1/2 .
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The square roots make sense under the simple-connectivity assumptions on G men-
tioned in the introduction:

To be precise, let V be a representation of LG with an intertwining action of T. We
restrict ourselves to representations V which (for lack of a better name [?]) we call
symmetric, i.e. such that V is equivalent to the representation of LG obtained by
composing V with the involution of LG which reverses the orientation of the loops.
The restriction of the representation V to the constant loops T × G ⊂ T×̃LG has
a decomposition

V = V T ⊕
∑

k 6=0

Vk qk

where Vk are representations of G, and q denotes the fundamental representation
of T. Let V (m) be the finite dimensional subrepresentation

V (m) = V T ⊕
∑

0<|k|≤m

Vk qk ;

the symmetry assumption implies that Vk = V−k as representations of G, so this
can be rewritten

V (m) = V T ⊕
∑

0<k≤m

Vk (qk ⊕ q−k) .

At this point we need the following

Proposition 4.2. If G is a compact Lie group, and W is an m-dimensional complex

spin representation of G, then the representation W̃ = W ⊗ (qk ⊕ q−k) of T × G
admits a canonical spin structure.

Proof. The representation qk ⊕ q−k of T admits a unique spin structure. Since W
is also endowed with a spin structure, the representation W ⊗ (qk ⊕ q−k) admits a
canonical spin structure defined by their tensor product. �

Remark 4.3. If G is simply connected, then any representation W of G admits a

unique spin structure.

This justifies the square roots of the formal line bundles appearing in the restriction
of TLM to M . The resulting renormalized Euler class

∏

k 6=0

(qkL)1/2 − (qkL)−1/2

qk/2 − q−k/2

is a product of terms of the form

(1− qkL)(−qkL)−1/2(q−kL)1/2(1− qkL−1)

divided by terms of the form

(1− qk)(−qk)−1/2(q−k)1/2(1− qk) ,

(where now all k’s are positive) yielding a unit

ǫT(L) =
∏

k≥1

(1 − qkL)(1− qkL−1)

(1− qk)2

in the ring Z[L±][[q]].
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Following 4.1, we can reformulate the localization theorem in terms of a new orien-
tation, obtained by multiplying the ABS Thom class by this unit, to get precisely
the Mazur-Tate normalization

σ(L, q) = (L1/2 − L−1/2)
∏

k≥1

(1− qkL)(1− qkL−1)

(1− qk)2

for the Weierstrass sigma-function as Thom class for a line bundle L. This extends
by the splitting principle to define the orientation giving the Witten genus [32].

5. One moral of the story

Since the early 80’s physicists have been trying to interpret

M 7→ KT(LM)

as a kind of elliptic cohomology theory; but of course we know better, because we
know that mapping-space constructions (such as free loop spaces) don’t preserve
cofibrations.

Now it is an easy exercise in commutative algebra to prove that

Z((q)) := Z[[q]][q−1]

is flat over

KT = Z[q±] ,

for the completion of a Noetherian ring, eg Z[q], at an ideal, eg (q), defines a flat
[6](§10.14) Z[q]-algebra Z[[q]]. Flat modules pull back to flat modules [8] (Ch I
§2.7), so it follows that Z((q)) is flat over the localization

Z[q±] := Z[q][q−1] = Z[q, q−1] .

The Weierstrass product above is a genuine formal power series in q, so for questions
involving the Witten genus it is formally easier to work with the functor defined on
finite T-CW spaces by

X 7→ K∗
T(X)⊗Z[q±] Z((q)) := K∗

T̂
(X) .

This takes cofibrations to long exact sequence of Z((q))-modules. Its real virtue,
however, is that it satisfies a strong localization theorem:

Theorem 5.1. If X is a finite T-CW space, then restriction to the fixedpoints

defines an isomorphism

j∗ : K
T̂
(X) ∼= K

T̂
(XT) .

Proof, by skeletal induction; based on the

Lemma 5.2. If C ⊂ T is a proper closed subgroup, then

K∗
T̂
(T/C) = 0 .
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Proof. If C is cyclic of order n 6= 1, then

K
T̂
(T/C) = KT(T/C)⊗Z[q±] Z((q)) = Z[q]/(qn − 1)⊗Z[q] Z((q))

is zero, since

−1 = (qn − 1) ·
∑

k≥0

qnk = 0 .

On the other hand, if C = {0}, then

K
T̂
(T ) = Z⊗Z[q] Z((q)) ,

with Z a Z[q]-module via the specialization q → 1; but by a similar argument, the
resulting tensor product again vanishes. �

The functor K∗
T̂
extends to an equivariant cohomology theory on the category of

T-CW spaces, which sends a general (large) object X to the pro-Z((q))-module

{K∗
T̂
(Xi) | Xi ∈ finite T− CW ⊂ X} ,

[5] (appendix). We can thus extend the claim above:

Corollary 5.3. For a general T-CW-space X, the restriction-to-fixedpoints map

K∗
T̂
(X) → K∗

T̂
(XT)

is an isomorphism of pro-objects. Moreover, if the fixedpoint space XT is a finite

CW-space, then the pro-object on the left is isomorphic to the constant pro-object

on the right.

The free loopspace LX of a CW-space X is weakly T-homotopy equivalent to a
T-CW-space, by a map which preserves the fixed-point structure [25] (§1.1).

Theorem 5.4.
M 7→ K

T̂
(LM) := KTate(M)

is a cohomology theory, after all!

Remark 5.5. This seems to be what the physicists have been trying to tell us
all along: they probably thought (as the senior author did [27]) that the formal
completion was a minor technical matter, not worth making any particular fuss
about. Of course our construction is a completion of a much smaller (elliptic)
cohomology theory, whose coefficients are modular forms, with the completion map
corresponding to the q-expansion. The geometry underlying modularity is still [9]
quite mysterious.

Remark 5.6. A cohomology theory defined on finite spectra extends to a coho-
mology theory on all spectra [1]; moreover, any two extensions are equivalent, and
the equivalence is unique up to phantom maps. For the case at hand, it is clear
that this cohomology theory is equivalent to the formal extension K((q)), where K
is complex K-theory, with q a parameter in degree zero. Hovey and Strickland [20]
have shown that an evenly graded spectrum does not support phantom maps, so
our cohomology theory is uniquely equivalent, as a homotopy functor, to K((q)).

However, there is more to our construction than a simple homotopy functor: it
comes with a natural (fixed-point) orientation, which defines a systematic theory
of Thom isomorphisms. In the terminology of [4], it is represented by an elliptic
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spectrum, associated to the Tate curve over Z((q)); its natural orientation is defined
by the σ-function of §4.

Remark 5.7. Let HT denote T-equivariant singular Borel cohomology with ratio-
nal coefficients; then H∗

T
(pt) = Q[t], where t has degree two. We have a localization

theorem
H∗

T(X)[t−1] = H∗
T(X

T)[t−1] = H∗(XT)⊗Q[t±]

for finite complexes, and can therefore play the same game as before, and observe
that there is a unique extension ĤT(−) of HT(−)[t−1] to all T-spectra, with a
localization theorem valid for an arbitrary T-spectrum X :

Ĥ∗
T(X) = Ĥ∗

T(X
T) .

Jones and Petrack [21] have constructed such a theory over the real numbers, to-
gether with the analogous fixedpoint orientation - which in their case is (a rational

version of) the Â-genus.

Results of this sort (which relate oriented equivariant cohomology theories on free
loopspaces to cohomology theories on the fixedpoints, with related (but distinct)
formal groups, is part of an emerging understanding of what homotopy theorists
call ‘chromatic redshift’ phenomena, cf. [2, 3, 31].

Remark 5.8. Our completion of equivariant K-theory is the natural repository for
characters of positive-energy representations of loop groups; it is not preserved
by the orientation-reversing involution λ 7→ λ−1 of T. It is in some sense a chiral
completion.

Remark 5.9. The completion theorem above is a specialization of Segal’s original
localization theorem [29], which says that KT(X), considered as a sheaf over the
multiplicative groupscheme Spec KT = Gm (cf. [28]), has for its stalks over generic
(ie nontorsion) points, the K-theory of the fixed point space. The Tate point

Spec Z((q)) → Spec Z[q±]

is an example of such a generic point, perhaps too close to zero (or infinity) to have
received the attention it seems to deserve.

In fact, we can play a similar game for any oriented theory ET. Let E denote the
union of the one-point compactifications of all representations of T which do not
contain the trivial representation (cf. [25]). Then the theory ET ∧ E satisfies a
strong localization theorem.

6. Toward Pontrjagin-Thom duality

One might hope for a construction which associates to a map f : M → N of
manifolds (with suitable properties), a morphism

LfPT : LN−TLN → LM−TLM

of prospectra. This seems out of reach at the moment, but some of the constructions
sketched above can be interpreted as partial results in this direction.

In particular, there is at least a cohomological candidate for a PT dual

jPT : LM−TLM → M−TM
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to the fixedpoint inclusion j : M ⊂ LM . To describe it, we should first observe
that there is a morphism

M−TLM → L!M
−TLM

of prospectra, constructed by pulling back the tangent bundle of LM along the
fixedpoint inclusion. To be more precise we need to note that the T-fixedpoints of
the thickened loopspace is a bundle L!M

T → M with contractible fiber; the choice
of a section defines a composition

j̃ : M−TLM ∼ ((L!M)T)−TLM → L!M
−TLM ;

of course M−TLM = (M−TM )−ν , where ν = TM ⊗ (C[q±]/C) is the normal bundle
described in §2.

Now according to the localization theorem above, the map induced on K
T̂
by j̃ is

an isomorphism, so it makes sense to define

j! := (j̃∗)−1 ◦ φ−1
ν : K

T̂
(M−TM ) → K

T̂
(M−TM−ν) → K

T̂
(LM−TLM ) ,

where φν is the Thom pro-isomorphism associated to the filtered vector bundle ν.

A good general theory of PT duals would provide us with a commutative diagram

LN−TLN LfPT

−−−−→ LM−TLM





y
jPT
N





y
jPT
M

N−TN fPT

−−−−→ M−TM ,

so it follows from the constructions above that

Lf ! := j!N ◦ f ! ◦ (j!M )−1

defines a formally consistent theory of PT duals for K
T̂
.

For example, (the evaluation at 1 of) the composition

KTate(M) = K
T̂
(LM) ∼= K

T̂
(LM−TLM) → K

T̂
(M−TM ) → KT(S

0) ∼= KTate(pt)

is (the q-expansion of) the Witten genus; more generally, our ad hoc construction
Lf ! for K

T̂
agrees with the covariant construction f † defined for the underlying

manifold by the fixedpoint (or σ) orientation.

The uncompleted K-theory KT(LM
−TLM) is also accessible, through the spectral

sequence of a colimit, but our understanding of it is at an early stage. It is of course
not a cohomological functor of M , but it does not seem unreasonable to hope that
some of its aspects may be within reach through similar PT-like constructions.

These fragmentary constructions suffice to show that K
T̂
(LM−TLM) has enough

of a Frobenius (or ambialgebra) structure to define a two-dimensional topological
field theory, which assigns to a closed surface of genus g, the class

π† ǫT(TM)g ∈ Z((q)) ,

with ǫT the characteristic class defined in §4, and π† the pushforward of M to a
point defined by the fixed-point (σ) orientation. When g = 0 this is the Witten
genus of M , and when g = 1 it is the Euler characteristic.
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Finally: our construction is, from its beginnings onward, formulated in terms of
closed strings. Stolz and Teichner [30] have produced a deeper approach to a
theory of elliptic objects, which promises to incorporate interesting aspects of open
strings as well. However, their theory is in some ways quite complicated; and our
hope is that their global theory, combined with the quite striking computational
simplicity of the very local theory sketched here, will lead to something really
interesting.

7. Appendix: The Tits Building of a loop group

Let G be a simply-connected compact Lie group of rank n. Let LG denote the
loop group of G. For the sake of convenience, we will work with a smaller (but
equivalent) model for LG, which we now describe:

Let GC be the complexification of the group G. Since GC has the structure of a
complex affine variety, we may define the group LalgGC to be the group of poly-
nomial maps from C∗ to GC. Let LalgG be the subgroup of LalgGC consisting of
maps taking the unit circle into G ⊂ GC. The inclusion LalgG ⊂ LG is a homotopy
equivalence in the category of T-spaces. We begin by making our constructions with
LalgG. We then use these to draw conclusions about the (smooth) Tits building
A(LG)

Fix a maximal torus T of G, and let αi, 1 ≤ i ≤ n be a set of simple roots. We
let α0 denote the highest root. Each root αi, 0 ≤ i ≤ n determines a compact
subgroup Gi of G. More explicitly, Gi is the semisimple factor in the centralizer of
the codimension one subtorus given by the kernel of αi. EachGi may be canonically
identified with SU(2) via an injective map

ϕi : SU(2) −→ G .

We use these groups Gi to define corresponding compact subgroups Gi of LalgG as
follows:

Gi = {z 7→ ϕi

(

a b
c d

)

} if

(

a b
c d

)

∈ SU(2), i > 0

G0 = {z 7→ ϕ0

(

a bz
cz−1 d

)

} if

(

a b
c d

)

∈ SU(2),

Remark 7.1. Note that each Gi is a compact subgroup of LalgG isomorphic to
SU(2). Moreover, Gi belongs to the subgroup G of constant loops if i ≥ 1. The
circle group T preserves each Gi, acting trivially on Gi for i ≥ 1, and nontrivially
on G0.

Definition 7.2. For any proper subset I ⊂ {0, 1, . . . , n}, define the parabolic sub-

group HI ⊂ LalgG to be the group generated by T and the groups Gi, i ∈ I. For

the empty set, we define HI to be T . It follows from 7.1 that each HI is preserved

under the action of T.

Remark 7.3. The groups HI are compact Lie [26]. Moreover, HI is isomorphic
to its image in G, under the evaluation map ev(1) : LalgG → G. Notice that for
I = {1, . . . , n}, HI = G. Notice also that T acts nontrivially on HI if and only if
0 ∈ I.
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We are now ready to define the Tits building A(LalgG).

Definition 7.4. Let A(LalgG) be the homotopy colimit:

A(LalgG) = hocolimI∈C LalgG/HI

where C denotes the poset category of proper subsets of {0, 1, . . . , n}.

We now come to the main theorem:

Theorem 7.5. The space A(LalgG) is T×̃LalgG-equivariantly contractible. In

other words, given a compact subgroup K ⊂ T×̃LalgG, then the fixed point space

A(LalgG)K is contractible.

Proof. A proof of the contractibility of A(LalgG) was given in [26]. We use some
of the ideas from that paper, but our proof is different in flavour.

Mitchell expresses the space A(LalgG) as the following:

A(LalgG) = (LalgG/T ×∆)/ ∼

where ∆ is the n-simplex, and (aT, x) ∼ (bT, y) if and only if x = y ∈
◦

∆I and
aHI = bHI . Here we have indexed the walls of ∆ by the category C, and denoted

the interior of ∆I by
◦

∆I .

Let LalgG ⊕Rd be the Lie algebra of the extended loop group T×̃LalgG. Consider
the affine subspace

A = LalgG + d ⊂ LalgG ⊕ Rd .

The adjoint action of LalgG on A is given by

Adf(z)(λ(z) + d) = Adf(z)(λ(z)) + zf ′(z)f(z)−1 + d

This action extends to an affine action of T×̃LalgG. The identification of A with
A(LalgG) is given as follows. Let ∆ be identified with the affine alcove:

∆ = {(h+ d) ∈ Lie(T ) + d | αi(h) ≥ 0, i > 0, α0(h) ≤ 1} .

General facts about Loop groups [22, 26] show that the surjective map

LalgG×∆ −→ A, (f(z), y) 7→ Adf(z)(y)

has isotropyHI on the subspace ∆I . Hence it factors through a T×̃LalgG-equivariant
homeomorphism between A(LalgG) and the affine space A. Notice that any com-
pact subgroup K ⊂ T×̃LalgG admits a fixed point on A(LalgG). Hence, the space
A(LalgG)K is also affine. This completes the proof. �

We now define the smooth Tits building

Definition 7.6. Let A(LG) be the homotopy colimit:

A(LG) = hocolimI∈C LG/HI = LG×LalgG A(LalgG) .

It is clear from the proof of the above theorem, that A(LG) is T×̃LG-equivariantly
homeomorphic to the affine space LG×LalgGA which is homeomorphic to the affine

space A(S1 ×G) of connections on the trivial bundle S1 ×G. This shows that:

Theorem 7.7. The smooth Tits building A(LG) is T×̃LG-equivariantly contractible.
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Recall [26] that A(LalgG) is homeomorphic to the space

Salg = {g(t) : [0, 1] → G | g(t) = f(e2πit) · exp(tX); f(z) ∈ ΩalgG,X ∈ Lie(G)}

We have a corresponding smooth version

S = {g(t) : [0, 1] → G | g(t) = f(e2πit) · exp(tX); f(z) ∈ ΩG} = LG×LalgG Salg

which is clearly homeomorphic to A(LG). It remains to identify S with the space

S = {g(t) : R → G, g(0) = 1, g(t+ 1) = g(t) · g(1)} ;

This is straightforward, and is left to the reader.



THOM PROSPECTRA FOR LOOPGROUP REPRESENTATIONS 19

References

1. F. Adams, A variant of E.H. Brown’s representability theorem, Topology, Vol. 10 (1971)
185-198.

2. M. Ando, J. Morava, A Renormalized Riemann-Roch formula and the Thom isomorphism for
the free loopspace, in the Milgram Festschrift, Contemp. Math. 279 (2001)

3. ——, ——–, H. Sadofsky, Completions of Z/(p)-Tate cohomology of periodic spectra, Geom-
etry & Topology 2 (1998) 145 - 174

4. —–, M. Hopkins, N. Strickland, Elliptic spectra, the Witten genus and the theorem of the
cube, Inv. Math. 146 (2001) 595 - 687

5. M. Artin, B. Mazur Etale homotopy, Springer LNM 100 (1969)
6. M. Atiyah, I. MacDonald, Commutative Algebra

7. P. Baum, A. Connes, and N. Higson. Classifying space for proper actions and K-theory of
group C∗-algebras, p. 240 - 291 in C∗

−algebras: 1943-1993, Contemporary Math 167, AMS
(1994)

8. N. Bourbaki, Algebre Commutatif

9. JL Brylinski, Representations of loop groups, Dirac operators on loop space, and modular
forms, Topology 29 (1990) 461 - 480

10. M. Chas, D. Sullivan, String topology, available at math.AT/9911159
11. J.D. Christensen, D.C. Isaksen, Duality and prospectra (in progress)
13. R. Cohen, Multiplicative properties of Atiyah duality, available at math.AT/0403486
14. ———, V. Godin, A polarized view of string topology, available at math.AT/0303003
15. ——–, J.D.S Jones, A homotopy-theoretic realization of string topology, available at

math.GT/0107187

16. ——–, ——–, G. Segal, Floer’s infinite-dimensional Morse theory and homotopy theory, in
The Floer memorial volume, Progr. Math 133, Birkhäuser (1995)
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