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GRADED LEFT MODULAR LATTICES ARE SUPERSOLVABLE

HUGH THOMAS

Abstract. We provide a direct proof that a finite graded lattice with a max-
imal chain of left modular elements is supersolvable. This result was first
established via a detour through EL-labellings in [MT] by combining results of
McNamara [Mc] and Liu [Li]. As part of our proof, we show that the maximum
graded quotient of the free product of a chain and a single-element lattice is
finite and distributive.

Supersolvability for lattices was introduced by Stanley [St]. A finite lattice is
supersolvable iff it has a maximal chain (called theM -chain) such that the sublattice
generated by the M -chain and any other chain is distributive.

We say an element x of a lattice is left modular if it satisfies:

(y ∨ x) ∧ z = y ∨ (x ∧ z)

for all y ≤ z. Following Blass and Sagan [BS], we say that a lattice is left modular
if it has a maximal chain of left modular elements. Stanley [St] showed that the
elements of the M -chain of a supersolvable lattice are left modular, and thus that
supersolvable lattices are left modular.

We say that a lattice is graded if, whenever x < y and there is a finite maximal
chain between x and y, all the maximal chains between x and y have the same
length. It is easy to check that supersolvable lattices are graded.

The main result of our paper is the converse of these two results:

Theorem 1. If L is a finite, graded, left modular lattice, then L is supersolvable.

This result was first proved in [MT], as an immediate consequence of results of
Liu and McNamara. Liu [Li] showed that if a finite lattice is graded of rank n and
left modular, then it has an EL-labelling of the edges of its Hasse diagram, such
that the labels which appear on any maximal chain are the numbers 1 through n in
some order. McNamara [Mc] showed that for graded lattices of rank n, having such
a labelling is equivalent to being supersolvable. These two results together immedi-
ately yield that finite graded left modular lattices are supersolvable. However, since
this proof involves considerations which seem to be extraneous to the character of
the result, it seemed worth giving a more direct and purely lattice-theoretic proof.

On the way to our main result, we introduce the notion of the maximum graded
quotient of a lattice. The maximum graded quotient need not exist, but if it exists,
it is unique. We calculate explicitly the maximum graded quotient of the free
product of the k + 1-element chain Ck with the single element lattice S and show
that it is finite and distributive.
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The Maximum Graded Quotient of a Lattice

When we refer to a quotient of a lattice, we mean a quotient with respect to a
lattice congruence, that is to say, a homomorphic image of the original lattice.

Let L be a lattice. Define an equivalence relation ∼ on L by setting x ∼ y
iff θ(x) = θ(y) for all lattice homomorphisms θ from L to a graded lattice. It is
straightforward to check that ∼ is a lattice congruence. We then define g(L) =
L/∼. By construction, g(L) is the maximum quotient through which every lattice
homomorphism to a graded lattice factors.

If g(L) is graded, then we call it the maximum graded quotient of L. Otherwise,
we say that L has no maximum graded quotient. The lattice shown in Figure 1 has
g(L) = L, and since g(L) is not graded, L has no maximum graded quotient.
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Figure 1

For x ∈ L, we will write [x] for the class of x in g(L). We write a � b to indicate
that either a ≺ b or a = b.

Lemma 1. If [x] � [y] � [z] (for instance, if x ≺ y ≺ z in L), and [x] ≤ [u] ≤
[v] ≤ [z], such that [u] ∨ [y] = [z] and [v] ∧ [y] = [x], then [u] = [v].

Proof. We consider separately graded quotients of g(L) where [y] is identified with
[x], where [y] is identified with [z], where [y] is not identified with either [x] or [z],
and where [x], [y], and [z] are all identified. We see that in all these cases, [u] and
[v] must be identified in the quotient. Since every lattice homomorphism from L
to a graded lattice factors through g(L), this implies that u and v are identified in
any graded quotient of L, and therefore [u] = [v]. �

The Maximum Graded Quotient of Ck ∗ S

Let Ck denote the chain of length k, with elements x0 ≺ . . . ≺ xk. Let S denote
the one element lattice, with a single element y.

Lemma 2. The free product Ck ∗ S is a disjoint union of elements lying above x0
and elements lying below y.

Proof. This is an immediate application of the Splitting Theorem [Gr, Theorem
VI.1.11], which says that the free product of two lattices A and B is the disjoint
union of the dual ideal generated by A and the ideal generated by B. �

We shall now proceed to consider these two subsets of Ck ∗ S in more detail.

Lemma 3. The elements of Ck ∗ S lying below y are exactly y and y ∧ xi for
0 ≤ i ≤ k.

Proof. For f ∈ Ck ∗S, write f
(x) for the smallest element of the Ck which lies above

f . If there is no such element, set f (x) = 1̂. We now claim that f ∧ y = f (x) ∧ y.
By definition, f (x) ≥ f , so f (x) ∧ y ≥ f ∧ y. We prove the other inequality by

induction on the rank of a polynomial expression for f . The statement is clearly
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true for rank 1 polynomials. If the rank of f is greater than 1, it can be written as
either g∧h or g∨h, for g and h polynomials of lower rank. Suppose that f = g∧h.
Then f (x) = g(x) ∧ h(x) [Gr, Theorem VI.1.10], so

f (x) ∧ y = g(x) ∧ h(x) ∧ y ≤ g ∧ h ∧ y = f ∧ y.

Alternatively, suppose that f = g ∨ h. Then f (x) = g(x) ∨ h(x) [Gr, Theorem

VI.1.10]. Since Ck ∪ {1̂} forms a chain, we may assume without loss of generality
that f (x) = g(x). Thus,

f (x) ∧ y = g(x) ∧ y ≤ g ∧ y ≤ (g ∨ h) ∧ y = f ∧ y.

This completes the proof of the claim.
It follows that if z ≤ y, then z = z ∧ y = z(x) ∧ y, and we have written z in the

form described in the statement of Lemma 3. �

Lemma 4. The elements of g(Ck ∗ S) which lie strictly above x0 are generated by
x1, . . . , xn, y ∨ x0.

Proof. We begin by showing that the elements of Ck ∗S lying strictly above x0 are
generated by x1, . . . , xn, y ∨ x0, (y ∧ x1) ∨ x0, . . . , (y ∧ xn) ∨ x0.

Let T0 denote {x0, . . . , xn, y}. Define Ti inductively as those elements of Ck ∗ S
which can be formed as either a meet or a join of a pair of elements in Ti−1. The
union of the Ti is Ck ∗S. We wish to show by induction on i that any element of Ti
lying strictly above x0 can be written as a polynomial in x1, . . . , xn, y∨x0, (y∧x1)∨
x0, . . . , (y ∧ xn) ∨ x0. The statement is certainly true for i = 0. Suppose it is true
for i− 1. The statement is also true for any element of Ti formed by a meet, since
if the meet lies strictly above x0, so did both the elements of Ti−1. Now consider
the case of the join of two elements, a and b, from Ti−1. If both a and b lie strictly
above x0, the statement is true for a∨ b by induction. If neither a nor b lies strictly
above x0, then (by Lemma 3) one of a or b must equal x0, and a ∨ b is one of the
generators which we are allowing. Now suppose that a lies strictly above x0 and b
does not. By Lemma 3, b equals x0, y, or y ∧ xi. If b = x0, then a∨ b = a, and the
statement is true by induction. Otherwise, a ∨ b = a ∨ (b ∨ x0), and b ∨ x0 is one
of the allowed generators, so we are done. We have shown that every element of Ti
lying above x0 can be written in the desired form, and hence by induction that the
same is true of any element of Ck ∗ S lying above x0.

We now wish to show that the generators of the form (y∧xi)∨x0 are unnecessary
once we pass to g(Ck ∗ S). It follows from Lemma 3 that y ∧ xn ≺ y. Dually,
y ≺ y ∨ x0. Observe that y ∧ xn < (y ∧ xn) ∨ x0 < (y ∨ x0)∧ xn < y ∨ x0 in Ck ∗ S.
Thus, by Lemma 1, [(y ∧ xn) ∨ x0] = [(y ∨ x0) ∧ xn].

We now proceed to show that

[(y ∧ xi) ∨ x0] = [(y ∨ x0) ∧ xi]

for all 1 ≤ i ≤ n. The proof is by downward induction; we have already finished
the base case, when i = n. So suppose the result holds for i+ 1. In L,

y ∧ xi ≺ y ∧ xi+1 ≺ (y ∧ xi+1) ∨ x0 < (y ∨ x0) ∧ xi+1,

but when we pass to g(L) the final inequality becomes an equality by the induction
hypothesis. Since in L we also have that

y ∧ xi < (y ∧ xi) ∨ x0 < (y ∨ x0) ∧ xi < (y ∨ x0) ∧ xi+1,

we can apply Lemma 1 to conclude that [(y ∧ xi) ∨ x0] = [(y ∨ x0) ∧ xi] as desired.
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We have already shown that the elements of L lying above x0 are generated by
the xi, y ∨ x0, and the (y ∧ xi) ∨ x0, for i ≥ 1. It follows that the elements of
g(L) above [x0] are generated by the [xi], [y ∨ x0], and the [(y ∧ xi) ∨ x0]. But
[(y ∧ xi) ∨ x0] = [(y ∨ x0) ∧ xi] = [y ∨ x0] ∧ [xi], and so the [(y ∧ xi) ∨ x0] are
redundant, proving the lemma. �

Proposition 1. The lattice g(Ck ∗ S) is as shown in Figure 2.
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Figure 2

Proof. Observe that by Lemma 4, the elements of g(Ck ∗ S) lying strictly over x0
are isomorphic to a quotient of g(Ck−1 ∗ S). Now applying Lemma 3 inductively,
we see that every element of g(Ck ∗ S) can be written as (y ∨ xi) ∧ xj for j ≥ i.
It follows that g(Ck ∗ S) is a quotient of the lattice from Figure 2, but since the
lattice from Figure 2 is graded, it must coincide with g(L). �

Left Modular Lattices

In this section, we recall a few results about left modular elements and left
modular lattices from [Li] and [MT].

Lemma 5 ([Li]). Suppose u ≺ v are left modular in L. Let z ∈ L. Then:
(i) u ∨ z � v ∨ z.
(ii) u ∧ z � v ∧ z.

Proof. We prove (i). Suppose otherwise, so that there is some element y such that
u ∨ z < y < v ∨ z. Now observe that ((u ∨ z) ∨ v) ∧ y = y. Now v ∧ y = u, so
(u ∨ z) ∨ (v ∧ y) = u ∨ z, contradicting the left modularity of u. This proves (i).
Now (ii) follows by duality. �

Lemma 6 ([MT]). Let x be left modular, and y < z. Then y∨x∧ z is left modular
in [y, z].
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Proof. Let s < t in [y, z].

(s∨ (y∨x∧ z))∧ t = (s∨x∧ z)∧ t = s∨x∧ t = s∨ (y∨x∧ t) = s∨ ((y∨x∧ z)∧ t).

�

Lemma 7 ([MT]). If L is a finite lattice with a maximal left modular chain 0̂ =

x0 ≺ x1 ≺ . . . ≺ xr = 1̂, and y ≤ z, then the set of elements of the form y ∨ xi ∧ z
forms a maximal left modular chain in [y, z].

Proof. The fact that the elements of the form y ∨ xi ∧ z form a maximal chain in
[y, z] follows from Lemma 5; the fact that they are left modular, from Lemma 6. �

Modularity

For y ≤ z, let us write M(x, y, z) for the statement:

M(x, y, z) : (y ∨ x) ∧ z = y ∨ (x ∧ z).

A lattice is said to be modular if M(x, y, z) holds for all x whenever y ≤ z.
Standard notation is to write xMz for the statement that M(x, y, z) holds for

all y ≤ z. In this case (x, z) is called a modular pair. An element x is said to be
modular if for any z both xMz and zMx are modular pairs. As we have already
seen, an element x is left modular if it satisfies half the condition of being modular,
namely that xMz for all z.

Let L be a finite graded left modular lattice, with maximal left modular chain
0̂ = x0 ≺ x1 ≺ . . . ≺ xr = 1̂, which we denote x. By definition, for any y ≤ z, we
have M(xi, y, z). We also have the following lemma:

Lemma 8. In a finite graded left modular lattice L, with maximal left modular
chain x, for any w ∈ L and i < j, we have M(w, xi, xj).

Proof. Consider the sublattice K of L generated by x and w. First, we show that
K is graded. Let y < z ∈ K. By Lemma 7, we know that the elements of the form
y ∨ xi ∧ z form a maximal chain in L. These are all elements of K, so there is a
maximal chain between y and z having the same length as in L. It follows that the
covering relations in K are a subset of the covering relations in L, and hence that
K is graded (with the same rank function as L).

Since K is generated by x and w, K is a quotient of Cr ∗ S. Further, since K
is graded, it is a quotient of g(Cr ∗ S). Since g(Cr ∗ S) is distributive, the modular
equality is always satisfied in it, and therefore also in K. So M(w, xi, xj) holds in
K, and therefore in L. �

Graded Left Modular Lattices are Supersolvable

In this section, we prove Theorem 1, that finite graded left modular lattices are
supersolvable. To do this, we have to show that the sublattice generated by the left
modular chain and another chain is distributive.

The proof mimics the proof of Proposition 2.1 of [St], which shows that if L is
a finite lattice with a maximal chain of modular elements, then this chain is an
M -chain, and hence L is supersolvable. The proof from [St] is based on Birkhoff’s
proof [Bi, §III.7] that a modular lattice generated by two chains is distributive.

We recall briefly the way Birkhoff’s proof works. Let L be a finite modular
lattice, and let 0̂ = x0 < · · · < xr = 1̂ and 0̂ = y0 < · · · < ys = 1̂ be two chains,
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which we denote x and y respectively. Assume further that L is generated by x

and y. Let uij = xi ∧ yj , and let vij = xi ∨ yj . Write U for {uij} and V for {vij}.
Observe [Bi, §III.7 Lemma 1] that any join of elements of U can be written in

the form

t
∨

i=1

ai ∧ bi

where a1, a2, . . . form a decreasing sequence from x, and b1, b2, . . . form an increas-
ing sequence from y.

Then [Bi, §III.7 Lemma 2], the following two identities are established for all
decreasing sequences a1, a2, . . . from x and increasing sequences b1, b2, . . . from y,
and for all t, under the assumption that L is modular:

Pt : (b1 ∨ a1) ∧ (b2 ∨ a2) ∧ · · · ∧ (bt ∨ at) = b1 ∨ (a1 ∧ b2) ∨ · · · ∨ (at−1 ∧ bt) ∨ at

Qt : (a1 ∧ b1) ∨ (a2 ∧ b2) ∨ · · · ∨ (at ∧ bt) = a1 ∧ (b1 ∨ a2) ∧ · · · ∧ (bt−1 ∨ at) ∧ bt

Using Pt and Qt, it is straightforward to see that the set of joins of elements
of U coincides with the set of meets of elements of V and that they therefore
form a sublattice of L [Bi, III§7 Lemma 3]. Since L is generated by x and y (by
assumption), it follows that every element of L can be written as a join of elements
of U .

We now deviate slightly from the exposition in [Bi]. LetD denote the distributive
lattice of down-closed subsets of [1, r]× [1, s]. Define a map φ : D → L by setting

φ(I) =
∨

(i,j)∈I

uij .

This map respects join operations, and from what we have already shown, it is
surjective.

Similarly, define a map ψ : D → L by setting

ψ(I) =
∧

(i,j) 6∈I

vi−1
j−1.

This map respects meet operations. Now, we observe (by Pt and Qt) that φ and
ψ coincide. They therefore form a lattice homomorphism from D onto L, which
shows that L is distributive, as desired.

The only point at which modularity has been used is in establishing Pt and Qt.
Stanley noticed that it was sufficient to assume only that all the xi are modular.
In fact, still less is sufficient.

Lemma 9. Pt and Qt hold in any graded lattice such that the xi form a maximal
chain of left modular elements.

Proof. We prove Pt and Qt by simultaneous induction on t. P1 and Q1 are tautol-
ogous. Assume that Pt−1 and Qt−1 hold. We now prove Qt. Recall that a1, a2, . . .
is a decreasing sequence from x, and b1, b2, . . . is an increasing sequence from y.
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We start from the lefthand side of Qt:

(a1 ∧ b1) ∨ · · · ∨ (at−1 ∧ bt−1) ∨ (at ∧ bt)

=
(

(a1 ∧ b1) ∨ · · · ∨ (at−1 ∧ bt−1) ∨ at
)

∧ bt
)

by M(at, (a1 ∧ b1) ∨ · · · ∨ (at−1 ∧ bt−1), bt)

=
[(

a1 ∧ (b1 ∨ a2) ∧ · · · ∧ (bt−2 ∨ at−1) ∧ bt−1

)

∨ at
]

∧ bt

by Qt−1

= a1 ∧
[(

(b1 ∨ a2) ∧ · · · ∧ (bt−2 ∨ at−1) ∧ bt−1

)

∨ at
]

∧ bt

by M((b1 ∨ a2) ∧ · · · ∧ (bt−2 ∨ at−1) ∧ bt−1, at, a1) (Lemma 8)

= a1 ∧
[(

(b1 ∨ a2) ∧ · · · ∧ (bt−2 ∨ at−1) ∧ (bt−1 ∨ 0̂)
)

∨ at
]

∧ bt

= a1 ∧
[(

b1 ∨ (a2 ∧ b2) · · · ∨ (at−1 ∧ bt−1)
)

∨ at
]

∧ bt

by Pt−1

= a1 ∧ [(b1 ∨ a2) ∧ · · · ∧ (bt−1 ∨ at)] ∧ bt

by Pt−1.

This proves Qt. The dual argument holds for Pt, which completes the induction
step, and the proof of the lemma �

This shows that Birkhoff’s proof can be adapted to our situation, proving The-
orem 1.
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