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RELATIVE POSITION OF FOUR SUBSPACES IN A

HILBERT SPACE

MASATOSHI ENOMOTO AND YASUO WATATANI

Abstract. The relative position of one subfactor of a factor has
been proved quite rich since the work of Jones. We shall show that
the theory of relative position of several subspaces of a separable
infinite-dimensional Hilbert space is also rich. In finite-dimensonal
case, Gelfand and Ponomarev gave a complete classification of in-
decomposable systems of four subspaces. We construct exotic ex-
amples of indecomposable systems of four subspaces in infinite-
dimensional Hilbert spaces. We extend their Coxeter functors and
defect using Fredholm index. There exist close connections with
strongly irreducible operators and transitive lattices.
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defect, Coxeter functor, strongly irreducible operator, transitive
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1. Introduction

The relative position of one subfactor of a factor has been proved
quite rich since the work of Jones [J] . On the other hand, the relative
position of one subspace of a Hilbert space is extremely simple and de-
termined by the dimension and the co-dimension of the subspace. But
we shall show that the theory of relative position of several subspaces
of a Hilbert space is rich as subfactor theory.

It is a well known fact that the relative position of two subspaces E
and F in a Hilbert space H can be described completely up to unitary
equivalence as in Araki [Ar] Dixmier [D] and Halmos [Ha1]. The Hilbert
space is the direct sum of five subspaces:

H = (E ∩ F )⊕ (the rest)⊕ (E ∩ F⊥)⊕ (E⊥ ∩ F )⊕ (E⊥ ∩ F⊥).

In the rest part, E and F are in generic position and the relative
position is described only by “the angles” between them.

We disregard “the angles” and study the still-remaining fundamental
feature of the relative position of n subspaces. As it is important to
study irreducible subfactors in subfactor theory, we should study an
indecomposable system of n subspaces in the sense that the system can
not be isomorphic to a direct sum of two non-zero systems.
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On the other hand, many problems of linear algebra can be reduced
to the classification of the systems of subpaces in a finite-dimensional
vector space. In a finite-dimensional space, the classification of inde-
composable systems of n subspaces for n = 1, 2 and 3 was simple. Jor-
dan blocks give indecomposable systems of 4 subspaces. But there exist
many other kinds of indecomposable systems of 4 subspaces. Therefore
it was surprising that Gelfand and Ponomarev [GP] gave a complete
classification of indecomposable systems of four subspaces in a finite-
dimensional space over an algebraically closed field.

In this note we study relative position of n subspaces in a separa-
ble infinite-dimensional Hilbert space. The fact that the sum of closed
subspaces is not necessary closed causes some troubles in several ar-
guments in Gelfand-Ponomarev [GP]. Let H be a Hilbert space and
E1, . . . En be n subspaces in H . Then we say that S = (H ;E1, . . . , En)
is a system of n subspaces in H or a n-subspace system in H . A system
S is called indecomposable if S can not be decomposed into a nontriv-
ial direct sum. For any bounded linear operator A on a Hilbert space
K, we can associate a system SA of four subspaces in H = K ⊕K by

SA = (H ;K ⊕ 0, 0⊕K, graphA, {(x, x); x ∈ K}).

Two such systems SA and SB are isomorphic if and only if the two
operators A and B are similar. The direct sum of such systems cor-
responds to the direct sum of the operators. In this sense the theory
of operators is included into the theory of relative positions of four
subspaces. In particular on a finite dimesional space, Jordan blocks
correspond to indecomposable systems. Moreover on an infinite di-
mensional Hilbert space, the above system SA is indecomposable if and
only if A is strongly irreducible, which is an infinite-dimensional analog
of a Jordan block, see, for example, a monograph by Jiang and Wang
[JW]. Therefore there exist uncountably many indecomposable sys-
tems of four subspaces. But it is rather difficult to know whether there
exists another kind of indecomposable system of four subspaces. One
of the main result of the paper is to give uncountably many, exotic,
indecomposable systems of four subspaces on an infinite-dimensional
separable Hilbert space. The ℓ2-boundedness is crucially used.

Gelfand and Ponomarev introduced an integer valued invariant ρ(S),
called defect, for a system S = (H ;E1, E2, E3, E4) of four subspaces by

ρ(S) =

4
∑

i=1

dimEi − 2 dimH.

We extend the defect to a certain class of systems of four subspaces
on an infinite dimesional Hilbert space using Fredholm index. We
believe that there exists an analogy between a classification of sys-
tems of subspaces and a classification of subfactors, and the defect by
Gelfand and Ponomarev seems to correspond to the index by Jones
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[J]. Therefore the determination of possible value of defect is also im-
portant. If a pair N ⊂ M of factor-subfactor is finite-dimensional,
then Jones index [M : N ] is an integer. But if N ⊂ M is infinite-
dimensional, then Jones index [M : N ] is a non-integer in general. One
of the amazing fact was that the possible value of Jones index is in
{4 cos2 π

n
| n = 3, 4, ...}∪[4,∞]. We show that a similar situation occurs

for the possible value of defect. If a system S = (H ;E1, E2, E3, E4) of
four subspaces is finite-dimensional, then the defect ρ(S) is an integer.
Gelfand and Ponomarev showed that the possible value of defect ρ(S)
is exactly in {−2,−1, 0, 1, 2}. We show that the set of values of defect
for indecomposable systems of four subspaces in an infinite-dimesional
Hilbert spaces is exactly {n

3
;n ∈ Z}.

We extend Coxeter functors after Gelfand-Ponomarev and show that
the Coxeter functors preserve the defect and indecomposability under
certain conditions.

Halmos initiated the study of transitive lattices and gave an example
of transitive lattice consisting of seven subspaces in [Ha2]. Harison-
Radjavi-Rosenthal [HRR] constructed a transitive lattice consisting
of six subspaces using the graph of an unbounded closed operator.
Hadwin-Longstaff-Rosenthal found a transitive lattice of five non-closed
linear subspaces in [HLR]. Any finite transitive lattice which consists
of n subspaces of a Hilbert space H gives an indecomposable system
of n − 2 subspaces by withdrawing 0 and H , but the converse is not
true. It is still unknown whether or not there exists a transitive lattice
consisting of five subspaces. Therefore it is also an interesting prob-
lem to know whether there exists an indecomposable system of three
subspaces in an infinite-dimensional Hilbert space.

Throughout the paper a projection means an operator e with e2 =
e = e∗ and an idempotent means an operator p with p2 = p.

Sunder also considered n subspaces in [S]. But his interest is ex-
tremely opposite to ours. In fact he studied the decomposable case
such that the Hilbert space H is an algebraic sum of the n subspaces.
He solved the statistical problem of computing the canonical partial
correlation coefficients between three sets of random variables.

When we announced some part of our result in US-Japan seminar
at Fukuoka in 1999, we had not yet known the notion and interest-
ing works on strong irreducible operators which are summarized in a
monograph by Jiang and Wang [JW].

There seems to be interesting relations with the study of represen-
tations of ∗-algebras generated by idempotents by S. Kruglyak and Y.
Samoilenko [KS] and the study on sums of projections by S. Kruglyak,
V. Rabanovich and Y. Samoilenko [KRS]. But we do not know the
exact implication, because their objects are different with ours.

In finite dimensional case, the classification of four subspaces is
described as the classification of the representations of the extended
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Dynkin diagram D
(1)
4 . Recall that Gabriel [G] listed Dynkin diagrams

An, Dn, E6, E7, E8 in his theory on finiteness of indecomposable repre-
sentations of quivers. We will discuss on indecomposable representa-
tions of quivers on infinite-dimensinal Hilbert spaces somewhere else
[EW] as a continuation of this paper.

In purely algebraic setting, it is known that if a finite-dimensional
algebra R is not of representation-finite type, then there exist indecom-
posable R-modules of infinite length as in M. Auslander [Au]. Since we
consider representations on Hilbert spaces, the result in [Au] cannot
be applied directly. We need several techniques in functional analysis.
See a book [KR] for infinite length modules.

The authors are supported by the Grant-in-Aid for Scientific Re-
search of JSPS.

2. systems of n subspaces

We study the relative position of n subspaces in a separable Hilbert
space. Let H be a Hilbert space and E1, . . . En be n subspaces in H .
Then we say that S = (H ;E1, . . . , En) is a system of n-subspaces in
H or a n-subspace system in H . Let T = (K;F1, . . . , Fn) be another
system of n-subspaces in a Hilbert space K. Then ϕ : S → T is
called a homomorphism if ϕ : H → K is a bounded linear operator
satisfying that ϕ(Ei) ⊂ Fi for i = 1, . . . , n. And ϕ : S → T is called
an isomorphism if ϕ : H → K is an invertible (i.e., bounded bijective)
linear operator satisfying that ϕ(Ei) = Fi for i = 1, . . . , n. We say that
systems S and T are isomorphic if there is an isomorphism ϕ : S → T .
This means that the relative positions of n subspaces (E1, . . . , En) in H
and (F1, . . . , Fn) in K are same under disregarding angles. We say that
systems S and T are unitarily equivalent if the above isomorphism
ϕ : H → K can be chosen to be a unitary. This means that the
relative positions of n subspaces (E1, . . . , En) in H and (F1, . . . , Fn) in
K are same with preserving the angles between the subspaces. We are
interested in the relative position of subspaces up to isomorphims to
study the still-remaining fundamental feature of the relative position
after disregarding “the angles” .

We denote by Hom(S, T ) the set of homomorphims of S to T and
End(S) := Hom(S,S) the set of endomorphisms on S.

Let G2 = Z/2Z ∗ Z/2Z = 〈a1, a2〉 be the free product of the cyclic
groups of order two with generators a1 and a2. For two subspaces E1

and E2 of a Hilbert space H , let e1 and e2 be the projections onto E1

and E2. Then u1 = 2e1 − I and u2 = 2e2 − I are self-adjoint unitaries.
Thus there is a bijective correspondence between the set Sys2(H) of
systems S = (H ;E1, E2) of two subspaces in a Hilbert space H and
the set Rep(G2, H) of unitary representations π of G2 on H such that
π(a1) = u1 and π(a2) = u2. Similarly let Gn = Z/2Z ∗ ... ∗ Z/2Z be
the n-times free product of the cyclic groups of order two. Then there

4



is a bijective correspondence between the set Sysn(H) of systems of
n subspaces in a Hilbert space H and the set Rep(Gn, H) of unitary
representations on H of Gn on H . It is well known that if n ≥ 3,
then the group Gn is non-amenable. We should be careful that even if
two systems of n subspaces are isomorphic, the corresponding unitary
representations are not necessary to be similar, although the converse
is always true.
Example 1 Let H = C2. Fix an angle θ with 0 < θ < π/2. Put E1 =
C(1, 0) and E2 = C(cosθ, sinθ). Then S1 = (H ;E1, E2) is isomorphic
to S2 = (C2;C⊕0, 0⊕C). But the corresponding two unitary represen-
tations π1 and π2 are not similar, because 1

2
(π1(a1)+1)1

2
(π1(a2)+1) 6= 0

and 1
2
(π2(a1) + 1)1

2
(π2(a2) + 1) = 0.

We start with a known fact to recall some notation.

Lemma 2.1. Let H be a Hilbert space and H1 and H2 be two subspaces
of H. Then the following are equivalent:

(1) H = H1 +H2 and H1 ∩H2 = 0.
(2) There exists a closed subspace M ⊂ H such that (H ;H1, H2) is

isomorphic to (H ;M,M⊥)
(3) There exists an idempotnet P ∈ B(H) such that H1 = ImP

and H2 = Im(1− P ).

Proof. The equivalence between (1) and (3) is trivial and it is imme-
diate that (2)⇒(1) . We show that (1)⇒(2). Assume (1) and put
M = H1. Let e1 be the (orthogonal) projection onto H1. Let P be
the idempotent onto H1 along H2, so that Pξ = ξ1 for ξ = ξ1 + ξ2,
(ξ1 ∈ H1, ξ2 ∈ H2). Define an operator T : H → H by Tξ =
Pξ + (I − e1)(I − P )ξ for ξ ∈ H . The operator P , T and T−1 are
also writen as operator matrices

P =

(

I B
0 0

)

, T =

(

I B
0 I

)

and T−1 =

(

I −B
0 I

)

under the decomposion H = H1⊕H
⊥
1 . Thus T is an invertible bounded

linear operator satisfying TH1 = H1 and TH2 = H⊥
1 . Hence T gives

an isomorphism. �

Lemma 2.2. Let H and K be Hilbert spaces and E ⊂ H and F ⊂ K
be closed subspaces of H and K. Let e ∈ B(H) and f ∈ B(K) be the
projections onto E and F . Then the following are equivalent:

(1) There exists an invertible operator T : H → K such that
T (E) = F .

(2) There exists an invertible operator T : H → K such that e =
(T−1fT )e and f = (TeT−1)f .

Proof. (1)⇒(2):Assume there exists an invertible operator T : H → K
such that T (E) = F . Then for any ξ ∈ H , Te(ξ) ∈ T (E) = F . Hence
f(Te(ξ)) = Te(ξ). Thus T−1fTe = e. Similarly we have f = TeT−1f .
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(2) ⇒ (1):Assume (2). For ξ ∈ E, T (ξ) = Te(ξ) = fTe(ξ) ∈ F . Thus
T (E) ⊂ F . Similarly T−1(F ) ⊂ E. Hence F ⊂ T (E). Therefore
T (E) = F . �

Using the above lemma, we can describe an isomorphism between
two systems of n suspaces in terms of operators only as follows:

Corollary 2.3. Let S = (H ;E1, · · · , En) and S ′ = (H ′;E ′
1, · · · , E

′
n)

be two systems of n-subspaces. Let ei (resp. e
′
i) be the projection onto

Ei (resp. E ′
i) . Then two systems S and S ′ are isomorphic if and

only if there exists an invertible operator T : H → H ′ such that ei =
(T−1e′iT )ei and e

′
i = (TeiT

−1)e′i for i = 1, . . . , n.

Remark. If there exists an invertible operator T : H → H ′ such that
e′i = TeiT

−1 for i = 1, . . . , n, then two systems S and S ′ are isomorphic.
But the converse is not true as in example 1.

We often want to disregard the order of the subspaces.

Definition Let S = (H ;E1, · · · , En) and S ′ = (H ′;E ′
1, · · · , E

′
n) be

two systems of n-subspaces. Then we say that S and S ′ are iso-
morphic up to a permutation of subspaces if there exists a permu-
tation σ on {1, 2, . . . , n} such that σ(S) := (H ;Eσ(1), · · · , Eσ(n)) and
S ′ = (H ′;E ′

1, · · · , E
′
n) are isomorphic, i.e., there exists a bounded

invertible operator ϕ : H → H ′ satisfying that ϕ(Eσ(i)) = E ′
i for

i = 1, . . . , n.

3. indecomposable systems

In this section we shall introduce a notion of indecomposable system,
that is, a system which cannot be decomposed into a direct sum of
smaller systems anymore.

Definition (direct sum) Let S = (H ;E1, . . . , En) and S ′ = (H ′;E ′
1, · · · , E

′
n)

be systems of n subspaces in Hilbert spaces H and H ′. Then their di-
rect sum S ⊕ S ′ is defined by

S ⊕ S ′ := (H ⊕H ′;E1 ⊕ E ′
1, . . . , En ⊕ E ′

n).

Definition(indecomposable system) A system S = (H ;E1, . . . , En) of
n subspaces is called decomposable if the system S is isomorphic to a
direct sum of two non-zero systems. A system S = (H ;E1, · · · , En) is
said to be indecomposable if it is not decomposable.

Example 2. Let H = C2. Fix an angle θ with 0 < θ < π/2. Put
E1 = C(1, 0) and E2 = C(cosθ, sinθ). Then (H ;E1, E2) is isomorphic
to

(C2;C⊕ 0, 0⊕ C) ∼= (C;C, 0)⊕ (C; 0,C).

Hence (H ;E1, E2) is decomposable.
6



Remark. Let e1 and e2 be the projections onto E1 and E2 in the exam-
ple 2 above. Then the C∗-algebra C∗({e1, e2}) generated by e1 and e2
is exactly B(H) ∼= M2(C). Therefore the irreducibility of C∗({e1, e2})
does not imply the indecomposability of (H ;E1, E2). Thus seeking an
indecomposable system of subspaces is much more difficult and funda-
mental task than showing irreducibility of the C∗-algebra generated by
the corresponding projectios for the subspaces.

We can characterize decomposability of systems inside the ambient
Hilbert space.

Lemma 3.1. Let H be a Hilbert space and S = (H ;E1, . . . , En) a
system of n subspaces. Then the following condition are equivalent:

(1) S is decomposable.
(2) there exist non-zero closed subspaces H1 and H2 of H such that

H1 + H2 = H, H1 ∩ H2 = 0 and Ei = Ei ∩ H1 + Ei ∩ H2 for
i = 1, . . . , n.

Proof. (1)⇒ (2): It is trivial. (2)⇒ (1): Assume (2). By 2.1, there
exist a closed subspaceM ⊂ H (in fact we can chooseM = H1) and an
invertible operator T ∈ B(H) such that T (H1) =M and T (H2) =M⊥.
Then S is isomorphic to a direct sum

(M ;T (E1∩H1), . . . , T (En∩H1))⊕ (M⊥;T (E1∩H2), . . . , T (En∩H2)).

�

We give a condition of decomposability in terms of endomorphism
algebras for the systems.

Lemma 3.2. Let H be a Hilbert space and S = (H ;E1, . . . , En) a
system of n subspaces in H. Let ei be the projection onto Ei. Then the
following are equivalent:

(1) There exist non-zero closed subspaces H1, H2 ⊂ H such that
H = H1 + H2, H1 ∩ H2 = (0) and Ei = Ei ∩ H1 + Ei ∩ H2,
(i = 1, . . . , n).

(2) There exists a non-trivial idempotent R ∈ B(H) such that
R(Ei) ⊂ Ei, (i = 1, . . . , n).

(3) There exists a non-trivial idempotent R ∈ B(H) such that
eiRei = Rei, (i = 1, . . . , n) .

Proof. (1) ⇒ (2): Assume (1). Let R be the idempotent onto H1 along
H2. For any ξ ∈ Ei, there exist ξ1 ∈ Ei ∩ H1 and ξ2 ∈ Ei ∩ H2 such
that ξ = ξ1 + ξ2. Then R(ξ) = ξ1 ∈ Ei. Thus R(Ei) ⊂ Ei.
(2) ⇒(1): Assume (2). We put H1 = ImR and H2 = Im(I − R). For
ξ ∈ Ei, we have ξ = R(ξ) + (I − R)(ξ). Since R(Ei) ⊂ Ei, R(ξ) ∈ Ei.
Then (I − R)(ξ) = ξ −R(ξ) ∈ Ei. Thus Ei ⊂ Ei ∩H1 + Ei ∩H2. The
other inclusion “⊃” is trivial. (2) ⇔ (3) : It is trivial. �

7



We put Idem(S) := {T ∈ End(S);T = T 2}.

Corollary 3.3. Let S = (H ;E1, . . . , En) be a system of n subspaces in
a Hilbert space H. Then S is indecomposable if and only if Idem(S) =
{0, I}.

Corollary 3.4. Let S = (H ;E1, . . . , En) be a system of n subspaces in
a Hilbert space H. Let ei be the projection of H onto Ei for i = 1, . . . , n.
If S = (H ;E1, . . . , En) is indecomposable, then the C∗({e1, . . . , en})
generated by e1, . . . , en is irreducible. But the converse is not true.

Corollary 3.5. Let S = (H ;E1, . . . , En) be a system of n subspaces in
a Hilbert space H. Let ei be the projection of H onto Ei for i = 1, . . . , n.
Let P be a closed subspace of H and p the projection of H onto P . If
p commutes with any ei, then

Ei = Ei ∩ P + Ei ∩ P
⊥

Proof. The projection R of H onto P satisfies the condition (3) in
3.2. �

Definition. Let S = (H ;E1, . . . , En) be a system of n subspaces in a
Hilbert space H . Let ei be the projection of H onto Ei for i = 1, . . . , n.
We say that S is a commutative system if the C∗({e1, . . . , en}) gener-
ated by e1, . . . , en is commutative. Be carefull that commutativity is
not an isomorphic invariant as shown in Example 1. But it is mean-
ingful that a system is isomorphic to a commutative system.

Proposition 3.6. Let S = (H ;E1, . . . , En) be a system of n subspaces
in a Hilbert space H. Assume that S is a commutative system. Then S
is indecomposable if and only if dimH = 1. Moreover each subset Λ ⊂
{1, . . . , n} corresponds to a commutative system satisfying dimEi = 1
for i ∈ Λ and dimEi = 0 for i /∈ Λ.

Proof. Let ei be the projection of H onto Ei for i = 1, . . . , n. If S is
a commutative, indecomposable system, then the C∗({e1, . . . , en}) ⊂
B(H) is commutative and irreducible. Thus dimH = 1. The converse
and the rest is clear. �

Example 3. Let H = C
2. Put E1 = C(1, 0), E2 = C(0, 1) and E3 =

C(1, 1). Then S = (H ;E1, E2, E3) is indecomposable. The system S is
the lowest dimensional one among non-commutative indecomposable
systems.

Example 4. Let H = C3 and {a1, a2, a3} be a linearly independent
subset of H . Put E1 = Ca1, E2 = Ca2 and E3 = Ca3. Then S =
(H ;E1, E2, E3) is decomposable. In fact, let H1 = E1 ∨ E2 6= 0 and
H2 = E3 6= 0. Then H1 +H2 = H , H1 ∩ H2 = 0 and Ei = Ei ∩H1 +
Ei ∩H2, for i = 1, 2, 3.

8



Example 5. Let H = C3 and {b1, b2, b3, b4} be a subset of H . Put
Ei = Cbi for i = 1, . . . , 4. Consider a system S = (H ;E1, E2, E3, E4)
of four subspaces. Then the following are equivalent:

(1) S is indecomposable.
(2) Any three vectors of {b1, b2, b3, b4} is linearly independent.
(3) The set {b1, b2, b3} is linearly independent and b4 = λ1b1+λ2b2+

λ3b3 for some scalars λi 6= 0 (i = 1, 2, 3).

Assume that {u1, u2, u3, u4} ⊂ H and {v1, v2, v3, v4} ⊂ H satisfy the
above condition (2). Then S = (H ;Cu1,Cu2,Cu3,Cu4) and T =
(H ;Cv1,Cv2,Cv3,Cv4) are isomorphic.

Example 6. Let H = C3. Put E1 = C ⊕ C ⊕ 0, E2 = C(1, 1, 1) and
E3 = C(1, 2, 3). Then a system S = (H ;E1, E2, E3) is decomposable.
In fact, let E ′

1 = (E2 ∨ E3) ∩ E1 and H1 = E1 ∩ (E ′
1)

⊥ 6= 0. Let H2 =
E2∨E3 6= 0. ThenH1+H2 = H , H1∩H2 = 0 and Ei = Ei∩H1+Ei∩H2

for i = 1, 2, 3.

Example 7. Let H = C3. Put E1 = C⊕ C⊕ 0, E2 = C(0, 0, 1), E3 =
C(0, 1, 1) and E4 = C(1, 0, 1). Then a system S7 = (H ;E1, E2, E3, E4)
of four subspaces is indecomposable.

Example 8. Let H = C
3. Put E1 = C ⊕ C ⊕ 0, E2 = C(0, 0, 1),

E3 = C(1, 0, 0) + C(0, 1, 1) and E4 = C(1, 0, 1). Then a system S8 =
(H ;E1, E2, E3, E4) of four subspaces is indecomposable.

Example 9. Let H = C3. Put E1 = C ⊕ C ⊕ 0, E2 = C(0, 0, 1),
E3 = C(1, 0, 0) + C(0, 1, 1) and E4 = C(1, 0, 1) + C(0, 1, 0). Then a
system S9 = (H ;E1, E2, E3, E4) of four subspaces is indecomposable.

Example 10. Let H = C3. Put E1 = C(1, 0, 0) + C(0, 1, 0), E2 =
C(0, 1, 0) + C(0, 0, 1) E3 = C(1, 0, 0) + C(0, 1, 1) and E4 = C(0, 0, 1) +
C(1, 1, 0). Then a system S10 = (H ;E1, E2, E3, E4) of four subspaces
is indecomposable.

Remark Any two of the above indecomposable systems S7, . . . ,S10 of
four subspaces are not isomorphic each other.

Example 11. Let K = ℓ2(N) and H = K ⊕K. Consider a unilateral
shift S : K → K. Let E1 = K ⊕ 0, E2 = 0 ⊕ K, E3 = {(x, Sx) ∈
H ; x ∈ K} and E4 = {(x, x) ∈ H ; x ∈ K}. Then a system S11 =
(H ;E1, E2, E3, E4) of four subspaces in H is indecomposable. In fact,
let R be an idempotent which commutes with S. Then R is a lower
triangular Toeplitz matrix. Since R is an idempotent, R = 0 or R = I.

Recall that Halmos initiated the study of transitive lattices. A com-
plete lattice of closed subspaces of a Hilbert space H containing 0 and
H is called transitive if every bounded operator on H leaving each
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subspace invariant is a scalar multiple of the identity. Halmos gave
an example of transitive lattice consisting of seven subspaces in [Ha2].
Harison-Radjavi-Rosenthal [HRR] constructed a transitive lattice con-
sisting of six subspaces using the graph of an unbounded operator.
Any finite transitive lattice which consists of n subspaces gives an in-
decomposable system of n-2 subspaces but the converse is not true.
Following the study of transitive lattices, we shall introduce the notion
of transitive system.

Definition. Let S = (H ;E1, . . . , En) be a system of n subspaces in a
Hilbert space H . Then we say that S is transitive if End(S) = CIH .
Recall that S is indecomposable if and only if Idem(S) = {0, I}. Hence
if S is transitive, then S is indecomposable. But the converse is not
true. In fact the system S11 as above is indecomposable but is not
transitve, because End(S) contains S ⊕ S.

Example 12.(Harrison-Radjavi-Rosenthal [HRR]) Let K = ℓ2(Z) and
H = K ⊕ K. Consider a sequence (αn)n given by αn = 1 for n ≤ 0
and αn = exp((−1)nn!) for n > 1. Consider a bilateral weighted shift
S : DT → K such that T (xn)n = (αn−1xn−1)n with the domain DT =
{(xn)n ∈ ℓ2(Z);

∑

n |αnxn|
2 < ∞}. Let E1 = K ⊕ 0, E2 = 0 ⊕ K,

E3 = {(x, Tx) ∈ H ; x ∈ DT} and E4 = {(x, x) ∈ H ; x ∈ K}. Harrison,
Radjavi and Rosental showed that {0, H, E1, E2, E3, E4} is a transitive
lattice. Hence the system S = (H ;E1, E2, E3, E4) of four subspaces in
H is transitive and in particular indecomposable.

Let S = (H ;E1, . . . , En) be a system of n subspaces in a finite-
dimensional vector space H . Gelfand and Ponomarev [GP] introduced
the conjugate system S∗ = (H∗;E ′

1, . . . , E
′
n), where E

′
i = {f ∈ H∗; f(x) =

0 for all x ∈ Ei}. In our setting of Hilbert spaces, their conjugate sys-
tem S∗ could be replaced by the following orthogonal complement.

Definition. Let S = (H ;E1, . . . , En) be a system of n subspaces in a
Hilbert space H . Then the orthogonal complement of S, denoted by
S⊥, is defined by S⊥ = (H ;E⊥

1 , . . . , E
⊥
n ). Let T = (K;F1, . . . , Fn) be

another system of n subspaces in a Hilbert space K and ϕ : S → T
be a homomorphism. We define a homomorphism ϕ∗ : T ⊥ → S⊥ by
ϕ∗ : K → H . In fact, ϕ∗(F⊥

i ) ⊂ E⊥
i , because ϕ(Ei) ⊂ Fi.

We denote by Sysn the category of the systems of n subspaces in
Hilbert spaces and homomorphisms. Then we can introduce a con-
travariant functor Φ⊥ : Sysn → Sysn by

Φ⊥(S) = S⊥ and Φ⊥(ϕ) = ϕ∗.

Proposition 3.7. Let H be a Hilbert space and S = (H ;E1, . . . , En)
a system of n subspaces in H. Then S is indecomposable if and only if
S⊥ is indecomposable.
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Proof. If S is decomposable, then there exists an idempotent R ∈
End(S) with R 6= 0 and R 6= IH . Since R(Ei) ⊂ Ei, we have
R∗(E⊥

i ) ⊂ E⊥
i . Thus R∗ ∈ End(S⊥) is an idempotent with R∗ 6= 0

and R∗ 6= IH , that is, S⊥ is decomposable. This implies the desired
conclusion. �

Similarly we have a same fact for transitive systems.

Proposition 3.8. Let H be a Hilbert space and S = (H ;E1, . . . , En)
a system of n subspaces in H. Then S is transitive if and only if S⊥

is transitive .

4. indecomposable systems of one subspace

It is easy to see the case of indecomposable systems of one subspace
even in an infinite-dimensional Hilbert space.

Proposition 4.1. Let H be a Hilbert space and S = (H ;E) a system
of one subspace. Then S = (H ;E) is indecomposable if and only if
S ∼= (C; 0) or S ∼= (C;C).

Proof. If E 6= 0 and E 6= H , then S = (E;E) ⊕ (E⊥; 0) gives a non-
trivial decomposition. Assume that S is indecomposable. Then E = 0
or E = H . Suppose we had dimH ≥ 2, then there exist non-zero
closed subspaces H1 and H2 such that H = H1 +H2 and H1 ∩H2 = 0.
This gives a non-trivial decompositon of S. The contradiction shows
that dimH = 1. Hence S ∼= (C; 0) or S ∼= (C;C). The converse is
trivial. �

Let S = (H ;E) and S ′ = (H ′;E ′) be two systems of one subspace.
Then S and S ′ are isomorphic if and only if dimE = dimE ′ and
codimE = codimE ′.

5. indecomposable systems of two subspaces

It is a well known fact that the relative position of two subspaces
E1 and E2 in a Hilbert space H can be described completely up to
unitary equivalence as in Araki [Ar], Dixmier [D] and Halmos [Ha1].
The Hilbert space H is the direct sum of five subspaces:

H = (E1 ∩ E2)⊕ (the rest)⊕ (E1 ∩ E
⊥
2 )⊕ (E⊥

1 ∩ E2)⊕ (E⊥
1 ∩ E⊥

2 ).

In the rest part, E1 and E2 are in generic position and the relative
position is described only by “the angles” between them. In fact the
rest part is written as K⊕K for some subspace K and there exist two
positive operators c, s ∈ B(K) with null kernels with c2 + s2 = 1 such
that

E1 = (E1 ∩ E2)⊕ Im

(

1 0
0 0

)

⊕ (E1 ∩ E
⊥
2 )⊕ 0⊕ 0,

11



and

E2 = (E1 ∩ E2)⊕ Im

(

c2 cs
cs s2

)

⊕ 0⊕ (E⊥
1 ∩ E2)⊕ 0.

By the functional calculus, there exists a unique positive operator θ,
called the angle operator, such that c = cos θ and s = sin θ with
0 ≤ θ ≤ π

2
.

Proposition 5.1. Let S = (H ;E1, E2) be a system of two subspaces
in a Hilbert space H. Then S is indecomposable if and only if S is
isomorphic to one of the following four commutative systems:

S1 = (C;C, 0), S2 = (C; 0,C),S3 = (C;C,C), S4 = (C; 0, 0).

Proof. Let ei ∈ B(H) be the projection of H onto Ei, i = 1, 2 with
the canonical decomposition as above. Suppose that dimK ≥ 2. Then
there exists a projection p ∈ B(K) with 0 6= p 6= IK satisfying p
commutes with c and s. Let H1 := Im(p ⊕ p) ⊂ K ⊕ K and H2 :=
H⊥

1 ∩H . Let p1 ∈ B(H) be the projection of H onto H1. Since non-
trivial projection p1 commute with e1 and e2, S is decomposable by
Lemma 3.2. Therefore if S is indecomposable, then dimK ≤ 1 and only
one of the five direct summands is non-zero. If the rest component were
non-zero, then it is isomorphic to a decomposable one as in Example
2. Thus the rest component does not appear. One of the other part
is commutative. Since S is indecomposable, S is one of S1, . . . ,S4 by
Proposition 3.6. The converse is clear. �

6. some properties of indecomposable systems of

n-subspaces

Let S = (H ;E1, . . . , En) be a system of n subspaces in a Hilbert
space. We denote by ∨ni=1Ei the closed subspace spanned byE1, . . . , En.
If S is indecomposable and dimH ≥ 2, then it is easy to see that

n
⋂

i=1

Ei = 0 and
n
∨

i=1

Ei = H.

In fact, on the contrary suppose that M := ∩ni=1Ei 6= 0. We choose a
one-dimensional subspace F ⊂ M . Since dimH ≥ 2, the orthogonal
decomposition H = F ⊕ F⊥ of the Hilbert space H gives a non-trivial
decomposition of the system S. This contradicts to that S is indecom-
posable. Hence we have ∩ni=1Ei = 0. Since the orthogonal complement
S⊥ is also indecomposable, we have ∨ni=1Ei = (∩ni=1E

⊥
i )

⊥ = H . But we
can say more as follows:

Proposition 6.1. Let S = (H ;E1, . . . , En) be a system of n subspaces
in a Hilbert space. If S is indecomposable and dimH ≥ 2, then for any
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distinct n-1 subspaces Ei1 , . . . , Ein−1
, we have that

n−1
⋂

k=1

Eik = 0 and

n−1
∨

k=1

Eik = H.

Proof. We may and do assume that Ei1 = E1, Ei2 = E2, . . . , Ein−1
=

En−1. On the contrary suppose thatM := ∩n−1
i=1 Ei 6= 0. Since dimH ≥

2, we can choose a one-dimensional subspace F ⊂ M . Consider two
subspaces F and En in H . We have the following canonical decompo-
sition into five parts:

F = (F ∩ En)⊕ Im

(

1 0
0 0

)

⊕ (F ∩ E⊥
n )⊕ 0⊕ 0,

En = (F ∩ En)⊕ Im

(

c2 cs
cs s2

)

⊕ 0⊕ (F⊥ ∩ En)⊕ 0.

We denote by K ⊕ K the underlying subspace of the part in generic
position.
(i)(the case that K = 0): Since F ∩ En = ∩ni=1Ei = 0, we have
F = F ∩ E⊥

n , so that F ⊂ E⊥
n . Let ei and f be the projections of

H onto Ei and F respectively. Then f commutes with each ei. There-
fore the orthogonal decomposition H = F⊕F⊥ of H gives a non-trivial
decomposition of the system S. This contradicts to that S is indecom-
posable. Hence M = ∩n−1

i=1 Ei = 0.
(ii)(the case that K 6= 0): Since F is one-dimensional,

K ⊕ 0 + Im

(

c2 cs
cs s2

)

= K ⊕K

and

(K ⊕ 0) ∩ Im

(

c2 cs
cs s2

)

= 0.

Then there exists an invertible operator T ∈ B(K ⊕ K) such that

T (K ⊕ 0) = K ⊕ 0, and T (Im

(

c2 cs
cs s2

)

) = 0⊕K.

We define an invertible operator ϕ := I⊕T ⊕ I⊕ I⊕ I ∈ B(H). Let
E ′
i := ϕ(Ei) for i = 1, . . . , n. Since S is indecomposabe, a new system

S ′ := (H ;E ′
1, . . . , E

′
n) is indecomposable. Since F = ϕ(F ), F ⊂ ∩n−1

i=1 E
′
i

and F is orthogonal to E ′
n. Let e

′
i and f be the projections of H onto

E ′
i and F . Then f commutes with each e′i. Therefore the orthogonal

decomposition H = F ⊕ F⊥ of H gives a non-trivial decomposition of
the system S ′. This contradicts to that S ′ is indecomposable. Hence
M = ∩n−1

i=1 Ei = 0
Since the orthogonal complement S⊥ is also indecomposable, we also

have ∨n−1
k=1Eik = H . �
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Corollary 6.2. Let S = (H ;E1, . . . , En) a system of n subspaces in
a Hilbert space. If S is indecomposable and H is infinite-dimensional,
then #{i;Ei is finite dimensional } ≤ n− 2.

Proof. On the contrary, suppose that there were distinct n-1 finite-
dimensional subspaces Ei1 , . . . , Ein−1

. ThenH =
∨n−1
k=1 Eik is also finite-

dimensional. This is a contradiction. �

7. indecomposable systems of three subspaces

Gelfand and Ponomarev ([GP]) claimed that there exist only nine,
finite-dimensional, indecomposable systems of three subspaces. We
shall include a direct proof of it. We do not know whether there exists
an infinite-dimensional transitive systems of three subspaces. In fact it
is still an unsolved problem whether there exists a transitive lattice con-
sisting of five elements in an infinite-dimensional Hilbert space. There-
fore it is worth while investigating the existence of infinite-dimensional
indecomposable systems of three subspaces.

Proposition 7.1. Let S = (H ;E1, E2, E3) be an indecomposable sys-
tem of three subspaces. If H is infinite dimensional, then Ei 6= 0 and
Ei 6= H for i = 1, 2, 3.

Proof. On the contrary suppose that E1 = 0. Then S ′ = (H ;E2, E3)
is an indecomposable system of two subspaces. Hence by Proposition
5.1, H is finite dimensional. This is a contradiction. Hence E1 6= 0.
Similary Ei 6= 0 and Ei 6= H for i = 1, 2, 3. �

Theorem 7.2. Let S = (H ;E1, E2, E3) be an indecomposable system
of three subspaces in a Hilbert space H. Then the following hold.
(1)If H is infinite-dimensional, then for any i 6= j, Ei ∩ Ej = 0 and
Ei + Ej is a non-closed dense subspace of H. In particular each Ei is
infinite-dimensional.
(2)[GP] If H is finite-dimensional, then S is isomorphic to one of the
following eight commutaitve systems S1, . . . ,S8 and one non-commutative
system S9:

S1 = (C; 0, 0, 0), S2 = (C;C, 0, 0), S3 = (C; 0,C, 0),

S4 = (C; 0, 0,C), S5 = (C;C,C, 0), S6 = (C;C, 0,C),

S7 = (C; 0,C,C), S8 = (C;C,C,C), S9 = (C2;C(1, 0),C(0, 1),C(1, 1)).

Proof. If dimH = 1, then S is commutative. Hence if S is isomorphic
to one of S1, . . . ,S8. Therefore we may assume that S is indecom-
posable and dimH ≥ 2. Then, by Proposition 6.1, for any i 6= j,
Ei ∩ Ej = 0 and Ei + Ej is a dense subspace of H . We claim that if
E1 + E2 = H , then H is finite-dimensional and S is isomorphic to S9.
It is enough to show the claim to prove the theorem. In fact, assume
that the claim holds. (1)If H is infinite-dimensional, then E1 + E2 is
not closed. Similarly for any i 6= j, Ei + Ej is not closed. (2)If H is
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finite-dimensional, then E1+E2 = H . Thus S is isomorphic to S9. We
shall show the claim. Since E1 ∩E2 = 0 and E1+E2 = H , there exists
T ∈ B(H)−1 such that T (E1) = E1 and T (E2) = E⊥

1 . Therefore we
may assume that E2 = E⊥

1 to show the claim. Considering the canoni-
cal decomposition for two subspaces E1 and E3, we have the following
descripton of three subspaces:

E1 = (E1 ∩ E3)⊕ Im

(

1 0
0 0

)

⊕ (E1 ∩ E
⊥
3 )⊕ 0⊕ 0,

E3 = (E1 ∩ E3)⊕ Im

(

c2 cs
cs s2

)

⊕ 0⊕ (E⊥
1 ∩ E3)⊕ 0,

E2 = E⊥
1 = 0⊕ Im

(

1 0
0 0

)

⊕ 0⊕ (E⊥
1 ∩ E3)⊕ (E⊥

1 ∩ E⊥
3 ),

where the underlying Hilbert space H is decomposed into five parts

H = (E1 ∩ E3)⊕ (K ⊕K)⊕ (E1 ∩ E
⊥
3 )⊕ (E⊥

1 ∩ E3)⊕ (E⊥
1 ∩ E⊥

3 ).

If two parts of the above five parts were non-zero, then S can be de-
composed non-trivially. This contradicts to that S is indecompos-
able. Hence only one of the above five parts is non-zero. If the
part K ⊕ K = 0, then S is commutative. Since S is indecompos-
able, dimH = 1. This contradicts to that dimH ≥ 2. Hence the
only the part K ⊕ K 6= 0. If dimK = 1, then it is clear that S
is isomorphic to S9. If dimK ≥ 2, then there exists a projection
p ∈ B(K) with 0 6= p 6= IK satisfying p commute with c and s.
Let H1 := Im(p ⊕ p) ⊂ K ⊕ K = H and H2 := H⊥

1 ∩ H . Let
p1, e1, e2, e3 ∈ B(H) be the projections of H onto H1, E1, E2, E3 re-
spectively. Since non-trivial projection p1 commute with e1, e2 and e3,
S is decomposable by Lemma 3.2. This is a contradiciton. Hence the
case that dimK ≥ 2 does not occur. We have shown the claim. �

8. operator systems

We can associate a system of four subspaces for any operator.
Definition. (bounded operator system) We say that a system S =
(H ;E1, E2, E3, E4) of four subspaces is a bounded operator system if
there exist a Hilbert spaceK1, K2 and bounded operators T : K1 → K2,
S : K2 → K1 such that H = K1 ⊕K2 and

E1 = K1 ⊕ 0, E2 = 0⊕K2,

E3 = {(x, Tx); x ∈ K1}, E4 = {(Sy, y); y ∈ K2}.

We denote by ST,S the above operator system S. We often identify E1

with K1 and E2 with K2. In particular we associate an operator system
ST := ST,I = (H ;E1, E2, E3, E4) for any single operator T ∈ B(K) such
that H = K ⊕K and

E1 = K ⊕ 0, E2 = 0⊕K,E3 = {(x, Tx); x ∈ K}, E4 = {(y, y); y ∈ K}.
15



We shall study a relation between the system ST of four subspaces
and a single operator T .

Proposition 8.1. Let ST,S = (H ;E1, E2, E3, E4) be a bounded operator
system associated with T : K1 → K2 and S : K2 → K1. Then

End(ST,S) = {A1 ⊕A2 ∈ B(H);A1 ∈ B(K1), A2 ∈ B(K2),

A1S = SA2, A2T = TA1}, and

Idem(ST,S) = {A1 ⊕ A2 ∈ B(H);A1 ∈ B(K1), A2 ∈ B(K2),

A1S = SA2, A2T = TA1, A
2
1 = A1, A

2
2 = A2}

Proof. Let A ∈ End(S). Since A(E1) ⊂ E1 and A(E2) ⊂ E2, we have
A = A1⊕A2 for some A1 ∈ B(K1), A2 ∈ B(K2). Since A(E3) ⊂ E3, for
any x ∈ K1, (A1 ⊕ A2)(x, Tx) ∈ E3. Thus (A1x,A2Tx) = (y, Ty) for
some y ∈ K2. Therefore A2Tx = TA1x. Thus A2T = TA1. Similarly
A(E3) ⊂ E3 implies A1S = SA2. The converse is clear. We get the
equality for Idem(S) immediately. �

Corollary 8.2. Let ST = (H ;E1, E2, E3, E4) be a bounded operator
system associated with a single operator T ∈ B(K). Then

End(ST ) = {B ⊕B ∈ B(H);B ∈ B(K), BT = TB}, and

Idem(ST ) = {B ⊕B ∈ B(H);B ∈ B(K), BT = TB,B2 = B}.

Definition. Recall that a bounded operator T on a Hilbert space K is
called strongly irreducible if there do not exist two non-trivial subspaces
M ⊂ K and N ⊂ K such that T (M) ⊂M , T (N) ⊂ N ,M∩N = 0 and
M + N = K. We also see that T is strongly irreducible if and only if
there does not exist any non-trivial idempotent P such that PT = TP .
See a monograph [JW] by Jiang and Wang.

Corollary 8.3. Let ST = (H ;E1, E2, E3, E4) be a bounded operator
system associated with a single operator T ∈ B(K). Then ST is inde-
composable if and only if T is strongly irreducible.

Example. Let K = ℓ2(N) and S ∈ B(K) be the unilateral shift. Let
P ∈ B(K) be an idempotent which commutes with S. Then P is a
lower triangular Toeplitz matrix. Since P is an idempotent, we have
P = 0 or P = I as in Lemma 10.1. Thus S is strongly irreducible, as
already known, for example, in [JW], and SS is indecomposable.

Corollary 8.4. Let ST = (H ;E1, E2, E3, E4) be a bounded operator
system associated with a single operator T ∈ B(K). If ST is decompos-
able, then T has a non-trivial invariant subspace.
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Proof. Let ST be decomposable. Then there exists a non-trivial idem-
potent P such that PT = TP . Then ImP is a non-trivial invariant
subspace. �

Proposition 8.5. Let ST = (H ;E1, E2, E3, E4) and ST ′ = (H ′;E ′
1, E

′
2,

E ′
3, E

′
4) be bounded operator systems associated with operators T ∈

B(K) and T ′ ∈ B(K ′). Then ST and ST ′ are isomorphic if and only if
T and T ′ are similar.

Proof. Assume that ST and ST ′ are isomorphic. Then there exists a
bounded invertible operator A : H → H ′ with A(Ei) = E ′

i for i =
1, 2, 3, 4. Since A(Ei) = E ′

i for i = 1, 2, 4, we have A = B ⊕ B for
some invertible operator B : K → K ′. And A(E3) ⊂ E3 implies that
BT = T ′B, that is, T and T ′ are similar. The converse is clear. �

Remark. The above proposition shows that the classification of sys-
tems of four subspaces contains the classification of operators up to
similarity in a certain sense.
Example.(an uncountable family of indecomposable systems of four
subspaces) Let K = ℓ2(N) and H = K ⊕ K. Consider a unilateral
shift S : K → K. For a parameter α ∈ C, let E1 = K ⊕ 0, E2 =
0⊕K,E3 = {(x, (S+αI)x)|x ∈ K} and E4 = {(x, x)|x ∈ K}. Then the
system Sα = (H ;E1, E2, E3, E4) of four subspaces are indecomposable.
If α 6= β, then Sα and Sβ are not isomorphic, because the spectra
σ(S + α) 6= σ(S + β) and S + αI and S + βI are not similar. Thus we
can easily construct an uncountable family (Sα)α∈C of indecomposable
systems of four subspaces.

As the single operator case, we also obtain the following:

Proposition 8.6. Let ST,S = (H ;E1, E2, E3, E4) and ST ′,S′ = (H ′;E ′
1,

E ′
2, E

′
3, E

′
4) be bounded operator systems associated with operators S ∈

B(K2, K1), T ∈ B(K1, K2), S
′ ∈ B(K ′

2, K
′
1), T

′ ∈ B(K ′
1, K

′
2) . Then

ST,S and ST ′,S′ are isomorphic if and only if there exist bounded invert-
ible operators A1 : K1 → K ′

1 and A2 : K2 → K ′
2 such that A1S = S ′A2

and A2T = T ′A1.

Proposition 8.7. Let ST,S = (H ;E1, E2, E3, E4) be a bounded operator
system associated with operators S ∈ B(K2, K1), T ∈ B(K1, K2).@Then
the orthogonal complement of the system ST,S is isomorphic to another
bounded operator system up to a permutation of subspaces and given by

S⊥
T,S

∼= σ1,2σ3,4S−S∗,−T ∗,

where σi,j is a transposition of i and j.

Proof. It is evident from the fact {(x, Tx) ∈ K1 ⊕ K2; x ∈ K1}
⊥ =

{(−T ∗y, y) ∈ K1 ⊕K2; y ∈ K2} and etc. �

Proposition 8.8. Let ST,S = (H ;E1, E2, E3, E4) be a bounded operator
system associated with operators S ∈ B(K2, K1), T ∈ B(K1, K2). If T

17



is invertible, then ST,S is isomorphic to SI,TS. If S is invertible, then
ST,S is isomorphic to SST,I.

Proof. Let T be invertible. Define an invertible operator ϕ : K1 ⊕
K2 → K2 ⊕ K2 by ϕ(x, y) = (Tx, y). Then ϕ(E1) = ϕ(K1 ⊕ 0) =
K2 ⊕ 0. ϕ(E2) = ϕ(0 ⊕ K2) = 0 ⊕ K2. Since ϕ(x, Tx) = (Tx, Tx),
ϕ(E3) = ϕ(graphT ) = {(y, y); y ∈ K2}. Because ϕ(Sy, y) = (TSy, y),
ϕ(E4) = ϕ(cographS) = {(TSy, y); y ∈ K2} = cographTS. Hence
ST,S is isomorphic to SI,TS. If S is invertible, use an invertible operator
ψ : K1 ⊕K2 → K1 ⊕K1 defined by ψ(x, y) = (x, Sy). �

Bounded operator systems can be extended to (unbounded) closed
operator systems.
Definition.(closed operator systems) We say that a system S = (H ;E1,
E2, E3, E4) of four subspaces is a closed operator system if there exist
Hilbert spaces K1, K2 and closed operators T : K1 ⊃ D(T ) → K2,
S : K2 ⊃ D(S) → K1 such that H = K1 ⊕K2 and E1 = K1 ⊕ 0,

E2 = 0⊕K2, E3 = {(x, Tx); x ∈ D(T )}, E4 = {(Sy, y); y ∈ D(S)}.

We also denote by ST,S the above operator system S.
We shall give a characterization of (densely defined) closed operator

systems.

Proposition 8.9. Let S = (H ;E1, E2, E3, E4) be a system of four
subspaces in a Hilbert space H. Then the following are equivalent:

(1) S is isomorphic to a closed operator system ST,S for some closed
operators T : E1 ⊃ D(T ) → E2 and S : E2 ⊃ D(S) → E1.

(2) E1+E2 = H and Ei∩Ej = 0 for (i, j) = (1, 2), (2, 3) and (4, 1).

Moreover if these conditions are satisfied, then D(T ) := E1∩ (E3+E2)
and D(S) := E2 ∩ (E4 + E1).

Proof. (1)⇒(2): It is trivial. (2)⇒(1): By Lemma 2.1, we may assume
that E2 = E⊥

1 . Put K1 = E1 and K2 = E2. Then H = E1 ⊕E2. Since
E3 ∩ E2 = 0, for any x1 ∈ E1 ∩ (E3 + E2), there exist unique x3 ∈ E3

and x2 ∈ E2 such that x1 = x3 − x2. Define a linear operator T : E1 ⊃
D(T ) → E2 by Tx1 = x2 with a domain D(T ) := E1∩ (E3+E2). Since
E1 + E2 = H , for any x3 ∈ E3 there exist x1 ∈ E1 and x2 ∈ E2 with
x3 = x1 + x2. This implies that graphT = E3. Hence T is a closed
operator. Similarly there exists a closed operator S : E2 ⊃ D(S) → E1

with a domain D(S) := E2 ∩ (E4 + E1). �

Corollary 8.10. Let S = (H ;E1, E2, E3, E4) be a system of four sub-
spaces in a Hilbert space H. Then the following are equivalent:

(1) S is isomorphic to a closed operator system ST,S for some densely
defined closed operators T : E1 ⊃ D(T ) → E2 and S : E2 ⊃
D(S) → E1.

(2) E1 + E2 = H and Ei ∩ Ej = 0 for (i, j) = (1, 2), (2, 3), (4, 1),
E1 ∩ (E3 + E2) is dense in E1 , E2 ∩ (E4 + E1) is dense in E2
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We immediately have a characterization of bounded operator sys-
tems.

Corollary 8.11. Let S = (H ;E1, E2, E3, E4) be a system of four sub-
spaces in a Hilbert space H. Then the following are equivalent:

(1) S is isomorphic to a bounded operator system.
(2) Ei+Ej = H and Ei ∩Ej = 0 for (i, j) = (1, 2), (2, 3) and (4, 1)

Proof. (1)⇒(2): It is trivial. (2)⇒(1): Since E3 + E2 = H , we have
D(T ) = E1 ∩ (E3 + E2) = E1. Because graphT = E3 is closed , T is
bounded by the closed graph theorem. Similarly E4 +E1 = H implies
that D(S) = E2 and S is bounded. �

Corollary 8.12. Let S = (H ;E1, E2, E3, E4) be a system of four sub-
spaces in a Hilbert space H. Then the following are equivalent:

(1) S is isomorphic to a bounded operator system associated with a
single operator.

(2) Ei+Ej = H and Ei∩Ej = 0 for (i, j) = (1, 2), (2, 3), (4, 1) and
(2, 4).

Proof. (1)⇒(2): It is trivial. (2)⇒(1): By the preceding Corollary, S
is isomorphic to a bounded operator system ST,S. Since E2 ∩ E4 = 0,
S is one to one. Since E2 + E4 = H , S is onto. Therefore ST,S is
isomorphic to a bounded operator system SST,I = SST associated with
a single operator ST by Proposition 8.8. �

Proposition 8.13. Let ST = (H ;E1, E2, E3, E4) be a bounded opera-
tor system associated with a single operator T ∈ B(K). Then ST is
transitive if and only if dimK = 1. If it is so, then ST is isomorphic
to

(C2;C⊕ 0, 0⊕ C, {(x, λx); x ∈ C}, {(x, x); x ∈ C})

for some λ ∈ C.

Proof. Recall that ST is transitive if

End(ST ) = {B ⊕B ∈ B(H);B ∈ B(K), BT = TB} = CI.

Hence ST is transitive if and only if {T}′ := {B ∈ B(K); BT = TB} =
CI if and only if dimK = 1.

�

But certain unbounded operators on an infnite dimensional Hilbert
space give transitive systems of four subspaces.

Example(Harrison-Radjavi-Rosenthal [HRR]) Let K = ℓ2(Z) and
H = K ⊕K. Let (an)n∈Z be a sequence given by an = 1 for n ≤ 0 and
an = exp((−1)nn!) for n ≥ 1. Define a bilateral weighted shift T : K ⊃
D(T ) → K by (Tx)n = an−1xn−1 with the domain D(T ) = {(xn)n ∈
ℓ2(Z);

∑

n |anxn|
2 <∞}. Let E1 = K⊕0, E2 = 0⊕K, E3 = {(x, Tx) ∈

K ⊕ K; x ∈ D(T )}, and E4 = {(x, x) ∈ K ⊕ K; x ∈ K}. Harrison,
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Radjavi and Rosenthal showed that {H,E1, E2, E3, E4, 0} is a transitive
lattice in [HRR]. Hence S = (H ;E1, E2, E3, E4) is a transitive system
of four subspaces.

We can extend their example to construct uncountably many tran-
sitive systems.

Lemma 8.14. Let ST = (H ;E1, E2, E3, E4) and ST ′ = (H ′;E ′
1, E

′
2, E

′
3,

E ′
4) be closed operator systems associated with operators T : D(T ) →

K, T ′ : D(T ′) → K ′. Then ST and ST ′ are isomorphic if and only if
T and T ′ are similar.

Proof. The proof is as same as bounded operators if we see the domains
of the closed operators carefully. �

Example. Let K = ℓ2(Z) and H = K ⊕ K. For a fixed number
α > 1, let (wn)n∈Z = (wn(α))n∈Z be a sequence given by wn = 1 for
n ≤ 0 and wn = exp((−α)n)for (n ≥ 1). Define a bilateral weighted
shift Tα : K ⊃ Dα → K by (Tαx)n = wn−1xn−1 with the domain
Dα = {(xn)n ∈ ℓ2(Z);

∑

n |wnxn|
2 <∞}. Let E1 = K ⊕ 0, E2 = 0⊕K,

Eα
3 = {(x, Tαx) ∈ K ⊕K; x ∈ Dα, and E4 = {(x, x) ∈ K ⊕K; x ∈ K}.

Proposition 8.15. If α > 1, then the above system Sα = (H ;E1, E2, E
α
3 ,

E4) is a transitive system. Furthermore if α 6= β, then Sα and Sβ are
not isomorphic.

Proof. Let V ∈ Hom(Sα,Sβ). Since V (Ei) ⊂ Ei for i = 1, 2, 4, V =

A⊕ A for some A = (aij)ij ∈ B(K). Since V (Eα
3 ) ⊂ Eβ

3 and en ∈ Dα,

(A⊕ A)(en, Tαen) = (Aen, ATαen) ∈ Eβ
3 .

Hence ATαen = TβAen. Comparing (m + 1)-th component, we have
wn(α)am+1,n+1 = wm(β)am,n, that is,

am+1,n+1 =
wm(β)

wn(α)
am,n.

Therefore for any k ∈ N,

am+k,n+k =
wm(β) . . . wm+k−1(β)

wn(α) . . . wn+k−1(α)
am,n = exp(ck(m,n))am,n,

where

ck(m,n) = ((−β)m + · · ·+ (−β)m+k−1)− ((−α)n + · · ·+ (−α)n+k−1)

=
(−β)m(1− (−β)k)

1 + β
−

(−α)n(1− (−α)k)

1 + α
.

(i)(the case when α = β): Putting n = m, we have ck(m,m) = 0.
Hence the diagonal of A is constant. If A were not a multiple of the
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identitiy, then there exist distinct m and n with am,n 6= 0. According
to m < n or m > n, for a sufficient large k,

ck(m,n) = ((−α)m + · · ·+ (−α)n)− ((−α)m+k−1 + · · ·+ (−α)n+k−1)

or

ck(m,n) = −((−α)n + · · ·+ (−α)m) + ((−α)n+k−1 + · · ·+ (−α)m+k−1).

In either case we have lim supk ck(m,n) = ∞. Hence am+k,n+k is not
bounded as k → ∞. This contradicts to that A is bounded. Therefore
A is a scalar. We have shown that Sα is a transitive system.
(ii)the case when α 6= β: We may and do assume that 1 < α < β. If A
were not equal to 0, then there exist m and n with am,n 6= 0. Since

ck(m,n) =
(−β)m(1− (−β)k)

1 + β
{1−

(−α)n(1 + β)(1− (−α)k)

(−β)m(1 + α)(1− (−β)k)
} ,

we have lim supk ck(m,n) = ∞. This contradicts to that A is bounded.
Therefore A = 0. We have shown that Hom(Sα,Sβ) = 0. Therefore
Sα and Sβ are not isomorphic. �

Proposition 8.16. Let ST,S = (H ;E1, E2, E3, E4) be a bounded oper-
ator system associated with operators S ∈ B(K2, K1), T ∈ B(K1, K2).
Then S is transitive if and only if S is isomorphic to (C;C, 0,C, 0),
(C; 0,C, 0,C), (C2;C⊕0, 0⊕C, {(x, x); x ∈ C}, 0⊕C) or (C2;C⊕0, 0⊕
C, {(x, λx); x ∈ C}, {(x, x); x ∈ C}) for some λ ∈ C.

Proof. Suppose that S = ST,S is transitive. If dimH = 1, then S is
isomorphic to (C;C, 0,C, 0) or (C; 0,C, 0,C). We assume that dimH ≥
2. Since ST ⊕ TS ∈ End(ST,S) and S is transitive, there exists λ ∈ C

such that ST = λIK1
and TS = λIK2

.
In the case that λ 6= 0, T and S are invertible and S = λT−1. By

Proposition 8.8, ST,S is isomorphic to SλIK1
,IK1

. Applying Proposition
8.13, S is isomorphic to

(C2;C⊕ 0, 0⊕ C, {(x, λx); x ∈ C}, {(x, x); x ∈ C})

for some λ ∈ C.
In the case that λ = 0, we have ST = 0 and TS = 0. Since SS∗ ⊕

S∗S, T ∗T ⊕ TT ∗ ∈ End(ST,S) and S is transitive, we have SS∗ =
αIK1

, S∗S = αIK2
, T ∗T = βIK1

and TT ∗ = βIK2
. Because ST = 0,

αβ = 0. Hence α = 0 or β = 0, so that S = 0 or T = 0. If T =
0, then a subsystem (H ;K1 ⊕ 0, 0 ⊕ K2, {(Sy, y); y ∈ K2}) of three
subspaces is transitive. Since dimH ≥ 2, the subsystem is isomorphic
to (C2;C⊕0, 0⊕C, {(x, x); x ∈ C}). Hence S is isomorphic to (C2;C⊕
0, 0⊕C,C⊕0, {(x, x); x ∈ C}) . Similarly if S = 0, then S is isomorphic
to (C2;C⊕ 0, 0⊕ C, {(x, x); x ∈ C}, 0⊕ C). The converse is clear. �
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9. classification theorem by Gelfand-Ponomarev

One of the main problem to attack is a classification of indecompos-
able systems S = (H ;E1, E2, E3, E4) of four subspaces in a Hilbert
space H . In the case when H is finite-dimensional, Gelfand and Pono-
marev completely classified indecomposable systems and gave a com-
plete list of them in [GP]. The important numerical invariants are
dim H and the defect defined by

ρ(S) :=

4
∑

i=1

dim Ei − 2dim H.

Theorem 9.1 (Gelfand-Ponomarev [GP]). The set of possible values
of the defect ρ(S) for indecomposable systems S of four subspaces in a
finite-dimensional space is exactly the set {−2,−1, 0, 1, 2}.

The defect characterizes an essential feature of the system. If ρ(S) =
0, then S is isomorphic to a bounded operator system up to permuta-
tion of subspaces , that is, there exists a permutation σ on {1, 2, 3, 4}
and a pair of linear operators A : E → F and B : F → E such that
H = E⊕F , Eσ(1) = E⊕0, Eσ(2) = 0⊕F , Eσ(3) = {(x,Ax) ∈ H ; x ∈ E}
and E4 = {(By, y) ∈ H ; y ∈ F}. If ρ(S) = ±1, S is represented up
to permutation by H = E ⊕ F , E1 = E ⊕ 0, E2 = 0 ⊕ F , E3 and E4

are subspaces of H that do not reduced to the graphs of the operators
as in the case that ρ(S) = 0. A system with ρ(S) = ±2 cannot be
described in the above forms.

Following [GP], we recall the canonical forms of indecomposable sys-
tems S = (H ;E1, E2, E3, E4) of four subspaces in a finite-dimensional
spaceH up to permutation in the following: (A) the case when dim H =
2k for some positive integer k.

There exist no indecomposable systems S with ρ(S) = ±2. Let H
be a space with a basis {e1, . . . , ek, f1, . . . , fk}.
(1)S3(2k,−1) = (H ;E1, E2, E3, E4) with ρ(S) = −1

H = [e1, . . . , ek, f1, . . . , fk],

E1 = [e1, . . . , ek], E2 = [f1, . . . , fk],

E3 = [(e2 + f1), . . . , (ek + fk−1)],

E4 = [(e1 + f1), . . . , (ek + fk)].

(2)S3(2k, 1) = (H ;E1, E2, E3, E4) with ρ(S) = 1

H = [e1, . . . , ek, f1, . . . , fk],

E1 = [e1, . . . , ek], E2 = [f1, . . . , fk],

E3 = [e1, (e2 + f1), . . . , (ek + fk−1), fk],

E4 = [(e1 + f1), . . . , (ek + fk)].
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(3)S1,3(2k, 0) = (H ;E1, E2, E3, E4) with ρ(S) = 0

H = [e1, . . . , ek, f1, . . . , fk],

E1 = [e1, . . . , ek], E2 = [f1, . . . , fk],

E3 = [e1, (e2 + f1), . . . , (ek + fk−1)],

E4 = [(e1 + f1), . . . , (ek + fk)].

(4)S(2k, 0;λ) = (H ;E1, E2, E3, E4) with ρ(S) = 0

H = [e1, . . . , ek, f1, . . . , fk],

E1 = [e1, . . . , ek], E2 = [f1, . . . , fk],

E3 = [(e1 + λf1), (e2 + f1 + λf2), . . . , (ek + fk−1 + λfk)],

E4 = [(e1 + f1), . . . , (ek + fk)].

Every other system Si(2k, ρ), Si,j(2k, 0) can be obtained from the
systems S3(2k, ρ), Si,3(2k, 0) by a suitable permutation of the sub-
spaces. Let σi,j be the transposition (i, j). We put Si(2k, ρ) = σ3,iS3(2k, ρ)
for ρ = −1, 1. We also define Si,j(2k, 0) = σ1,iσ3,jS1,3(2k, 0) for i, j ∈
{1, 2, 3, 4}.
(B)the case dim H = 2k + 1 is odd for some integer k ≥ 0 . Let H be
a space with a basis {e1, . . . , ek, ek+1, f1, . . . , fk}.
(5)S1(2k + 1,−1) = (H ;E1, E2, E3, E4) with ρ(S) = −1

H = [e1, . . . , ek, ek+1, f1, . . . , fk],

E1 = [e1, . . . , ek, ek+1], E2 = [f1, . . . , fk],

E3 = [(e2 + f1), . . . , (ek+1 + fk)],

E4 = [(e1 + f1), . . . , (ek + fk)].

(6)S2(2k + 1, 1) = (H ;E1, E2, E3, E4) with ρ(S) = 1

H = [e1, . . . , ek, ek+1, f1, . . . , fk],

E1 = [e1, . . . , ek, ek+1], E2 = [f1, . . . , fk],

E3 = [e1, (e2 + f1), . . . , (ek+1 + fk)],

E4 = [(e1 + f1), . . . , (ek + fk), ek+1].

(7)S1,3(2k + 1, 0) = (H ;E1, E2, E3, E4) with ρ(S) = 0

H = [e1, . . . , ek, ek+1, f1, . . . , fk],

E1 = [e1, . . . , ek, ek+1], E2 = [f1, . . . , fk],

E3 = [e1, (e2 + f1), . . . , (ek+1 + fk)],

E4 = [(e1 + f1), . . . , (ek + fk)].

(8)S(2k + 1,−2) = (H ;E1, E2, E3, E4) with ρ(S) = −2

H = [e1, . . . , ek, ek+1, f1, . . . , fk],

E1 = [e1, . . . , ek], E2 = [f1, . . . , fk],

E3 = [(e2 + f1), . . . , (ek+1 + fk)],

E4 = [(e1 + f2), . . . , (ek−1 + fk), (ek + ek+1)].
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(9)S(2k + 1, 2) = (H ;E1, E2, E3, E4) with ρ(S) = 2

H = [e1, . . . , ek, ek+1, f1, . . . , fk],

E1 = [e1, . . . , ek, ek+1], E2 = [f1, . . . , fk, ek+1],

E3 = [e1, (e2 + f1), . . . , (ek+1 + fk)],

E4 = [f1, (e1 + f2), . . . , (ek−1 + fk), (ek + ek+1)].

We put Si(2k + 1,−1) = σ1,iS1(2k + 1,−1), Si(2k + 1,+1) =
σ2,iS2(2k + 1, 1), Si,j(2k + 1, 0) = σ1,iσ3,jS1,3(2k + 1, 0) for i, j ∈
{1, 2, 3, 4}.

Theorem 9.2 (Gelfand-Ponomarev [GP]). If a system S of four sub-
spaces in a finite-dimensional H is indecomposable, then S is isomor-
phic to one of the following systems:

Si,j(m, 0), (i < j, i, j ∈ {1, 2, 3, 4}, m = 1, 2, ...); S(2k, 0;λ), (λ ∈
C, λ 6= 0, λ 6= 1, k = 1, 2, ...), Si(m,−1), Si(m, 1), (i ∈ {1, 2, 3, 4}, m =
1, 2, ...); S(2k + 1,−2), S(2k + 1,+2), (k = 0, 1, ...).

Remark.It is known that if S is an indecomposable system of four sub-
spaces in the above Theorem satisfying ρ(S) 6= 0, then S is transitive,
for example, see [B].

10. exotic indecomposable systems of four subspaces

In this section we shall construct uncountably many, exotic, inde-
composable systems of four subspaces, that is, indecomposable sys-
tems which are not isomorphic to any closed operator system under
any permutaion of subspaces.

Exotic examples. Let L = ℓ2(N) with a standard basis {e1, e2, . . . }.
Put K = L⊕L and H = K⊕K = L⊕L⊕L⊕L. Consider a unilateral
shift S : L→ L by Sen = en+1 for n = 1, 2, . . . . For a fixed paramater
γ ∈ C with |γ| ≥ 1, we consider an operator

Tγ =

(

γS∗ I
0 S

)

∈ B(K) = B(L⊕ L).

Let E1 = K ⊕ 0, E2 = 0⊕K,
E3 = {(x, Tγx) ∈ K⊕K; x ∈ K}+C(0, 0, 0, e1) = graphTγ+C(0, 0, 0, e1),
and E4 = {(x, x) ∈ K ⊕ K; x ∈ K}. Consider a system Sγ =
(H ;E1, E2, E3, E4). We shall show that Sγ is indecomposable. If
|γ| > 1, then Sγ is not isomorphic to any closed operator systems under
any permutation. We could regard the system Sγ is a one-dimensional
“deformation” of an operator system. First we start with an easy fact.

Lemma 10.1. Assume that a bounded operator A ∈ B(ℓ2(N)) is rep-
resented as an upper triangular matrix A = (aij)ij by a standard basis
{e1, e2, . . . }. If the diagonal is constant λ, i.e., aii = λ for i = 1, . . . ,
and A is an idempotent, then A = 0 or A = I.
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Proof. Put N = A − λI. Then N is an upper triangular matrix with
zero diagonal. Comparing the diagonals for

λI +N = A = A2 = λ2I + 2λN +N2,

we have λ2 = λ. Hence λ = 0 or 1. If λ = 0, then N2 = N . Since N
is an idempotent and an upper triangular matrix with zero diagonal,
N = 0, that is, A = 0. If λ = 1, then (I −A) is an idempotent and an
upper triangular matrix with zero diagonal, I −A = 0, that is, A = I.

�

Theorem 10.2. If |γ| ≥ 1, then the above system Sγ = (H ;E1, E2, E3, E4)
is indecomposable.

Proof. We shall show that {V ∈ End(Sγ);V
2 = V } = {0, I}. Let

V ∈ End(Sγ) satisfy V
2 = V . Since V (Ei) ⊂ Ei for i = 1, 2, 4, we have

V =

(

U 0
0 U

)

∈ B(H) for some U ∈ B(K)

We write

U =

(

A B
C D

)

∈ B(K),

for some A = (aij)ij, B = (bij)ij, C = (cij)ij, D = (dij)ij ∈ B(K). We
shall investigate the condition that V (E3) ⊂ E3. Since E3 = graphTγ+
C(0, 0, 0, e1), E3 is spanned by

{









e1
0
0
0









,









em
0

γem−1

0









,









0
en
en
en+1









,









0
0
0
e1









;m = 2, 3, . . . , n = 1, 2, . . . }.

We may write

E3 = {









(λn)n
(µn)n

(γλn+1 + µn)n
(α, (µn)n)









;λn, µn, α ∈ C,
∑

n

|λn|
2 <∞,

∑

n

|µn|
2 <∞}

Since (e1, 0, 0, 0) ∈ E3, we have








A B 0 0
C D 0 0
0 0 A B
0 0 C D

















e1
0
0
0









=









Ae1
Ce1
0
0









=









(λm)m
(µm)m

(γλm+1 + µm)m
(α, (µm)m)









∈ E3.

Then, for any m = 1, 2, . . . , we have cm1 = µm = 0. Moreover 0 =
γλm+1 + µm = γλm+1. Hence λm+1 = 0 because γ 6= 0. Therefore
am+1,1 = λm+1 = 0. Thus the first column of C is zero and the first
column of A is zero except a11. We shall show that C = 0 and A
is an upper triangular Toeplitz matrix with by the induction of n-th
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columns.@ The case when n = 1 is already shown. Assume that the
assertion hold for n-th columns. Since (en+1, 0, γen, 0) ∈ E3, we have









A B 0 0
C D 0 0
0 0 A B
0 0 C D

















en+1

0
γen
0









=









Aen+1

Cen+1

γAen
γCen









=









(λm)m
(µm)m

(γλm+1 + µm)m
(α, (µm)m)









∈ E3.

Then cm,n+1 = µm = γcm+1,n = 0. And γam,n = γλm+1 + µm = γλm+1.
Since γ 6= 0, am,n = λm+1 = am+1,n+1. Thus we have shown that
C = 0 and A is an upper triangular Toeplitz matrix. Since V is an
idempotent, so is

U =

(

A B
0 D

)

.

Hence A is also an idempotent. By Lemma 10.1, we have two cases
A = 0 or A = I.
(i)the case A = 0: we shall show that B = D = 0. This immediately
implies U = 0, so that V = 0.
(ii)the case A = I: Since I − V ∈ End(Sγ) is is also an idempotent
and it can be reduced to the case (i) and we have V = I.

Hence we may assume that A = 0. Since U is an idempotent, D is
also an idempotent. Since (0, 0, 0, e1) ∈ E3, we have









0 B 0 0
0 D 0 0
0 0 0 B
0 0 0 D

















0
0
0
e1









=









0
0
Be1
De1









=









(λm)m
(µm)m

(γλm+1 + µm)m
(α, (µm)m)









∈ E3.

Then, for any m = 1, 2, . . . , we have µm = λm = 0. Hence bm1 =
γλm+1 + µm = 0 and dm+1,1 = µm = 0. Thus the first column of B is
zero and the first column of D is zero except d11. We shall show that
D is an upper triangular Toeplitz matrix by the induction of n−th
columns.@ The case when n = 1 is already shown. Assume that the
assertion hold for n−th columns. Since (0, en, en, en+1) ∈ E3,









0 B 0 0
0 D 0 0
0 0 0 B
0 0 0 D

















0
en
en
en+1









=









Ben
Den
Ben+1

Den+1









=









(λm)m
(µm)m

(γλm+1 + µm)m
(α, (µm)m)









∈ E3.

We have dm+1,n+1 = µm = dmn. Hence D is an upper triangular
Toeplitz matrix. Since D is also an idempotent, D = O or D = I
by Lemma 10.1.

If D = 0, then U = U2 = 0. Thus B = 0, and the assertion is
verified. We shall show that the case when D = I will not occur. On
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the contrary, suppose that D = I. We have

V









0
0
0
e1









=









0 B 0 0
0 I 0 0
0 0 0 B
0 0 0 I

















0
0
0
e1









=









0
0
Be1
e1









=









(λm)m
(µm)m

(γλm+1 + µm)m
(α, (µm)m)









∈ E3.

Then, for any m = 1, 2, . . . , we have µm = λm = 0. Hence bm1 =
γλm+1+µm = 0 Thus the first column of B is zero. We shall show that
B should be the following form by the induction of n−th columns:

B =











































0 1 0 γ 0 γ2 0 γ3 0 · · ·
0 0 1 0 γ 0 γ2 0 γ3 · · ·

0 0 0 1 0 γ 0 γ2 0
. . .

0 0 0 0 1 0 γ 0 γ2
. . .

0 0 0 0 0 1 0 γ 0
. . .

0 0 0 0 0 0 1 0 γ
. . .

0 0 0 0 0 0 0 1 0
. . .

0 0 0 0 0 0 0 0 1
. . .

0 0 0 0 0 0 0 0 0
. . .

...
...

...
...

...
...

...
. . .

. . .
. . .











































,

that is, bij = γk−1 if j > i and j − i = 2k − 1, and bij = 0 if otherwise.
The case when n = 1 is already shown. Assume that the assertion

hold for n-th columns. Since








0 B 0 0
0 I 0 0
0 0 0 B
0 0 0 I

















0
en
en
en+1









=









Ben
en

Ben+1

en+1









=









(λm)m
(µm)m

(γλm+1 + µm)m
(α, (µm)m)









∈ E3,

for any m = 1, 2, . . . , we have µm = δm,n. And

bm,n+1 = γλm+1 + µm = γλm+1 + δm,n,

that is,

((n+ 1)-th column of B) = γS∗(n -th column of B) + en.

By the induction we have shown that B is the above form. But then

‖B∗e1‖
2 = ‖(the first row of B)‖2 =

∞
∑

k=1

|γ|2(k−1) = ∞,

because |γ| ≥ 1. This contradicts to that B is bounded. Therefore
D 6= I. This finishes the proof. �

Theorem 10.3. If |β| ≥ 1, |γ| ≥ 1 and |β| 6= |γ|, then the above

systems Sβ = (H ;E1, E2, E
β
3 , E4) and Sγ = (H ;E1, E2, E

γ
3 , E4) are not

isomorphic.
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Proof. On the contrary, suppose that there were an isomorphism V :
Sβ → Sγ . We shall show a contradiction. We may and do assume that
|β| > |γ|. Since V (Ei) = Ei for i = 1, 2, 4, we have

V =

(

U 0
0 U

)

∈ B(H) for some invertible U ∈ B(K)

We write

U =

(

A B
C D

)

∈ B(K),

for some A = (aij)ij , B = (bij)ij , C = (cij)ij , D = (dij)ij ∈ B(K).

We shall investigate the condition that V (Eβ
3 ) = Eγ

3 . Since Eβ
3 =

graphTβ + C(0, 0, 0, e1), E
β
3 is spanned by

{









e1
0
0
0









,









em
0

βem−1

0









,









0
en
en
en+1









,









0
0
0
e1









;m = 2, 3, . . . , n = 1, 2, . . . }.

We also write

Eγ
3 = {









(λn)n
(µn)n

(γλn+1 + µn)n
(α, (µn)n)









;λn, µn, α ∈ C,
∑

n

|λn|
2 <∞,

∑

n

|µn|
2 <∞}.

Since (e1, 0, 0, 0) ∈ Eβ
3 , we have

0 6=









A B 0 0
C D 0 0
0 0 A B
0 0 C D

















e1
0
0
0









=









Ae1
Ce1
0
0









=









(λm)m
(µm)m

(γλm+1 + µm)m
(α, (µm)m)









∈ Eγ
3 .

Then, for any m = 1, 2, . . . , we have cm1 = µm = 0. Moreover 0 =
γλm+1 + µm = γλm+1. Hence λm+1 = 0 because γ 6= 0. Therefore
am+1,1 = λm+1 = 0. Thus the first column of C is zero and the first
column of A is zero except a11. Since Ae1 6= 0, a11 6= 0. We shall show
that C = 0 and A is an upper triangular matrix satisfying

ai+1,j+1 =
β

γ
aij if i ≤ j

and aij = 0 if i > j, by the induction of n-th columns.@ The case
when n = 1 is already shown. Assume that the assertion hold for n-th
columns. Since (en+1, 0, βen, 0) ∈ Eβ

3 , we have








A B 0 0
C D 0 0
0 0 A B
0 0 C D

















en+1

0
βen
0









=









Aen+1

Cen+1

βAen
βCen









=









(λm)m
(µm)m

(γλm+1 + µm)m
(α, (µm)m)









∈ Eγ
3 .
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Then we have cm,n+1 = µm = βcm+1,n = 0. Moreover

βam,n = γλm+1 + µm = γλm+1 = γam+1,n+1.

Since γ 6= 0, am+1,n+1 = β
γ
am,n. This completes the induction. Then

we have

|ann| = |
β

γ
|n−1|a11| → ∞,

because a11 6= 0 and |β
γ
| > 1. But This contradicts to that the operator

A is bounded. Therefore Sβ and Sγ are not isomorphic. �

Next we shall show that if γ > 1, then Sγ is not isomorphic to any
closed operator system. We introduce a necessary criterion for the
purpose.

Definition(intersection diagram) Let S = (H ;E1, E2, E3, E4) be a sys-
tem of fours subspaces. The intersection diagram for a system S is an
undirected graph ΓS = (Γ0

S ,Γ
1
S) with the set of vertices Γ0

S and the set
of edges Γ1

S defined by Γ0
S = {1, 2, 3, 4} and for i 6= j ∈ {1, 2, 3, 4}

◦i ◦j if and only if Ei ∩ Ej = 0.

Lemma 10.4. Let S = ST,S = (H ;E1, E2, E3, E4) be a closed operator
system. Then the intersection diagram ΓS for the system S contains

◦4 ◦1 ◦2 ◦3 ,

that is, E4 ∩E1 = 0, E1 ∩E2 = 0 and E2 ∩E3 = 0. In particular, then
the intersection diagram ΓS is a connected graph.

Proof. It follows form Proposition 8.9. �

Proposition 10.5. If γ > 1, then the system Sγ is not isomorphic to
any closed operator system under any permutation of subspaces.

Proof. It is clear that E4∩E1 = 0, E1∩E2 = 0 and E2∩E4 = 0. Since
(e1, 0, 0, 0) ∈ E1∩E3, we have E1∩E3 6= 0. Because (0, 0, 0, e4) ∈ E2∩
E3, we have E2 ∩ E3 6= 0. Since |γ| > 1, a := (1, γ−1, γ−2, γ−3, ..., ) ∈
ℓ2(N). Then (a, 0, a, 0) ∈ E3 ∩ E4, so that E3 ∩ E4 6= 0. Therefore
the vertex 3 is not connected to any other vertices 1, 2, 4. Thus the
intersection diagram ΓS is not a connected graph. This implies that Sγ
is not isomorphic to any closed operator system under any permutation
of subspaces. �

Combining the preceeding two propositions , we have the existence of
uncountably many, exotic, indecomposable systems of four subspaces.

Theorem 10.6. There exists uncountably many, indecomposable sys-
tems of four subspaces which are not isomorphic to any closed operator
system under any permutation of subspaces.

Proof. A family {Sγ; γ > 1, γ ∈ R} of indecomposable systems above
is a desired one. �
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11. Defects for systems of four subspaces.

Gelfand and Ponomarev introduced an integer valued invariant ρ(S),
called defect, for a system S = (H ;E1, E2, E3, E4) of four subspaces by

ρ(S) =

4
∑

i=1

dimEi − 2 dimH.

They showed that if a system of four subspaces is indecomposable, then
the possible value of the defect ρ(S) is one of five values {−2,−1, 0, 1, 2}
We shall extend their notion of defect for a certain class of systems
relating with Fredholm index.

Let S = (H ;E1, E2, E3, E4) be a system of four subspaces. We first
introduce elementary numerical invariants

mij = dim(Ei ∩ Ej) and mijk = dim(Ei ∩ Ej ∩ Ek).

Similarly put

nij = dim((Ei + Ej)
⊥) and nijk = dim((Ei + Ej + Ek)

⊥).

If S is indecomposable and dimH ≥ 2, then mijk = 0 and nijk = 0 by
Proposition 6.1.

If H is finite dimensional, then

dimEi + dimEj − dimH

= dim(Ei + Ej) + dim(Ei ∩ Ej)− (dim(Ei + Ej) + dim((Ei + Ej)
⊥))

= dim(Ei ∩ Ej)− dim((Ei + Ej)
⊥)

In order to make the numerical invariant unchanged under any per-
mutation of subspaces, counting 4C2 = 6 pairs of subspaces

(E1, E2), (E1, E3), (E1, E4), (E2, E3), (E2, E4), (E3, E4),

we have the following expression of the defect:

ρ(S) =

4
∑

i=1

dimEi − 2 dimH

=
1

3

∑

1≤i<j≤4

(dimEi + dimEj − dimH)

=
1

3

∑

1≤i<j≤4

(dim(Ei ∩ Ej)− dim((Ei + Ej)
⊥)).

Definition Let S = (H ;E1, E2, E3, E4) be a system of four subspaces.
For any distinct i, j = 1, 2, 3, 4, define an adding operator

Aij : Ei ⊕Ej ∋ (x, y) → x+ y ∈ H.

Then
KerAij = {(x,−x) ∈ Ei ⊕ Ej ; x ∈ Ei ∩ Ej}
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and

ImAij = Ei + Ej.

We say S = (H ;E1, E2, E3, E4) is a Fredholm system if Aij is a Fred-
holm operator for any i, j = 1, 2, 3, 4 with i 6= j. Then ImAij = Ei+Ej
is closed and

IndexAij = dimKerAij−dimKerA∗
ij = dim(Ei∩Ej)−dim((Ei+Ej)

⊥).

T. Kato called the number dim(Ei ∩ Ej)− dim((Ei + Ej)
⊥) the index

of the pair Ei, Ej in ([K];IV section 4).
Definition We say S = (H ;E1, E2, E3, E4) is a quasi-Fredholm system
if Ei ∩ Ej and (Ei + Ej)

⊥ are finite-dimensional for any i 6= j. In the
case we define the defect ρ(S) of S by

ρ(S) :=
1

3

∑

1≤i<j≤4

(dim(Ei ∩ Ej)− dim(Ei + Ej)
⊥))

=
1

3

∑

1≤i<j≤4

(dim(Ei ∩ Ej)− codimEi + Ej)

which coincides with the Gelfand-Ponomarev original defect if H is
finite-dimensional. Moreover, if S is a Fredholm system, then it is a
quasi-Fredholm system and

ρ(S) =
1

3

∑

1≤i<j≤4

IndexAij.

Proposition 11.1. Let ST = (H ;E1, E2, E3, E4) be a bounded operator
system associated with a single operator T ∈ B(K). Then ST is a
Fredholm system if and only if T and T − I are Fredholm operators. If
the condition is satisfied, then the defect is given by

ρ(ST ) =
1

3
(Index T + Index(T − I))

Similarly ST is a quasi-Fredholm system if and only if KerT , Ker T ∗,
Ker(T − I) and Ker(T − I)∗ are finte-dimensional. If the condition is
satisfied, then the defect is given by

ρ(ST ) =
1

3
(dimKerT−dimKer T ∗+dimKer(T−I)−dimKer(T−I)∗)

Proof. It is clear that Ei ∩ Ej = 0 and Ei + Ej = H for (i, j) =
(1, 2), (1, 4), (2, 4), (2, 3). Since KerA13 = E1 ∩ E3 = Ker T ⊕ 0 and
(ImA13)

⊥ = (E1 + E3)
⊥ = (K ⊕ ImT )⊥, they are finite-dimensional if

and only if KerT and (ImT )⊥ = Ker T ∗ are finite-dimensional. And
ImA13 is closed if and only if ImT is closed. We transform E3 and E4

by an invertible operator R =

(

I 0
−I I

)

∈ B(H) = B(K ⊕K) , then
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R(E3) = {(x, (T − I)x) ∈ K ⊕K; x ∈ K} and R(E4) = K ⊕ 0. Hence
R(E3 ∩E4) = Ker(T − I)⊕ 0 and R(E3 +E4) = K ⊕ Im(T − I). Then

dim((E3 + E4)
⊥) = codim E3 + E4

= codim R(E3) +R(E4)) = dim((R(E3 + E4))
⊥)

Thus E3 ∩ E4 and (E3 + E4)
⊥ are finite-dimensional if and only if

Ker(T − I) and (Im(T − I))⊥ = Ker(T − I)∗ are finite-dimensional.
And ImA13 = E3 + E4 is closed if and only if Im(T − I) is closed. It
follows the desired conclusion. �

We shall show that the defect could have a fractional value.
Example. Let S be a unilateral shift on K = ℓ2(N). Then the opera-
tor system SS is an indecomposable. It is not a Fredholm system but a
quasi-Fredholm system and ρ(SS) = −1

3
. The operator system SS+ 1

2
I

is a Fredholm system and ρ(SS+ 1

2
I) = −2

3
. Moreover (ST+αI)α∈C is un-

countable family of indecomposable , quasi-Fredholm systems. Fred-
holm systems among them and their defect are given by

ρ(SS+αI) =











−2
3
, (|α| < 1 and |α− 1| < 1)

−1
3
, (|α| < 1 and |α− 1| > 1) or (|α| > 1 and |α− 1| < 1)

0, (|α| > 1 and |α− 1| > 1).

Corollary 11.2. Let ST = (H ;E1, E2, E3, E4) be a bounded operator
system associated with a single operator T ∈ B(K). If ST is a Fredholm
system, then ST ∗ is a Fredholm system and ρ(ST ∗) = −ρ(ST ). Similarly
If ST is a quasi-Fredholm system then ST ∗ is a quasi-Fredholm system
and ρ(ST ∗) = −ρ(ST ).

Proof. Use the fact that T is Fredholm if and only if T ∗ is a Fredholm,
and then Index T ∗ = − Index T . �

Proposition 11.3. Let S = (H ;E1, E2, E3, E4) be a system of four
subspaces. If S is a Fredholm system, then the orthogonal complement
S⊥ = (H ;E⊥

1 , E
⊥
2 , E

⊥
3 , E

⊥
4 ) is a Fredholm system and ρ(S⊥) = −ρ(S).

Similarly if S is a quasi-Fredholm system then S⊥ is a quasi-Fredholm
system and ρ(S⊥) = −ρ(S).

Proof. Recall elementary facts that E⊥
i ∩E⊥

j = (Ei +Ej)
⊥ and (E⊥

i +

E⊥
j )

⊥ = Ei ∩ Ej . The only non-trivial thing is to know that Ei + Ej
is closed if and only if E⊥

i + E⊥
j is closed, see, for example, ([K];IV

Theorem 4.8). �

Example. For γ ∈ C with |γ| ≥ 1, let Sγ = (H ;E1, E2, E3, E4) be
an exotic system of four subspaces in Theorem 10.2. Then Sγ is a
quasi-Fredholm system and

ρ(Sγ) =
1

3
(IndexA13 + IndexA23 + IndexA34) =

1

3
(1 + 1 + 1) = 1.
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In fact, E1 ∩E3 = C(e1, 0, 0, 0), E2 ∩E3 = C(0, 0, 0, e1) and E4 ∩E3 =
C(a, 0, a, 0), where a = (γn−1)n ∈ L = ℓ2(N). All the other terms are
zeros.

Definition. Let S = (H ;E1, E2, E3, E4) be a system of four subspaces.
We say that S is non-degenerate if Ei + Ej = H and Ei ∩ Ej = 0 for
i 6= j. Then S is clearly a Fredholm system with the defect ρ(S) = 0.
Thus the defect measures the failure from being non-degenerate.

Proposition 11.4. Let S = (H ;E1, E2, E3, E4) be a system of four
subspaces. Then S is non-degenerate if and only if S⊥ is non-degenerate.

Proof. It follows from the fact that Ei+Ej = H if and only if E⊥
i ∩E

⊥
j =

0. �

Proposition 11.5. Let ST,S be a bounded operator system. Then ST,S
is a Fredholm system if and only if S, T and ST − I are Fredholm
operators. And if the condition is satisfied, then

ρ(ST,S) =
1

3
(Index T + IndexS + Index(ST − I)).

Proof. It is clear that Ei ∩ Ej = 0 and Ei + Ej = H for (i, j) =
(1, 2), (1, 4), (2, 3). Since KerA13 = E1∩E3 = Ker T⊕0 and (ImA13)

⊥ =
(E1 + E3)

⊥ = (K1 ⊕ ImT )⊥, they are finite-dimensional if and only if
Ker T and (ImT )⊥ = Ker T ∗ are finite-dimensional. And ImA13 is
closed if and only if ImT is closed. Similarly KerA24 = E2 ∩ E4 =
0 ⊕ KerS and (ImA24)

⊥ = (E2 + E4)
⊥ = (ImS ⊕K2)

⊥. Hence they
are finite-dimensional if and only if KerS and (ImS)⊥ = KerS∗ are
finite-dimensional. And ImA24 is closed if and only if ImS is closed.
Nextly,

KerA34 = E3 ∩ E4 = {(x, Tx) ∈ K1 ⊕K2; x ∈ Ker(ST − I)}.

ImA34 = {

(

x+ Sy
Tx+ y

)

; x ∈ K1, y ∈ K2} =

(

I S
T I

)(

x
y

)

; x ∈ K1, y ∈ K2}.

Multiplying invertible operator matrices from both sides, we have
(

I −S
0 I

)(

I S
T I

)(

I 0
−T I

)

=

(

I − ST 0
0 I

)

.

Hence ImA34 is closed if and only if Im(ST−I) is closed, and (ImA34)
⊥

is finite-dimensional if and only if (Im(ST − I))⊥ is finite-dimensional.
Now it is easy to see the desired conclusons. �

Let S and S ′ be two quasi-Fredholm systems of four subspaces. Then
it is evident that S ⊕ S ′ is also a quasi-Fredholm system and

ρ(S ⊕ S ′) = ρ(S) + ρ(S ′).

Therefore we should investigate the possible values of the defect for
indecomposable systems.
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Theorem 11.6. The set of the possible values of the defect of inde-
composable systems of four subspaces is exactly Z/3

Proof. Let S be a unilateral shift on L = ℓ2(N). Let K = L⊗ C
n and

H = K ⊕K. For a positive integer n, put

V =













S 0 0 · · · 0
I S 0 · · · 0
0 I S · · · 0
...

...
. . .

. . .
...

0 0 · · · I S













∈Mn(C)⊗ B(L) = B(K).

Let SV = (H ;E1, E2, E3, E4) be the operator system associated with
a single operator V . We shall show that SV is indecomposable. Let
T = (Tij)ij ∈ B(K) be an idempotent which commutes with V . It is
enough to show that T = 0 or T = I.

Since V T = TV , we have

ST11 = T11S + T12, . . . ST1(n−1) = T1(n−1)S + T1n, T1nS = ST1n.

By the Kleinecke-Shirokov theorem, T1n is a quasinilpotent. Since T1n
commutes with a unilateral shift S, T1n is a Toeplitz operator. Then
‖T1n‖ = r(T1n) = 0. Thus T1n = 0 by [Ha3]. Inductively we can show
that T12 = T13 = · · · = T1n = 0. Similar argument shows that T is a
lower triangular operator matrix, i.e., Tij = 0 for i < j. Since T 2 = T,
we have T 2

ii = Tii for i = 1, · · · , n. The diagonal of V T = TV shows
that each Tii commutes with a unilatral shift S. This implies that
Tii = 0 or I as in Lemma 10.1.
(i)the case that T11 = 0: The 2-1th component of V T = TV shows that
T22 = ST21−T21S. Hence T22 cannot be I. Thus T22 = 0. Similarly we
can show that Tii = 0 for i = 1, . . . , n. Thus the diagonal of operator
matrix T is zero. Furthermore T is a lower triangular operator matrix
and idempotent. Hence T = O.
(ii) the case that T11 = I: Considering I − T instead of T , we can use
the case (i) and shows that T = I. Therefore SV is indecomposable.

The defect is given by

ρ(SV ) =
1

3
(dimKer V − dimKerV ∗ + dimKer(V − I)− dimKer(V − I)∗)

=
1

3
(0− n+ 0− 0) =

−n

3
.

In fact,

Ker V ∗ = {(a,−S∗a, (−S∗)2a, . . . , (−S∗)n−1) ∈ (ℓ2(N))n; a ∈ KerS∗n}

is n-dimensional.
Similarly SV ∗ is an indecomposable system with ρ(SV ∗) = n

3
.

For n = 0, consider an indecomposable system SS+3I as in Example
after Proposition 11.1. Then ρ(SS+3I) = 0.
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Therefore the defect for indecomposable systems of four subspaces
can take any value in Z/3. �

Remark. Indecomposablity of the system SV can also be derived by
Theorem 3.4 in [JW], although we give our direct proof.

Corollary 11.7. For any n ∈ Z there exist uncountable family of inde-
composable systems S of four subspaces with the same defect ρ(S) = n

3
.

Proof. For a positive integer n, consider a family (SV +αI)α∈(0,1) and
(SV ∗+αI)α∈(0,1) of bounded operator systems similarly as in the above
theorem. Then any SV+αI is also indecomposable and

ρ(SV+αI) =
1

3
(0− n + 0− 0) =

−n

3
.

If α 6= β, then the spectrum σ(V +αI) 6= σ(V + βI) . Since V +αI
and V + βI are not similar, SV+αI and SV +βI are not isomorphic each
other.

We also have ρ(SV ∗+αI) = n
3
.@ And they are not isomorphic each

other.
For n = 0, consider a family (SS+3I+αI)α∈[0,1] in Example after Propo-

sition 8.5. They are indecomposable , not isomorphic each other and
ρ(SS+3I+αI) = 0. �

12. Coxeter functors

In [GP] Gelfand and Ponomarev introduced two functors Φ+ and
Φ− on the category of systems S of n subspaces in finite-dimensional
vector spaces. They used the functors Φ+ and Φ− to give a complete
classification of indecomposable systems of four subspaces with defect
ρ(S) 6= 0 in finite-dimensional vector spaces. If the defect ρ(S) <
0, then there exists a positive integer ℓ such that (Φ+)ℓ−1(S) 6= 0
and (Φ+)ℓ(S) = 0. Combining the facts that indecomposable systems
T with Φ+(T ) = 0 can be classified easily and that S is isomorphic
to (and recovered as) (Φ−)ℓ−1(Φ+)ℓ−1(S), they provided a complete
classification. A similar argument holds for systems S with defect
ρ(S) > 0.

In their argument the finiteness of dimension is used crucially. In fact
if an indecomposable system S = (H ;E1, E2, E3, E4) with dimH > 1
satisfies that the defect ρ(S) < 0, then Φ+(S) = (H+;E+

1 , E
+
2 , E

+
3 , E

+
4 )

has the property that dimH+ < dimH . The property guarantees the
existence of a positive integer ℓ such that (Φ+)ℓ(S) = 0. Although
we can not expect such an argument anymore in the case of infinite-
dimensional space, these functors Φ+ and Φ− are interesting on their
own right. Therefore we shall extend these functors Φ+ and Φ− on
infinite-dimensional Hilbert spaces and show that the Coxeter functors
preserve the defect and indecomposability under certain conditions.
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Definition.(Coxeter functor Φ+) Let Sysn be the category of the
systems of n subspaces in Hilber spaces and homomorphisms. Let
S = (H ;E1, . . . , En) be a system of n subspaces in a Hilbert space H .
Let R := ⊕n

i=1Ei and

τ : R ∋ x = (x1, . . . , xn) 7−→ τ(x) =
n

∑

i=1

xi ∈ H.

Define S+ = (H+;E+
1 , . . . , E

+
n ) by

H+ := Ker τ and E+
k := {(x1, . . . , xn) ∈ H+; xk = 0}.

Let T = (K;F1, . . . , Fn) be another system of n subspaces in a Hilbert
space K and ϕ : S → T be a homomorphism. Since ϕ : H → K is a
bounded linear operator with ϕ(Ei) ⊂ Fi, we can define a bounded lin-
ear operator ϕ+ : H+ → K+ by ϕ+(x1, . . . , xn) = (ϕ(x1), . . . , ϕ(xn)).
Since ϕ+(E+

i ) ⊂ F+
i , ϕ

+ define a homomorphism ϕ+ : S+ → T +. Thus
we can introduce a covariant functor Φ+ : Sysn → Sysn by

Φ+(S) = S+ and Φ+(ϕ) = ϕ+.

Example.If S = (C;C,C,C), then S+ ∼= (C2;C(1, 0),C(0, 1),C(1, 1)).

Lemma 12.1. Let S = (H ;E1, E2, E3, E4) be a system of four sub-
spaces and consider S+ = (H+;E+

1 , E
+
2 , E

+
3 , E

+
4 ) . Then

E+
1 ∩ E+

2 = {(0, 0, a,−a) ∈ ⊕4
i=1Ei; a ∈ E3 ∩ E4}.

In particular, we have dimE+
1 ∩ E+

2 = dimE3 ∩ E4. Same formulae
hold under permutation of subspaces.

Proof. Let x = (x1, x2, x3, x4) ∈ E+
1 ∩ E+

2 , then x1 = x2 = 0. Since
x ∈ H+, τ(x) = x3 + x4 = 0. Thus a := x3 = −x4 ∈ E3 ∩ E4 and
x = (0, 0, a,−a). The converse inclusion is clear. �

Lemma 12.2. Let S = (H ;E1, E2, E3, E4) be a system of four sub-
spaces and consider S+ = (H+;E+

1 , E
+
2 , E

+
3 , E

+
4 ) . If E3 ∩ E4 = 0

and E3 + E4 = H, then E+
1 + E+

2 = H+. Same formulae hold under
permutation of subspaces.

Proof. Let z = (z1, z2, z3, z4) ∈ H+. Put y1 := z1 and x2 := z2. Since
E3 + E4 = H , there exist y3 ∈ E3 and y4 ∈ E4 such that −y1 =
y3 + y4. Since y1 + y3 + y4 = 0, y := (y1, 0, y3, y4) ∈ H+. Similarly
there exist x3 ∈ E3 and x4 ∈ E4 such that −x2 = x3 + x4, so that
x := (0, x2, x3, x4) ∈ H+.

Since z ∈ H+, z1 + z2 + z3 + z4 = 0. Hence

z3 + z4 = −z1 − z2 = −y1 − y2

= (y3 + y4) + (x3 + x4) = (x3 + y3) + (x4 + y4) ∈ E3 + E4.

Because E3∩E4 = 0, we have z3 = x3+ y3 and z4 = x4+ y4. Therefore
z = x+ y ∈ E+

3 + E+
4 . �
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Example. Let SS,T = (H ;E1, E2, E3, E4) be a bounded operator sys-
tem. Combining the preceding two lemmas Lemma 12.1 and Lemma
12.2 with a characterization of bounded operator systems in Corollary
8.11, we have that S+ = (H+;E+

1 , E
+
2 , E

+
3 , E

+
4 ) is a bounded operator

system up to permutation of subspaces. More precisely, (H+;E+
3 , E

+
4 ,

E+
1 , E

+
2 ) is a bounded operator system.

Let 0⊕ Ei ⊕ 0 := 0⊕ · · · ⊕ 0⊕Ei ⊕ 0⊕ · · · ⊕ 0 ⊂ R and qi ∈ B(R)
be the projection onto 0 ⊕ Ei ⊕ 0. Let ı+ : H+ → R be a canonical
embedding. Then we have an exact sequence:

0 −→ H+ ı+
−→ R

τ
−→ H

Furthermore we have

Ker τqi = Ker qi, Ei = Im τqi = Im τqi and E+
i = Ker qiı+.

These properties characterize S+ = (H+;E+
1 , E

+
2 , E

+
3 , E

+
4 ) .

Proposition 12.3. Let X, Y and Z be Hilbert spaces and T : X → Y
and S : Y → Z be bounded linear maps. Suppose that a sequence

0 −→ X
T

−→ Y
S

−→ Z.

is exact. Let p1, ..., pn ∈ B(Y ) be projections with
∑

i pi = I and
pipj = 0 for i 6= j. Furthermore we assume that

KerSpi = Ker pi and ImSpi is closed in Z.

Let Ei := ImSpi ⊂ Z and E ′
i := Ker piT ⊂ X. Define S = (Z;E1, . . . , En)

and S ′ = (X ;E ′
1, . . . , E

′
n). Then S ′ ∼= Φ+(S)

Proof. Consider the restriction Si := S|Im pi : Im pi → ImSpi. Since
KerSpi = Ker pi, Si is one to one. Because ImSpi is closed, ImSpi
is complete. Therefore Si is an invertible operator by open mapping
theorem. Define ϕ : Y = ⊕n

i=1 Im pi → ⊕n
i=1Ei by ϕ((yi)i) = (Si(yi))i

for (yi)i ∈ ⊕n
i=1 Im pi.Then ϕ is an invertible operator. Consider τ :

⊕n
i=1Ei → Z given τ((zi)i) =

∑n
i=1 zi. Let Z+ = Ker τ and ı+ : Z+ →

⊕n
i=1Ei be a canonical embedding. Then τϕ = S. Define ψ : X → Z+

by ψ(x) = ϕT (x) for x ∈ X . The map ψ is well-defined, because
τ(ψ(x)) = τ(ϕT (x)) = ST (x) = 0. Then the following diagram

0 −−−→ X
T

−−−→ Y
S

−−−→ Z

ψ





y

ϕ





y
idZ





y

0 −−−→ Z+ ı+
−−−→ ⊕n

i=1Ei
τ

−−−→ Z

is commutative. Furthermore maps ψ and ϕ are invertible operators.
Let qi ∈ B(⊕n

i=1Ei) be a projection onto 0⊕Ei⊕0. Then qi = ϕpiϕ
−1,

E+
i = Ker(qiı+) and E ′

i = Ker(piT ). Therefore ψ(E ′
i) = E+

i . Thus
ψ : S ′ → Φ+(S) is a desired isomorphism. �
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Definition.(Coxeter functor Φ−) In [GP] Gelfand and Ponomarev in-
troduced a dual functor Φ− using quotients of vector spaces. If H
is a Hilbert space and K a subspace of H , then it is convenient to
identify the quotient space H/K with the orthogonal complement K⊥.
Therefore we shall generalize their functor Φ− in terms of orthogonal
complements instead of quotients in our case of Hilbert spaces. Let
S = (H ;E1, . . . , En) be a system of n subspaces in a Hilbert space H .
Let e⊥i ∈ B(H) be the projection onto E⊥

i ⊂ H . Let Q := ⊕n
i=1E

⊥
i and

µ : H ∋ x 7−→ µ(x) = (e⊥1 x, . . . , e
⊥
nx) ∈ Q.

Then µ∗ : Q → H is given by µ∗(y1, . . . , yn) =
∑n

i=1 yi. Define H− :=
Kerµ∗ ⊂ Q. Let ı− : H− → Q be a canonical embedding. Then
q− := ı∗− : Q → H− is the projection. Let 0 ⊕ E⊥

i ⊕ 0 := 0 ⊕ . . . 0 ⊕
E⊥
i ⊕ 0 · · · ⊕ 0 ⊂ Q and ri ∈ B(Q) be the projection onto 0⊕E⊥

i ⊕ 0.
Define S− = (H−;E−

1 , . . . , E
−
n ) by

E−
i := q−(0⊕ E⊥

i ⊕ 0) = Im q−ri ⊂ H−.

We note that

H− := Kerµ∗ = Q ∩ (Imµ)⊥ ∼= Q/Imµ.

We have an exact sequence

0 −→ H− ı−
−→ Q

µ∗

−→ H

and a sequence

H
µ

−→ Q
q−
−→ H− −→ 0,

satisfying that Imµ = Ker q− and q− is onto. Thus it is easy to see that
our definition of S− = (H−;E−

1 , . . . , E
−
n ) coincides with the original one

by Gelfand and Ponomarev up to isomorphism in the case of finite-
dimensional spaces.

Define Φ−(S) := S− = (H−;E−
1 , . . . , E

−
n ). Then there is a relation

between S+ and S−. We recall some elementary facts first.

Lemma 12.4. Let H and K be Hilbert spaces and M a closed subspace
of H. Let T : H → K be a bounded operator. Consider T ∗ : K → H.
Then T (M⊥) = ((T ∗)−1(M))⊥ ⊂ K.

Lemma 12.5. Let L be a Hilbert space and M , K closed subspaces
of L. Let PK ∈ B(L) be the projection onto K. Then PK(M⊥) =
K ∩ (K ∩M)⊥.

Proof. By the preceding lemma,

(PK(M⊥))⊥ = P−1
K (M) = {x ∈ L;PKx ∈M}.

Decompose x ∈ L such that x = x1 + x2 with x1 ∈ K, x2 ∈ K⊥.
Then PKx ∈ M if and only if x1 ∈ M . Therefore (PK(M⊥))⊥ =

(K ∩M) +K⊥. Thus PK(M⊥) = K ∩ (K ∩M)⊥. �
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Proposition 12.6. Let S = (H ;E1, . . . , En) be a system of n subspaces
in a Hilbert space H. Then we have

Φ−(S) = Φ⊥Φ+Φ⊥(S).

Proof. Since Φ⊥(S) = (H ;E⊥
1 , . . . , E

⊥
n ), we have

Φ+Φ⊥(S) = (H ′; (E⊥
1 )

+, . . . , (E⊥
n )

+),

where H ′ = {(y1, . . . , yn) ∈ ⊕n
i=1E

⊥
i ; y1 + · · ·+ yn = 0}. Therefore we

have H ′ = H−.
Applying the preceding Lemma by putting L = ⊕n

i=1E
⊥
i , M =

{(y1, . . . , yn) ∈ L; yk = 0} and K = H− ⊂ L, we have

E−
k = q−(0⊕ E⊥

k ⊕ 0) = PK(M⊥) = K ∩ (K ∩M)⊥ = H− ∩ ((E⊥
k )

+)⊥.

Therefore (E−
k )

⊥ = (E⊥
k )

+ in H−. Hence Φ⊥Φ−(S) = Φ+Φ⊥(S). This
implies the conclusion. �

Let S = (H ;E1, . . . , En) be a system of n subspaces in a Hilbert
space H and T = (K;F1, . . . , Fn) be another system of n subspaces
in a Hilbert space K. Let ϕ : S → T be a homomorphism, i.e.,
ϕ : H → K is a bounded linear operator with ϕ(Ei) ⊂ Fi. Define
ϕ− : Φ−(S) → Φ−(T ) by

ϕ− := Φ⊥Φ+Φ⊥(ϕ).

Thus we can introduce a covariant functor Φ− : Sysn → Sysn by

Φ−(S) = S− and Φ−(ϕ) = ϕ−.

Remark. Let S = (H ;E1, . . . , En) be a system of n subspaces in
a Hilbert space H . Let R := ⊕n

i=1Ei and τ : R → H is given by
τ(x) =

∑n
i=1 xi. Let H0 := Ker τ and q0 : R → H0 be the canonical

projection. Define E0
k := q0(0⊕ Ek ⊕ 0). Let S0 := (H0;E0

1 , . . . , E
0
n)

and Φ0(S) = S0. Then we have

Φ+(S) = Φ⊥Φ0(S) and Φ−(S) = Φ0Φ⊥(S).

Furthermore

Φ−Φ+(S) = (Φ0)2(S) and Φ+Φ−(S) = Φ⊥(Φ0)2Φ⊥(S).

Suppose that H is finite-dimensional. Then

dimH0 = dimKer τ = dimR − dim Im τ =
∑

i

dimEi − dim(
∑

i

Ei)

In particular, if S = (H ;E1, E2, E3, E4) is an indecomposable system
of four subspaces with dimH ≥ 2, then dimH0 =

∑

i dimEi − dimH
and the defect

ρ(S) =
∑

i

dimEi − 2 dimH = dimH0 − dimH.
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We shall characterize Φ−(S). The following fact is useful: Let H and
K be Hilbert spaces and T : H → K be a bounded linear operator.
Then ImT is closed in K if and only if ImT ∗ is closed in H .

Proposition 12.7. Let U, V and W be Hilbert spaces and A : U → V
and B : V →W be bounded linear operators. Suppose that a sequence

U
A

−→ V
B

−→ W −→ 0

is exact. Let p1, ..., pn ∈ B(V ) be projections with
∑

i pi = I and
pipj = 0 for i 6= j. Furthermore we assume that

Im piA is closed in V and Im piA = Im pi.

Let L′
i := ImBpi ⊂W and Li := Ker piA ⊂ U . Define S = (U ;L1, . . . , Ln)

and S ′ = (W ;L′
1, . . . , L

′
n). Then S ′ ∼= Φ−(S)

Proof. Since ImB =W is closed, ImB∗ ⊂ V is also closed. Then

ImB∗ = (KerB)⊥ = (ImA)⊥ = KerA∗

and KerB∗ = (ImB)⊥ =W⊥ = 0. Hence the dual sequence

0 −→W
B∗

−→ V
A∗

−→ U

is exact. We shall apply Proposition 12.3 by putting X = W , Y = V ,
Z = U , T = B∗ and S = A∗. We can check the assumption of the
Proposition. In fact,

KerSpi = KerA∗pi = (Im piA)
⊥ = (Im pi)

⊥ = Ker pi,

and ImSpi = ImA∗pi = Im(piA)
∗ is closed, because Im(piA) is closed.

Let

Ei := ImSpi = Im(piA)
∗ = (Ker piA)

⊥ = (Li)
⊥ ⊂ U

and

E ′
i := Ker piT = Ker piB

∗ = (ImBpi)
⊥ = (L′

i)
⊥ ⊂ W.

Then (X ;E ′
1, . . . , E

′
n)

∼= Φ+(Z;E1, . . . , En), that is, we have

(W ; (L′
1)

⊥, . . . , (L′
n)

⊥) ∼= Φ+(U ; (L1)
⊥, . . . , (Ln)

⊥).

Thus (S ′)⊥ ∼= Φ+(S⊥). Hence

S ′ ∼= Φ⊥Φ+Φ⊥(S) = Φ−(S).

�

Proposition 12.8. Let S and T be systems of n subspaces in a Hilbert
space H. Then we have Φ+(S ⊕ T ) ∼= Φ+(S)⊕ Φ+(T ),

Φ−(S ⊕ T ) ∼= Φ−(S)⊕ Φ−(T ), and Φ⊥(S ⊕ T ) ∼= Φ⊥(S)⊕ Φ⊥(T ).

Proof. It is straightforward to prove them. �
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Definition. Let S = (H ;E1, . . . , En) be a system of n subspaces in a
Hilbert space H . Then S is said to be reduced from above if for any
k = 1, . . . , n

∑

i 6=k

Ei = H.

In particular we have Ek ⊂
∑

i 6=k Ei. Similarly S is said to be reduced
from below if for any k = 1, . . . , n

∑

i 6=k

E⊥
i = H.

In particular we have E⊥
k ⊂

∑

i 6=k E
⊥
i and ∩i 6=kEi = 0

It is evident taht S ⊕ T is reduced from above if and only if both S
and T are reduced from above. Similarly S ⊕T is reduced from below
if and only if both S and T are reduced from below.

Example.(1) Any bounded operator system is reduced from above and
reduced from below. In fact E1 +E2 = H , E1 +E4 = H , E2 +E4 = H
and E⊥

1 + E⊥
2 = H , E⊥

1 + E⊥
4 = H , E⊥

2 + E⊥
4 = H .

(2)The exotic examples in section 10 are reduced from above and re-
duced from below.

We shall show a duality theorem between Coxeter functors Φ+ and
Φ−.

Theorem 12.9. Let S = (H ;E1, . . . , En) be a system of n subspaces
in a Hilbert space H. Suppose that S is reduced from above. Then we
have

Φ−Φ+(S) ∼= S.

Proof. Let R = ⊕n
i=1Ei. Consider a sequence

H+ ı+
−→ R

τ
−→ H−→0.

Since S is reduced from above, Im τ =
∑n

i=1Ei = H . Thus the above
sequence is exact. Let pi ∈ B(R) be the projection onto 0 ⊕ Ei ⊕ 0.
We shall apply Proposition 12.7 by putting U = H+, V = R, W = H ,
A = ı+ and B = τ . We can check the assumption of the proposition.
In fact, since S is reduced from above, for any xk ∈ Ek, there exist
xi ∈ Ei for i 6= k such that xk =

∑

i 6=k−xi. Then
∑n

i=1 xi = 0, that is,

x := (xi)i ∈ H+. Then

pkA(x) = 0⊕ xk ⊕ 0 ∈ 0⊕Ek ⊕ 0.

Thus Im pkA = 0 ⊕ Ek ⊕ 0 = Im pk and Im pkA is closed. Therefore
(W ;L′

1, . . . , L
′
n)

∼= Φ−(U ;L1, . . . , Ln) . Since

L′
k = ImBpk = Im τpk = Ek
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and
Lk = Ker pkA = Ker pkı+ = E+

k ,

we have

S = (H ;E1, . . . , En) ∼= Φ−(H+;E+
1 , . . . , E

+
n ) = Φ−Φ+(S).

�

Similarly we have the follwoing:

Theorem 12.10. Let S = (H ;E1, . . . , En) be a system of n subspaces
in a Hilbert space H. Suppose that S is reduced from below. Then we
have

Φ+Φ−(S) ∼= S.

Proof. If S is reduced from below, then S⊥ is reduced from above.
Hence Φ−Φ+(S⊥) ∼= S⊥. Then

S ∼= Φ⊥Φ−Φ+Φ⊥(S) = Φ⊥Φ−Φ⊥Φ⊥Φ+Φ⊥(S) = Φ+Φ−(S).

�

@

Proposition 12.11. Let S = (H ;E1, . . . , En) be a system of n sub-
spaces in a Hilbert space H. Then Φ+(S) = 0 if and only if for any
k = 1, . . . , n

Ek ∩ (
∑

i 6=k

Ei) = 0.

Proof. It is easy to see that Φ+(S) = 0 if and only if for any xi ∈ Ei
with i = 1, . . . , n

∑

i xi = 0 imples x1 = · · · = xn = 0. The latter
condition is equal to that Ek ∩ (

∑

i 6=k Ei) = 0 for any k = 1, . . . , n. �

The above conditon Ek ∩ (
∑

i 6=k Ei) = 0 for any k = 1, . . . , n is
something like an opposite of that S is reduced from above.

Proposition 12.12. Let S = (H ;E1, . . . , En) be a system of n sub-
spaces in a Hilbert space H. Then Φ+(S) = 0 and

∑n
i=1Ei is closed in

H if and only if (H ;E1, . . . , En, (
∑n

i=1Ei)
⊥) is isomorphic to a system

of direct sum decomposition, that is, there is an orthogonal direct sum
decomposition K = ⊕n+1

i=1Ki of a Hilbert space K and (H ;E1, . . . , En,
(
∑n

i=1Ei)
⊥) is isomorphic to a system (K;K1, . . . , Kn+1), in particular

S is isomorphic to a commutative system.

Proof. Assume that Φ+(S) = 0 and
∑n

i=1Ei is closed in H . Let En+1 =
(
∑n

i=1Ei)
⊥. Let R := ⊕n+1

i=1 Ei andKi := 0⊕· · ·⊕0⊕Ei⊕0⊕· · ·⊕0 ⊂ R.
Define ϕ : K → H by ϕ((xi)i) =

∑

i xi. Then the bounded operator ϕ
is onto, because

∑n
i=1Ei is closed in H . Since Φ+(S) = 0, ϕ is one to

one by the preceding proposition. It is clear that ϕ(Ki) = Ei. Hence
(H ;E1, . . . , En+1) is isomorphic to (K;K1, . . . , Kn+1). The converse
and the rest are trivial. �
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Example. Let T ∈ B(K) be a positive operator with dense range and
ImT 6= K. Let H = K ⊕K, E1 = K ⊕ 0 and E2 = graphT . Put S =
(H ;E1, E2). Then Φ+(S) = 0 and (E1 + E2)

⊥ = 0. But (H ;E1, E2, 0)
is not isomorphic to a system of direct sum decomposition. In fact
E1 + E2 = K ⊕ Im T is not closed.

We also have the following:

Proposition 12.13. Let S = (H ;E1, . . . , En) be a system of n sub-
spaces in a Hilbert space H Then Φ−(S) = 0 if and only if for any
k = 1, . . . , n

E⊥
k ∩ (

∑

i 6=k

E⊥
i ) = 0.

Proposition 12.14. Let S = (H ;E1, . . . , En) be a system of n sub-
spaces in a Hilbert space H. If S is reduced from above and S 6= 0,
then Φ+(S) 6= 0. Similarly if S is reduced from below and S 6= 0, then
Φ−(S) 6= 0.

Proof. Suppose that Ei = 0 for any i = 1, . . . , n. Then H =
∑n−1

i=1 Ei =
0. This contradicts to that S 6= 0. Therefore Ek 6= 0 for some k. Since
∑

i 6=k Ei = H , for a non-zero xk ∈ Ek, there exist xi ∈ Ek for i 6= k such

that −xk =
∑

i 6=0 xi. Therefore x := (x1, . . . , xn) ∈ H+ is non-zero,

that is, Φ+(S) 6= 0. The other is similarly proved. �

Remark. By Proposition 6.1, if a system of n subspaces S = (H ;E1, . . . ,
En) is indecomposable and dimH ≥ 2, then for any distinct n-1 sub-
spaces Ei1 , . . . , Ein−1

, we have that

n−1
⋂

k=1

Eik = 0 and
n−1
∨

k=1

Eik = H,

that is,
n−1
∑

k=1

E⊥
ik
= H and

n−1
∑

k=1

Eik = H,

Unless H is finite-dimensional, these conditions seems to be weaker
than that S is reduced from below and above.

Remark. Let S = (H ;E1, . . . , En) be a system of n subspaces in a
Hilbert space H and consider S+ = (H+;E+

1 , . . . , E
+
n ). Then for any

distinct n-1 subspaces E+
i1
, . . . , E+

in−1
, we have that

n−1
⋂

k=1

E+
ik
= 0.

In fact, for example, let (x1, . . . , xn) ∈ ∩n−1
k=1E

+
k . Then x1 = x2 = · · · =

xn−1 = 0. Since (x1, . . . , xn) ∈ H+, we have
∑n

i=1 xk = 0. Hence
xn = 0. Thus ∩n−1

k=1E
+
k = 0.
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On the other hand the above condition implies that

n−1
∑

k=1

(E+
ik
)⊥ = H+.

This condition is a little weaker than that S+ is reduced from below
unless H is finite dimensional.

Conider S− = Φ⊥Φ+Φ⊥(S) similarly. Then we have

n−1
∑

k=1

E−
ik
= H−.

The condition is a little weaker than that S− is reduced from above
unless H is finite dimensional.

Theorem 12.15. Let S = (H ;E1, . . . , En) be a system of n subspaces
in a Hilbert space H. Suppose that S is reduced from above and S+ =
Φ+(S) is reduced from below. If S is indecomposable, then Φ+(S) is
also indecomposable.

Proof. On the contrary suppose that S+ were decomposable. Then
there exist non-zero systems T1 and T2 of n subspaces such that S+ =
T1 ⊕ T2. Since S is reduced from above,

S ∼= Φ−Φ+(S) = Φ−(T1)⊕ Φ−(T1),

by a duality Theorem 12.9. Since S+ = Φ+(S) is reduced from below,
T1 and T2 are also reduced from below. By another duality Theorem
12.10, Φ+Φ−(Ti) ∼= Ti for i = 1, 2. Since Ti 6= 0, we have Φ−(Ti) 6= 0.
(We could use Propsition 12 instead.) This implies that S is decom-
posable. This is a contradiction. Therefore S+ is indecomposable. �

Example. Let Sγ = (H ;E1, E2, E3, E4) be an exotic example in section
10. Since Ei + Ej = H and Ei ∩ Ej = 0 for distinct i, j ∈ {1, 2, 4}, we
have E+

k +E
+
m = H and E+

k ∩E
+
m = 0 for distinct k,m ∈ {3, 4} or k,m ∈

{1, 3} or k,m ∈ {2, 3} by Lemma 12.1 and Lemma 12.2. Since E+
k +

E+
m = H is closed, (E+

k )
⊥+(E+

m)
⊥ is closed. Hence (E+

k )
⊥+(E+

m)
⊥ = H

Therefore Sγ is reduced from above and Φ+(Sγ) is reduced from below.
Since Sγ is indecomposable, Φ+(Sγ) is also indecomposable.

Similarly we have the following:

Theorem 12.16. Let S = (H ;E1, . . . , En) be a system of n subspaces
in a Hilbert space H. Suppose that S is reduced from below and S− =
Φ−(S) is reduced from above. If S is indecomposable, then Φ−(S) is
also indecomposable.

We shall show that the Coxeter functors Φ+ and Φ− preserve the
defect under certain conditions.
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Let S = (H ;E1, . . . , En) be a system of n subspaces in a Hilbert
space H . Consider S+ = (H+;E+

1 , . . . , E
+
n ). Let R = ⊕n

i=1Ei and p0 ∈
B(R) be the projection of R onto H+. Let ei ∈ B(H) be the projection
of H onto Ei. Recall that τ : R → H is given by τ(a) =

∑n
i=1 ai for

a = (a1, . . . , an) ∈ R.

Lemma 12.17. Suppose that
∑n

i=1 ei is invertible. Then for a =
(a1, . . . , an) ∈ R we have

p0(a) = (ak − ek(

n
∑

i=1

ei)
−1(τ(a)))k ∈ H+

Proof. Recall that τ ∗ : H → R is given by τ ∗(y) = (e1y, . . . , eny) for
y ∈ H . Consider the orthogonal decomposition R = H+ ⊕ (H+)⊥.
Since H+ = Ker τ , (H+)⊥ = Im τ ∗ in R. Define

x = (xk)k := (ak − ek(

n
∑

i=1

ei)
−1(τ(a)))k ∈ R.

Then

τ(x) =
n

∑

k=1

(ak−ek(
n

∑

i=1

ei)
−1(τ(a))) = τ(a)−(

n
∑

k=1

ek)(
n

∑

i=1

ei)
−1(τ(a)) = 0.

Therefore x ∈ H+. Put y := (
∑n

i=1 ei)
−1(τ(a)) ∈ H . Then τ ∗(y) =

(e1y, . . . , eny) ∈ (H+)⊥. Since a = x + τ ∗(y) ∈ H+ ⊕ (H+)⊥, we have
p0(a) = x. �

Corollary 12.18. Suppose that
∑n

i=1 ei is invertible. Then Im τ ∗ is
closed and

(H+)⊥ = Im τ ∗ = {(e1y, . . . , eny) ∈ R; y ∈ H}.

Proof. By the above lemma, we have

(H+)⊥ = Im(I − p0) = {(e1y, . . . , eny) ∈ R; y ∈ H} = Im τ ∗.

�

Lemma 12.19. Let S = (H ;E1, . . . , En) be a system of n subspaces
in a Hilbert space H. Let ei ∈ B(H) be the projection of H onto Ei.
Then

n
∑

i=1

Ei = Im((

n
∑

i=1

ei)
1/2).

Moreover
∑n

i=1Ei is closed if and only if
∑n

i=1 ei has a closed range.
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Proof. See Filmore and Williams [FW] for several facts on operator
ranges. Let T = (Tij)ij ∈ B(Hn) be an operator matrix defined by
T1j = ej and Tij = 0 for i 6= 1. Recall that Im T = Im((TT ∗)1/2) for
any operator T . Since ImT = (

∑n
i=1Ei)⊕0⊕0⊕0 and Im((TT ∗)1/2) =

(Im((
∑n

i=1 ei)
1/2))⊕ 0⊕ 0⊕ 0, we have

∑n
i=1Ei = Im((

∑n
i=1 ei)

1/2).
It is a known fact that ImA is closed if and only if ImA1/2 is closed

for any positive operator A ∈ B(H). This implies the rest. �

Corollary 12.20. Let S = (H ;E1, . . . , En) be a system of n subspaces
in a Hilbert space H. If S is reduced from above, then f :=

∑n
i=1 ei is

invertible.

Proof. Let x ∈ Ker f . Then (eix|x) = 0 so that eix = 0. Since S is
reduced from above, x ∈ ∩iE

⊥
i = 0 Thus Ker f = 0. Then Im f =

(Ker f)⊥ = H . Since S is reduced from above,
∑n

i=1Ei = H is clearly
closed. By the preceding lemma, f has a closed range. Thus Im f = H .
Therefore f is invertible. �

Lemma 12.21. Suppose that S is reduced from above. Then for k =
1, . . . , n

(E+
k )

⊥ = {(δjkaj − ej(

n
∑

i=1

ei)
−1(ak))j ∈ H+; ak ∈ Ek}.

Proof. Since S is reduced from above, we have Im pkp0 = 0⊕ Ek⊕. In
fact, for any ak ∈ Ek, there exist ai ∈ Ei, (i 6= k) such that −ak =
∑

i 6=k ai. Then (a1, . . . , an) ∈ H+ and

pkp0(a1, . . . , an) = (0, . . . , 0, ak, 0, . . . , 0) ∈ 0⊕ Ek ⊕ 0.

The converse inclusion is trivial. Since Im pkp0 = 0 ⊕ Ek⊕ is closed,
(Im pkp0)

∗ = Im p0pk is also closed. Hence

(E+
k )

⊥ = E0
k = Im p0pk = {p0(0, . . . , 0, ak, 0, . . . , 0); ak ∈ Ek}

Therefore the conclusion follows from Lemma 12.17 . �

Proposition 12.22. Let S = (H ;E1, E2, E3, E4) be a system of four
subspaces and S+ = (H+;E+

1 , E
+
2 , E

+
3 , E

+
4 ) . Suppose that S is reduced

from above. Then f := e1 + e2 + e3 + e4 is invertible and

(E+
1 )

⊥ ∩ (E+
2 )

⊥

= {(e1u− e1f
−1e1u,−e2f

−1e1u,−e3f
−1e1u,−e4f

−1e1u); u ∈ E⊥
3 ∩ E⊥

4 }.

Moreover we have

dim((E+
1 )

⊥ ∩ (E+
2 )

⊥) = dim(E⊥
3 ∩ E⊥

4 ).

The same formulae hold under permutation of subspaces.
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Proof. Let x = (x1, x2, x3, x4) ∈ (E+
1 )

⊥∩(E+
2 )

⊥. Then by the preceding
lemma, there exist a1 ∈ E1 and a2 ∈ E2 such that

x = (x1, x2, x3, x4)

= (a1 − e1f
−1a1,−e2f

−1a1,−e3f
−1a1 − e4f

−1a1)

= (−e1f
−1a2, a2 − e2f

−1a2,−e3f
−1a2 − e4f

−1a2).

Put u := f−1(a1 − a2) ∈ H . Then a1 = e1u, a2 = −e2u, e3u = 0 and
e4u = 0. Therefore u ∈ E⊥

3 ∩ E⊥
4 and

x = (e1u− e1f
−1e1u,−e2f

−1e1u,−e3f
−1e1u,−e4f

−1e1u).

Conversely suppose that

x = (e1u− e1f
−1e1u,−e2f

−1e1u,−e3f
−1e1u,−e4f

−1e1u),

for some u ∈ E⊥
3 ∩ E⊥

4 . Put a1 := e1u ∈ E1 and a2 := −e2u ∈ E2.
Since e3u = 0 and e4u = 0, we have

a1 − a2 = e1u+ e2u = e1u+ e2u+ e3u+ e4u = fu.

Because f is invertible, u = f−1(a1 − a2). Therefore

x = (a1 − e1f
−1a1,−e2f

−1a1,−e3f
−1a1 − e4f

−1a1) ∈ (E+
1 )

⊥.

On the other hand, a1 = e1u = e1f
−1(a1 − a2). Hence

a1 − e1f
−1a1 = −e1f

−1a2.

Since a2 = −e2u = −e2f
−1(a1 − a2), we have

−e2f
−1a1 = a2 − e2f

−1a2.

Since e3f
−1(a1 − a2) = e3u = 0, we have e3f

−1a1 = e3f
−1a2. Similarly

e4f
−1a1 = e4f

−1a2. Therefore

x = (−e1f
−1a2, a2 − e2f

−1a2,−e3f
−1a2 − e4f

−1a2) ∈ (E+
2 )

⊥.

Thus x ∈ (E+
1 )

⊥ ∩ (E+
2 )

⊥.
Moreover define T : E⊥

3 ∩ E⊥
4 → (E+

1 )
⊥ ∩ (E+

2 )
⊥ by

Tu = (e1u− e1f
−1e1u,−e2f

−1e1u,−e3f
−1e1u,−e4f

−1e1u)

for u ∈ E⊥
3 ∩ E⊥

4 . Then T is a bounded, surjective operator. We shall
show that T is one to one. Suppose that Tu = 0. Since e2f

−1e1u = 0,
f−1e1u ∈ E⊥

2 . Similarly f−1e1u ∈ E⊥
3 and f−1e1u ∈ E⊥

4 . Since S is
reduced from above,

f−1e1u ∈ E⊥
2 ∩ E⊥

3 ∩ E⊥
4 = (E2 + E3 + E4)

⊥ = H⊥ = 0.

Hence e1u = 0. Similary we have e2u = 0. Therefore fu = e1u+ e2u+
e3u + e4u = 0. Since f is invertible, u = 0. Thus T is an invertible
operator. Therefore dim((E+

1 )
⊥ ∩ (E+

2 )
⊥) = dim(E⊥

3 ∩ E⊥
4 ). �
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Theorem 12.23. Let S = (H ;E1, E2, E3, E4) be a system of four sub-
spaces. Suppose that S is reduced from above. If S is a quasi-Fredholm
system, then Φ+(S) is also a quasi-Fredholm system and

ρ(Φ+(S)) = ρ(S).

Proof. It follows from Lemma 12.1 and Proposition 12.22 . �

Theorem 12.24. Let S = (H ;E1, E2, E3, E4) be a system of four sub-
spaces. Suppose that S is reduced from below. If S is a quasi-Fredholm
system, then Φ−(S) is also a quasi-Fredholm system and

ρ(Φ−(S)) = ρ(S).

Proof. Recall that S is reduced from below if and only if Φ⊥(S) is
reduced from above, and S is a quasi-Fredholm system if and only if
Φ⊥(S) is a quasi-Fredholm system. Applying the preceding theorem,
Φ−(S) = Φ⊥Φ+Φ⊥(S) is a quasi-Fredholm system and

ρ(Φ−(S)) = −ρ(Φ+Φ⊥(S)) = −ρ(Φ⊥(S)) = ρ(S).

�

Example. Let S be an operator system. Since E1 = K⊕0, E2 = 0⊕K,
we have that f =

∑4
i=1 ei ≥ I is invertible. Moreover if S = ST is

associated with a single bounded operator T , then E4 = {(x, x) ∈
H ; x ∈ K}. Thus Ei + Ej = H for (i, j) = (1, 2), (1, 4), (2, 4) and S
is reduced from above. Therefore, if ST is a quasi-Fredholm system,
then Φ+(ST ) is also a quasi-Fredholm system and ρ(Φ+(ST )) = ρ(ST ).
Similarly, let Sγ be an exotic example in section 10. Then Sγ is reduced
from above and f is invertible. Since Sγ is a quasi-Fredholm system,
Φ+(Sγ) is also a quasi-Fredholm system and ρ(Φ+(Sγ)) = ρ(Sγ).
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