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(−1,−1)-BALANCED FREUDENTHAL KANTOR TRIPLE

SYSTEMS AND NONCOMMUTATIVE JORDAN

ALGEBRAS

ALBERTO ELDUQUE⋆, NORIAKI KAMIYA◦, AND SUSUMU OKUBO∗

Abstract. A noncommutative Jordan algebra of a specific type is at-
tached to any (−1,−1)-balanced Freudenthal Kantor triple system, in
such a way that the triple product in this system is determined by the
binary product in the algebra. Over fields of characteristic zero, the
simple noncommutative Jordan algebras of this type are classified.

1. Introduction

The well-known Tits-Kantor-Koecher construction [Tit62, Kan64, Koe67]
relates Jordan systems to 3-graded Lie algebras. In [Kan73], several models
of exceptional Lie algebras with a 5-grading

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2

are given, based on generalized Jordan triple systems:

Definition 1.1. A vector space J over a field F , endowed with a trilinear
operation J × J × J → J , (x, y, z) 7→ xyz, is said to be a generalized Jordan
triple system (GJTS for short) if it satisfies the identity:

uv(xyz) = (uvx)yz − x(vuy)z + xy(uvz) (1.2)

for any u, v, x, y, z ∈ J .

A (linear) Jordan triple system is then a generalized Jordan triple system
with the added constraint:

xyz = zyx (1.3)

for any x, y, z.
Unless otherwise stated, all the algebras and algebraic systems considered

will be assumed to be defined over a ground field F of characteristic not 2.
Given two elements a, b in a GJTS J , consider the linear maps la,b, ka,b :

J → J given by la,bc = abc, ka,bc = acb + bca. Thus, equation (1.2) is
equivalent to

[lu,v, lx,y] = llu,vx,y − lx,lv,uy (1.4)
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for any u, v, x, y.

Definition 1.5. A generalized Jordan triple system J is said to be a (−1,−1)
Freudenthal Kantor triple system ((−1,−1)-FKTS for short) if it satisfies

ld,cka,b + ka,blc,d = kka,bc,d (1.6)

for any a, b, c, d ∈ J .

The more general concept of (ε, δ) Freudenthal Kantor triple system was
introduced in [YO84] for ε, δ = ±1.

In case there is a nonzero symmetric bilinear form 〈.|.〉 defined on a
(−1,−1)-FKTS such that

ka,bc =
1

2
〈a|b〉c (1.7)

for any a, b, c, the (−1,−1)-FKTS is said to be balanced.
In this case, equations (1.6) and (1.7) simplfy to

xxy = xyx = 〈x|x〉y (1.8)

for any x, y.
Therefore, a (−1,−1)-balanced Freudenthal Kantor triple system (or

(−1,−1)-BFKTS for short) is a vector spaced over a field F endowed with
a trilinear operation xyz and a nonzero symmetric bilinear form 〈.|.〉 such
that both (1.2) and (1.8) hold.

Some simple (−1,−1)-BFKTS’s were used in [KO03] to give models of the
simple complex exceptional Lie superalgebras of classical type: D(2, 1;α),
G(3) and F (4). Furthermore, this close relationship between (−1,−1)-
BFKTS’s and some Lie superalgebras was used in [EKO03] to provide the
classification of the simple finite dimensional (−1,−1)-BFKTS’s over fields
of characteristic zero.

The aim of this paper is to show that a quadratic noncommutative Jordan
algebra in a specific variety can be attached to any (−1,−1)-BFKTS in such
a way that the triple product is determined by the (binary) multiplication
of the algebra. The classification of the simple finite dimensional quadratic
noncommutative Jordan algebras over fields of characteristic 0 in this variety
will be deduced too from the known classification of the simple (−1,−1)-
BFKTS’s.

The next section will be devoted to introduce the variety V of noncom-
mutative Jordan algebras that will be relevant for our purposes. Then in
Section 3, the relationship between some GJTS’s and algebras in V will
be studied, while in Section 4 the attention will be restricted to (−1,−1)-
BFKTS’s. The last Section will deal with the classification of the simple
finite dimensional quadratic noncommutative Jordan algebras in the variety
V over fields of characteristic 0.

2. A variety of noncommutative Jordan algebras

Given any algebra A over a field F (always of characteristic 6= 2), let
Lx and Rx denote the left and right multiplications by x: Lx(y) = xy,
Rx(y) = yx; and let (x, y, z) denote the associator of the elements x, y, z:
(x, y, z) = (xy)z − x(yz).
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Recall that the algebra A is a noncommutative Jordan algebra if it is
flexible:

(x, y, x) = 0 (2.1)

for any x, y ∈ A, and satisfies the Jordan identity:

(x, y, x2) = 0 (2.2)

for any x, y ∈ A.
The Jordan identity is equivalent to the condition [Lx, Rx2 ] = 0 for any

x ∈ A, while the flexibility amounts to [Lx, Rx] = 0 for any x ∈ A. Also, by
flexibility

(x, x, y) + (y, x, x) = 0

for any x, y ∈ A, or Lx2−L2
x = Rx2−R2

x. Thus, in the presence of flexibility,
[Lx, Rx2 ] = 0 if and only if

[Lx, Lx2 ] = 0 (2.3)

for any x ∈ A.
Given two elements x, y of a flexible algebra A, consider the linear map

A→ A given by:

Dx,y = L[x,y] − [Lx, Ly]

= (x, y, . )− (y, x, . )

= ( . , x, y) − ( . , y, x)

= −R[x,y] − [Rx, Ry]

(2.4)

Notice that (2.3) is equivalent to the condition Dx2,x = 0.
Let V be the variety of those noncommutative Jordan algebras A over a

field F satisfying that

Dx,y is a derivation of A for any x, y ∈ A. (2.5)

This is the variety that will be relevant in what follows.

Theorem 2.6. Let A be an algebra in V, then for any x, y, z ∈ A,

Dxy,z +Dyz,x +Dzx,y = 0. (2.7)

Proof. The fact that Dx,y = L[x,y] − [Lx, Ly] ∈ DerA (the Lie algebra of
derivations of A) for any x, y ∈ A is equivalent to the validity of

[
L[x,y], Lz

]
− [[Lx, Ly], Lz] = L(x,y,z)−(y,x,z)

for any x, y, z ∈ A. Permute cyclically x, y, z and add the resulting equations
to get
[
L[x,y], Lz

]
+

[
L[y,z], Lx

]
+

[
L[z,x], Ly

]

= L(x,y,z)+(y,z,x)+(z,x,y)−(y,x,z)−(z,y,x)−(x,z,y).
(2.8)

But in any algebra,

(x, y, z) + (y, z, x) + (z, x, y) − (y, x, z) − (z, y, x)− (x, z, y)

= [[x, y], z] + [[y, z], x] + [[z, x], y],

so (2.8) is equivalent to
[
L[x,y], Lz

]
+

[
L[y,z], Lx

]
+

[
L[z,x], Ly

]
= L[[x,y],z]+[[y,z],x]+[[z,x],y],
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or to

D[x,y],z +D[y,z],x +D[z,x],y = 0. (2.9)

But Dx2,x = 0 for any x ∈ A, since A is a noncommutative Jordan algebra,
so that, by linearization, Dx◦y, x+Dx2,y = 0 for any x, y ∈ A, where x ◦ y =
xy + yx, and

Dx◦y,z +Dy◦z,x +Dz◦x,y = 0 (2.10)

for any x, y, z ∈ A.
The result now follows by adding up (2.9) and (2.10). �

The algebras A endowed with a skew symmetric bilinear map D : A ×
A → DerA, (x, y) 7→ Dx,y satisfying (2.7) have been named generalized
structurable algebras in [Kam92]. The variety of generalized structurable
algebras includes the most usual varieties of nonassociative algebras.

Corollary 2.11. Any algebra in V is a generalized structurable algebra.

3. Generalized Jordan triple systems

It will be shown in this section the close connection of the algebras in the
variety V with some generalized Jordan triple systems:

Theorem 3.1. Let J be a generalized Jordan triple system over a field F
of characteristic 6= 2, 3 which contains an element e ∈ J such that:

(i) eee = e,
(ii) eex = xee for any x ∈ J ,
(iii) the map Ue : x 7→ exe is onto.

Then the homotope algebra J (e), defined on the vector space J with multipli-
cation given by x · y = xey for any x, y ∈ J , belongs to the variety V and is
unital with 1 = e. Moreover, the map x 7→ x̄ = exe is an involution of J (e)

and the triple product in J satisfies

xyz = x · (ȳ · z)− ȳ · (x · z) + (ȳ · x) · z, (3.2)

for any x, y, z ∈ J .
Conversely, let (A, ·) be a unital algebra in V over a field F of character-

istic 6= 2, with unity element 1A and endowed with an involution x 7→ x̄, and
define a triple product on A by means of (3.2). Then A becomes a GJTS
and satisfies conditions (i)–(iii) above with e = 1A and Uex = x̄ for any
x ∈ A.

Proof. Let J be a GJTS satisfying the conditions above. Then (1.2), to-
gether with (i) and (ii), give:

ee(exe) = (eee)xe − e(eex)e + ex(eee)

= 2exe − e(eex)e,
(3.3)

exe = ex(eee) = (exe)ee − e(xee)e + ee(exe)

= 2ee(exe) − e(eex)e.
(3.4)

Since the characteristic of F is 6= 3, (3.3) and (3.4) imply

exe = ee(exe) = e(eex)e (3.5)
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for any x ∈ J . Since Ue : x 7→ exe is onto, we get

x = eex (= xee), (3.6)

so that

x = e · x = x · e

for any x ∈ J and e is the unity element of the homotope algebra J (e).
Now, by (3.6) and (1.2),

x = xe(eee) = (xee)ee − e(exe)e + ee(xee)

= 2x− e(exe)e

so ¯̄x = x for any x ∈ J , where x̄ = Uex = exe. Also, for any x, y ∈ J ,




x · y = xe(eey) = (xee)ey − e(exe)y + ee(xey)

= x · y − ex̄y + x · y,

x · y = xe(yee) = (xey)ee− y(exe)e + ye(xee)

= x · y − yx̄e+ y · x.

Hence, for any x, y ∈ J , {
exy = x̄ · y,

xye = x · ȳ,
(3.7)

while

x̄ · ȳ = ex(eye) = (exe)ye− e(xey)e + ey(exe)

= x̄ye− x · y + eyx̄

= x̄ · ȳ − x · y + ȳx̄,

and this shows that x · y = ȳ · x̄ for any x, y ∈ J . Therefore, the map x 7→ x̄

is an involution of J (e).
Besides, for any x, y, z ∈ J ,

y · (x · z) = ye(xez) = (yex)ez − x(eye)z + xe(yez)

= (y · x) · z − xȳz + x · (y · z),

so, substituting y by ȳ we obtain (3.2).
But also, because of (3.7),

z · (x · ȳ) = ez̄(xye) = (ez̄x)ye− x(z̄ey)e+ xy(ez̄e)

= (z · x) · ȳ − x · (z̄ · y) + xyz,

so

xyz = x · (ȳ · z)− (z · x) · ȳ + z · (x · ȳ) (3.8)

for any x, y, z, since x 7→ x̄ is an involution. Equations (3.2) and (3.8) yield,
for any x, y, z ∈ J ,

(ȳ, x, z)· = − (z, x, ȳ)· , (3.9)

where (a, b, c)· = (a · b) · c− a · (b · c) is the associator in J (e). Identity (3.9)

is equivalent to the flexible law in J (e).
Moreover, (3.2) is equivalent to

lx,y = [Lx, Lȳ] + Lȳ·x = −Dx,ȳ + Lx·ȳ, (3.10)
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where La denotes the left multiplication by a in J (e) and Dx,y = L[x,y] −
[Lx, Ly] as in (2.4). Notice that La = la,e and Lz̄ = le,z (because of (3.7)).
Thus,

[Dx,y, lz,t] = −[lx,ȳ, lz,t] + [lx·y,e, lz,t]

= −lxȳz,t + lz,ȳxt + l(x·y)ez,t − lz,e(x·y)t

= l−xȳz+(x·y)·z,t + lz,ȳxt−(ȳ·x̄)·t

= lDx,yz,t − lz,Dȳ,x̄t

(3.11)

for any x, y, z, t ∈ J . With t = e, this shows that [Dx,y, Lz] = LDx,yz, since

Da,be = 0 for any a, b ∈ J . Hence Dx,y ∈ Der J (e) for any x, y ∈ J .
Finally, (3.10) shows that lx,x̄ = Lx·x, so

[Lx, Lx·x] = [lx,e, lx,x̄]

= lxex,x̄ − lx,exx̄

= lx·x,x̄ − lx,x̄·x̄ by (3.7),

=
(
[Lx·x, Lx] + Lx·(x·x)

)
−

(
[Lx, Lx·x] + L(x·x)·x

)
by (3.10),

= −2[Lx, Lx·x] by flexibility.

Since the characteristic is 6= 3, this shows that [Lx, Lx·2 ] = 0 for any x ∈ J

which, together with the flexible law, shows that J (e) is a noncommutative
Jordan algebra, thus completing the proof of the first part of the Theorem.

Conversely, let (A, ·) be a unital algebra in V endowed with an involution
x 7→ x̄. Let e = 1A be the unity element and use (3.2) to define a triple
product on A. Then

xey = x · (ē · y)− ē · (x · y) + (ē · x) · y

= x · y − x · y + x · y,

so x · y = xey for any x, y ∈ A, and hence eee = e and eex = x = xee for
any x ∈ A. Also,

exe = e · (x̄ · x)− x̄ · (e · e) + (x̄ · e) · e = x̄

for any x ∈ A. Hence, conditions (i)–(iii) are satisfied.
Finally, with Dx,y defined by (2.4), we obtain for any x, y, z ∈ A,

Dx,yz̄ = Dx̄,ȳz = −Dȳ,x̄z, (3.12)

because

(x, y, z̄)· = −(z, ȳ, x̄)· = (x̄, ȳ, z)·

by flexibility. Since Dx,y ∈ DerA, (3.12) and (3.2) show that

[Dx,y, la,b] = lDx,ya,b − la,Dȳ,x̄b (3.13)

for any x, y, a, b ∈ A. Now, (2.7) amounts to

[La·b, Lc] + [Lb·c, La] + [Lc·a, Lb]

= L[a·b,c]+[b·c,a]+[c·a,b]
(3.14)
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for any a, b, c ∈ A. But

L[a·b,c]+[b·c,a]+[c·a,b]

= L(a,b,c)·+(b,c,a)·+(c,a,b)·

= L(a,b,c)·−(b,a,c)·+(b,c,a)·

= LDa,bc + L(b,c,a)·

= [Da,b, Lc] + L(b,c,a)·

= −[[La, Lb], Lc] + [L[a,b], Lc] + L(b,c,a)· ,

thus (3.14) becomes,

[Lc, [La, Lb] + Lb·a] =
(
[Lc·a, Lb] + Lb·(c·a)

)
−

(
[La, Lb·c] + L(b·c)·a

)
.

Substituting b by b̄ and using (3.2), this last equation is equivalent to

[Lc, la,b] = lc·a,b − la,c̄·b (3.15)

for any a, b, c ∈ A. From (3.10), (3.13) and (3.15) we obtain

[lx,y, la,b] = [−Dx,ȳ + Lx·ȳ, la,b]

= −lDx,ȳa,b + la,Dy,x̄b + l(x·ȳ)·a,b − la,(y·x̄)·b

= llx,ya,b − la,ly,xb

= lxya,b − la,yxb,

thus proving that A is a GJTS with the triple product defined by (3.2) �

Remark 3.16. Notice that in the proof of the first part of the Theorem
above, the restriction on the characteristic to be 6= 3 has only been used to
prove (3.6) and [Lx, Lx·2 ] = 0 for any x ∈ J .

As a particular case, for Jordan triple systems, the following known result
is recovered [Loo71, 1.4, 3.2]:

Corollary 3.17. Let J be a Jordan triple system over a field F of charac-
teristic 6= 2, 3 which contains an element e ∈ J such that

exe = x (3.18)

for any x ∈ J . Then, the homotope algebra J (e) (with the product x·y = xey)
is a unital Jordan algebra with 1 = e. Moreover, for any x, y, z ∈ J :

xyz = x · (y · z)− y · (x · z) + (y · x) · z. (3.19)

Conversely, if A is a unital Jordan algebra with unity e, then the triple prod-
uct xyz defined by (3.19) becomes a Jordan triple system satisfying (3.18).

Proof. For a Jordan triple system J satisfying (3.18), all the conditions (i)–
(iii) in Theorem 3.1 are automatically satisfied. Moreover, for any x ∈ J ,
x̄ = exe = x so that the involution law x · y = ȳ · x̄ is equivalent to the
commutative law x · y = y · x. �
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4. (−1,−1)-balanced Freudenthal Kantor triple systems

An algebra Q over the field F is said to be quadratic if it is unital and
for any x ∈ Q, 1, x and x2 are linearly dependent. Then the set of vectors
V = {x ∈ Q \ F1 : x2 ∈ F1} is a subspace of Q with Q = F1 ⊕ V [Osb62].
For any u, v ∈ V ,

uv = −(u|v)1 + u× v, (4.1)

where (.|.) is a bilinear form and × is an anticommutative multiplication

on V . The triple
(
V, (.|.),×

)
determines the algebra Q, so we will write

Q = Q
(
V, (.|.),×

)
. Moreover, for any x ∈ Q,

x2 − T (x)x+N(x)1 = 0 (4.2)

where T is a linear form and N a quadratic form on A, called the norm,
given for any α ∈ F and u ∈ V by

{
T (α1 + u) = 2α

N(α1 + u) = α2 + (u|u)
(4.3)

In particular, T (x) = N(x, 1) for any x, where N(x, y) = N(x+y)−N(x)−
N(y) is the associated symmetric bilinear form.

It is well-known [Osb62] that the bilinear form (.|.) is symmetric if and
only if the map x 7→ x̄ = T (x)1−x is an involution (the standard involution),
and that the quadratic algebra Q is flexible if and only if (.|.) is symmetric
and (u × v|w) = (u|v × w) for any u, v, w ∈ V . Notice that if (.|.) is
symmetric, it is determined by N and that any flexible quadratic algebra is
a noncommutative Jordan algebra.

Theorem 4.4. Let S be a (−1,−1)-balanced Freudenthal Kantor triple sys-
tem over a field F and let e ∈ S such that 〈e|e〉 6= 0 (〈.|.〉 as in (1.8)). Define
a binary product on S by

x · y =
1

〈e|e〉
exy

for any x, y ∈ S. Then (S, ·) is a quadratic algebra in the variety V with

norm given by N(x) = 〈x|x〉
〈e|e〉 for any x ∈ S. Moreover, the original triple

product on S is related to the binary product by

xyz = 〈e|e〉
(
(x̄ · y) · z − x̄ · (y · z) + y · (x̄ · z)

)
(4.5)

for any x, y, z ∈ S, where x 7→ x̄ denotes the standard involution of the
quadratic algebra (S, ·).

Conversely, let (Q, ·) be a quadratic algebra in V with norm N and define
a triple product on Q by the formula

xyz = (x̄ · y) · z − x̄ · (y · z) + y · (x̄ · z), (4.6)

where x 7→ x̄ = N(x, 1)1− x is the standard involution on Q. Then Q, with
this triple product, is a (−1,−1)-BFKTS with associated nonzero symmetric
bilinear form given by 〈x|x〉 = N(x) for any x ∈ Q.
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Proof. Let S be a (−1,−1)-BFKTS and let e ∈ S with 〈e|e〉 6= 0. Define a
new triple product on S by the formula

x̃yz =
1

〈e|e〉
yxz.

Then the map l̃x,y : z 7→ x̃yz equals

l̃x,y =
1

〈e|e〉
ly,x

=
1

〈e|e〉

(
2〈x|y〉id − lx,y

)
,

where lx,y is the ‘left multiplication’ on S (see (1.8)). Thus, for any x, y, z, t ∈
S,

[l̃x,y, l̃z,t] =
1

〈e|e〉2
[ly,x, lt,z ]

=
1

〈e|e〉2

(
lyxt,z − lt,xyz

)

=
1

〈e|e〉2

(
lt,yxz−2〈x|y〉z − lxyt−2〈x|y〉t,z

)

=
1

〈e|e〉2

(
lt,yxz − lxyt,z

)

= l̃x̃yz,t − l̃
z,ỹxt

.

(4.7)

Therefore, (S, x̃yz) is a GJTS. Moreover,




ẽex =
1

〈e|e〉
eex = x,

x̃ee =
1

〈e|e〉
exe = x,

so (3.6) is satisfied, and

x̄ = ẽxe =
1

〈e|e〉
xee =

1

〈e|e〉

(
−eex+ 2〈e|x〉e

)

= −x+N(e, x)e

with N the quadratic form given by N(x) = 〈x|x〉
〈e|e〉 for any x ∈ S. Define the

algebra (S, ·) by means of

x · y =
1

〈e|e〉
exy = x̃ey

for any x, y ∈ S. This algebra (S, ·) is unital with 1S = e and for any x ∈ S:

x · x =
1

〈e|e〉
exx =

1

〈e|e〉

(
2〈e|x〉 − xex

)

= N(e, x)x−N(x)e,

so (S, ·) is quadratic. Now by Theorem 3.1 and Remark 3.16, the algebra
(S, ·) is flexible (and hence noncommutative Jordan) and satisfies thatDx,y ∈
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Der(S, ·) for any x, y. Finally, from (3.2),

xyz = 〈e|e〉ỹxz

= 〈e|e〉
(
y · (x̄ · z)− x̄ · (y · z) + (x̄ · y) · z

)

for any x, y, z ∈ S, thus completing the proof of the first part.
Conversely, if (Q, ·) is a quadratic algebra in V with norm N and we use

(4.6) to define a triple product on Q, then
{
xxy = (x̄ · x) · y − x̄ · (x · y) + x · (x̄ · y) = N(x)y

xyx = (x̄ · y) · x− x̄ · (y · x) + y · (x̄ · x) = N(x)y

since x · x̄ = x̄ · x = N(x)1, x̄ · (x · y) = x · (x̄ · y) and (x̄, y, x)· = 0 for
any x, as x̄ ∈ F1 + Fx and (Q, ·) is flexible. Also, with x̃yz = yxz =
(ȳ · x) · z− ȳ · (x · z) +x · (ȳ · z), Theorem 3.1 shows that (Q, x̃yx) is a GJTS
and, as in (4.7), this shows that so is (Q,xyz), as required. �

We close this section with a result relating the simplicity of a quadratic
algebra in V and of the associated (−1,−1)-BFKTS, constructed in the
previous Theorem.

Theorem 4.8. Let (Q, ·) be a quadratic algebra in V and let (Q,xyz) be
the associated (−1,−1)-BFKTS with triple product given by (4.6). Then
(Q,xyz) is simple if and only if either (Q, ·) is simple or (Q, ·) is isomorphic
to the direct product of two copies of the ground field F : (Q, ·) ∼= F × F .

Proof. Assume first that (Q,xyz) is simple and let 0 6= I be an ideal of
(Q, ·). Let x 7→ x̄ be the standard involution. Then either I = Ī and hence,
by (4.6), I is an ideal of (Q,xyz), so I = Q by simplicity, or I 6= Ī. In the
latter case, I + Ī and I ∩ Ī are ideals of (Q, ·) closed under the involution
so, by the previous argument, I ∩ Ī = 0 and I + Ī = Q. Besides, I 6= Ī, so
there is some element x ∈ I with N(x, 1) 6= 0. But for any y ∈ Q, by (4.2),

x · y + y · x = N(x, 1)y +N(y, 1)x−N(x, y)1,

so N(x, 1)y − N(x, y)1 ∈ I and hence {y ∈ Q : N(x, y) = 0} ⊆ I and the
codimension of I (which coincides with the codimension of Ī) is 1. The only
possibility is that dim I = dim Ī = 1 and Q = I ⊕ Ī. In particular both I
and Ī are one-dimensional quotients of the unital algebra Q, so both I and
Ī are isomorphic, as algebras, to the ground field F , and (Q, ·) ∼= F × F , as
required.

Conversely, any ideal I of (Q,xyz) satisfies that for any x ∈ I, x̄ = x11 ∈
I, so that I is an ideal of (Q, ·) closed under the involution, and hence I is
trivial in both cases: (Q, ·) simple or (Q, ·) ∼= F × F . �

5. Simple algebras

According to Theorems 4.4 and 4.8, to obtain the simple finite dimensional
quadratic algebras in V it is enough to consider the simple finite dimensional
(−1,−1)-BFKTS’s S with an element e ∈ S such that 〈e|e〉 = 1 and to define
the associated quadratic algebras (S, ·) where

x · y = exy (5.1)

for any x, y ∈ S. The element e becomes the unity element of (S, ·).
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The classification of the simple finite dimensional (−1,−1)-BFKTS’s over
fields of characteristic zero was obtained in [EKO03]. Here we will review the
list of examples that appear in [EKO03, Section 3] and obtain the associated
quadratic algebras in V. This will set the stage for the classification in the
last section.

5.(i) Orthogonal type:
Let S be a vector space endowed with a symmetric bilinear form 〈.|.〉 and

an element e ∈ S such that 〈e|e〉 = 1. Then S becomes a (−1,−1)-BFKTS
with the triple product

xyz = 〈z|x〉y − 〈z|y〉x+ 〈x|y〉z

for any x, y, z ∈ S. Therefore, (5.1) becomes

x · y = 〈e|y〉x + 〈e|x〉y − 〈x|y〉e

so that (S, ·) = Fe ⊕ V , with V = (Fe)⊥ (the orthogonal subspace to Fe
relative to 〈.|.〉), is the Jordan algebra of a quadratic form: for any u, v ∈ V
and α, β ∈ F ,

(αe + u) · (βe+ v) = (αβ − 〈u|v〉)e + (αv + βu). (5.2)

5.(ii) Unitarian type:
Let K be a quadratic étale F -algebra; that is, either K is a quadratic field

extension of F (recall that the characteristic of F is not 2) or it is isomorphic
to F × F ; and let S be a left K-module endowed with a hermitian form
h : S ×S → K and an element e ∈ S with h(e, e) = 1. Thus, h is F -bilinear
and

h(αx, y) = αh(x, y)

h(x, y) = h(y, x)

for any α ∈ F and x, y ∈ S, where α 7→ ᾱ is the nontrivial F -automorphism
of K.

Then S is a (−1,−1)-BFKTS with the triple product

xyz = h(z, x)y − h(z, y)x + h(x, y)z

for any x, y, z ∈ S. Thus (5.1) becomes here:

x · y = h(y, e)x + h(e, x)y − h(y, x)e (5.3)

for any x, y ∈ S; so that (S, ·) = Ke ⊕W , with W = (Ke)⊥ = {x ∈ S :
h(e, x) = 0} and for any α, β ∈ K and u, v ∈W :

(αe+ u) · (βe+ v) = (αβ − h(v, u))e + (ᾱv + βu). (5.4)

Therefore, (S, ·) is the structurable algebra associated to the hermitian form
−h|W (see [All78, § 8, Example (iii)].

5.(iii) Symplectic type:
Change K to H, a quaternion algebra over F , in the unitarian type; so

that now S is a left H-module endowed with a hermitian form h : S×S → H

and an element e ∈ S with h(e, e) = 1. (Here α 7→ ᾱ denotes the standard
involution in H.) As before, S = He⊕W with W = (He)⊥, but now (5.4)
becomes

(αe+ u) · (βe+ v) =
(
ᾱβ + β(α− ᾱ)− h(v, u)

)
e+ (ᾱv + βu). (5.5)
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for any α, β ∈ H and u, v ∈W .

In order to deal with the remaining types, some preliminaries are needed.

Given a quadratic algebra Q = Q
(
V, (.|.),×

)
and a nonzero scalar µ ∈ F ,

we will denote by Q[µ] the quadratic algebra

Q[µ] = Q
(
V, µ(.|.),×

)
.

(Same anticommutative multiplication on V , but bilinear forms scaled by
µ.)

There is a related construction in the literature. Given any algebra A

and a scalar α ∈ F , the scalar mutation A(α) (see [Alb48, McC66]) is the
algebra defined on the same vector space but with the new product

x
α
· y = αxy + (1− α)yx

for any x, y ∈ A. For a flexible quadratic algebra Q = Q
(
V, (.|.),×

)
, it

follows immediately from (4.1) that Q(α) = Q
(
V, (.|.), (2α − 1)×

)
(same

bilinear form, but anticommutative multiplication scaled by 2α − 1). Also,
for any 0 6= ν ∈ F , the linear endomorphism of Q = F1 ⊕ V , given by

ϕ(1) = 1 and ϕ(v) = νv for any v ∈ V , gives an isomorphism Q[ν2] ∼=

Q
(
V, (.|.), ν−1×

)
, so that for α 6= 1

2 , the scalar mutation Q(α) is isomorphic

to Q

[
1

(2α−1)2

]

.

5.(iv) Dµ-type:
Let S be a four dimensional vector space endowed with a nondegenerate

symmetric bilinear form 〈.|.〉 and an element e with 〈e|e〉 = 1, and let φ :
S × S × S × S → F be a nonzero alternating multilinear form (unique up
to multiplication by a nonzero scalar). Define the alternating triple product
[xyz] on S by means of

φ(x, y, z, t) = 〈[xyz]|t〉

for any x, y, z, t ∈ S. Then [EKO03, Lemma 3.2] there exists a nonzero
scalar µ ∈ F such that

〈[a1a2a3]|[b1b2b3]〉 = µ det
(
〈ai|bj〉

)
(5.6)

for any ai, bi ∈ S (i = 1, 2, 3).
In this case, S becomes a (−1,−1)-BFKTS with the triple product

xyz = [xyz] + 〈z|x〉y − 〈z|y〉x+ 〈x|y〉z

for any x, y, z ∈ S. Thus, (5.1) becomes

x · y = [exy] + 〈e|y〉x+ 〈e|x〉y − 〈x|y〉e,

so that (S, ·) = Fe⊕V with V = (Fe)⊥ and for any α, β ∈ F and u, v ∈ V ,

(αe+ u) · (βe+ v) = (αβ − 〈u|v〉)e + (αv + βu+ u× v), (5.7)
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where u × v = [euv]. That is (S, ·) = Q
(
V, 〈.|.〉,×

)
. From (5.6) and since

〈e|e〉 = 1, it follows that for any u, v ∈ V ,

〈u× v|u× v〉 = µ

∣∣∣∣
〈u|u〉 〈u|v〉
〈u|v〉 〈v|v〉

∣∣∣∣ ,

so that

(u× v|u× v) =

∣∣∣∣
(u|u) (u|v)
(u|v) (v|v)

∣∣∣∣ , (5.8)

where (u|v) = µ〈u|v〉 for any u, v ∈ V . The above equation (5.8) shows that
× is a vector cross product on V relative to the nondegenerate symmetric
bilinear form (.|.) (see [BG67]) and, therefore, the quadratic algebra H =

Q
(
V, (.|.),×

)
is a quaternion algebra over F . But then we conclude that

(S, ·) = Q
(
V, 〈.|.〉,×

)
= Q

(
V, µ−1(.|.),×

)
= H [µ−1].

That is, (S, ·) is a quadratic algebra obtained from a quaternion algebra by
scaling the bilinear form on the subspace of vectors.

Conversely, it is straightforward to check that for any quaternion algebra
H and nonzero scalar ν ∈ F , the quadratic algebra H [ν] belongs to V.

5.(v) G-type:
Let C be a Cayley algebra (that is, an eight dimensional unital compo-

sition algebra) over F with norm n and trace t and let S = C0 = {x ∈
C : t(x) = 0}. Let 0 6= α ∈ F and consider the nondegenerate symmetric
bilinear form and the triple product on S given by:




〈x|y〉 = −2αt(xy)

xyz = α
(
Dx,y(z)− 2t(xy)z

)

for any x, y, z ∈ S, where

Dx,y = [Lx, Ly] + [Lx, Ry] + [Rx, Ry]

(a derivation of C). We refer to [Sch95, Chapter III] for the basic properties
of Cayley algebras. Assume that there is an element e ∈ S with 〈e|e〉 = 1.
Then t(e2) = −2n(e) = − 1

2α , so



〈x|y〉 =
t(xy)

t(e2)
,

xyz =
1

4n(e)

(
Dx,y(z)− 2t(xy)z

)
.

Here K = F1 + Fe is a quadratic étale subalgebra of C and S = Fe ⊕ V ,
where V = {x ∈ C0 : t(ex) = 0} = {x ∈ C : t(Kx) = 0}. For any u, v ∈ V ,
(5.1) becomes

u · v =
1

4n(e)
De,u(v),

but Dx,y(z) = [[x, y], z] + 3(x, z, y) ([Sch95, (3.70)]), so

De,u(v) = [[e, u], v] + 3(e, v, u)

= −2[ue, v] + 3(u, e, v) (since eu+ ue = 0 as t(eu) = 0)

= (ue)v + 2v(ue) − 3u(ev).
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Also, t(eu) = t(ev) = 0 so that, by alternativity, for any u, v ∈ V ,

(ue)v = −(uv)e,

v(ue) = −v(eu) = e(vu) = −n(u, v)e− e(uv),

u(ev) = −e(uv).

Hence De,u(v) = −2n(u, v)e + [e, uv] and (5.1) becomes

(αe+ u) · (βe+ v) =
(
αβ −

n(u, v)

2n(e)

)
e+

(
αv + βu+

1

4n(e)
[e, uv]

)
(5.9)

for any α, β ∈ F and u, v ∈ V .
Now ([Jac58, §6], [EM95, §§ 2,3]) for any u, v ∈ V ,

uv = −σ(u, v) + u ∗ v, (5.10)

where σ(x, y) = 1
2

(
n(x, y) − 1

n(e)n(ex, y)e
)

for any x, y ∈ V . Then σ :

V × V → K is a hermitian form, ∗ is anticommutative and




µ(x ∗ y) = (µ̄x) ∗ y,

σ(x, y ∗ z) = σ(x ∗ y, z),

(x ∗ y) ∗ z = σ(x, z)y − σ(y, z)x,

(5.11)

for any µ ∈ K and x, y ∈ V . The quadratic algebra B = F1 ⊕ V =

Q
(
V,−n(.|.), ∗

)
is a color algebra (see [EM95]) and any color algebra is

obtained in this way. For the origin and basic properties of color algebras
one may consult [EM95] and the references therein.

Proposition 5.12. The linear map ϕ : B[−2] → (S, ·) given by ϕ(1) = e

and ϕ(u) = −2eu for any u ∈ V is an isomorphism of algebras.

Proof. Since e is the unity element of (S, ·) and B[−2] = Q
(
V, 2n(.|.), ∗

)
, it

is enough to prove that for any u, v ∈ V ,

ϕ
(
−2n(u, v)1 + u ∗ v) = ϕ(u) · ϕ(v). (5.13)

But

ϕ
(
−2n(u, v)1 + u ∗ v) = −2n(u, v)e − 2e(u ∗ v),

ϕ(u) · ϕ(v) = 4(eu) · (ev) = −2
n(eu, ev)

n(e)
e+

1

n(e)
[e, (eu)(ev)]

(5.14)

and n(eu, ev) = n(e)n(u, v) by the composition property of the norm of C,
while (5.10) and (5.11) give

(eu)(ev) = −σ(eu, ev) + (eu) ∗ (ev)

= −eēσ(u, v) + ē2(u ∗ v)

= −n(e)
(
σ(u, v) + u ∗ v

)
.

(Note that ē = −e and eē = n(e)1.) Since [e,K] = 0 and eu + ue =
−n(e, u)1 = 0, for any u, v ∈ V :

[e, (eu)(ev)] = −n(e)[e, u ∗ v] = −2n(e)e(u ∗ v).

This, together with (5.14) proves the validity of (5.13). �



(−1,−1)-BALANCED FREUDENTHAL KANTOR TRIPLE SYSTEMS 15

Therefore, the quadratic algebras in V associated to the (−1,−1)-BFKTS’s

of G-type are precisely the algebras B[−2], where B is a color algebra.

5.(vi) F -type:
Here the characteristic of F will be assumed to be 6= 2, 3. Let S be an eight

dimensional vector space over F endowed with a nondegenerate symmetric
bilinear form 〈.|.〉, an element e ∈ s with 〈e|e〉 = 1 and a 3-fold vector cross
product X of type I associated to 〈.|.〉 (see [Eld96], [Oku95, Ch. 8] and the
references therein). Then S is a (−1,−1)-BFKTS with the triple product

xyz =
1

3
X(x, y, z) + 〈z|x〉y − 〈z|y〉x+ 〈x|y〉z

for any x, y, z ∈ S.
Then S has the structure of a Cayley algebra, denoted by C, with unity

element e, norm n(x) = 〈x|x〉 and standard involution x 7→ x̄, such that

X(x, y, z) = (xȳ)z + 〈x|z〉y − 〈y|z〉x− 〈x|y〉z,

so the triple product above becomes

xyz =
1

3
((xȳ)z + 4〈x|z〉y − 4〈y|z〉x + 2〈x|y〉z) ,

for any x, y, z ∈ S, while (5.1) becomes

x · y =
1

3

(
x̄y + 4〈e|y〉x + 2〈e|x〉y − 4〈x|y〉e

)

=
1

3

(
−xy + 4〈e|y〉x+ 4〈e|x〉y − 4〈x|y〉e

)

for any x, y ∈ S, since x+ x̄ = 2〈e|x〉e.
Now, (S, ·) = Fe⊕V with V = (Fe)⊥ (orthogonal relative to 〈.|.〉 and for

any u, v ∈ V , uv = −〈u|v〉e+ 1
2 [u, v]. Hence, for any α, β ∈ F and u, v ∈ V

(αe+ u) · (βe+ v) = (αβ − 〈u|v〉)e −
1

3

(
1

2
[u, v]

)
,

so that (S, ·) = C(− 1
3) (scalar mutation), which is isomorphic to C [9].

Therefore, the quadratic algebras in V associated to the (−1,−1)-BFKTS’s
of F -type are precisely the algebras C [9], where C is a Cayley algebra.

6. Simple quadratic V-algebras

The classification of the simple finite dimensional (−1,−1)-BFKTS’s in
[EKO03] over fields of characteristic 0, together with the previous sections,
does almost all the work needed to prove our last result:

Theorem 6.1. Let (Q, ·) be a finite dimensional simple quadratic algebra in
the variety V over a field F of characteristic 0. Then, up to isomorphism,
either:

(i) (Q, ·) is the Jordan algebra of a nondegenerate quadratic form, with
the exception of (Q, ·) ∼= F × F .
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(ii) There exists a quadratic étale algebra K over F such that Q is a free
K-module of rank ≥ 3, endowed with a nondegenerate hermitian
form h : Q×Q→ K such that h(1, 1) = 1 and for any x, y ∈ Q,

x · y = h(y, 1)x − h(y, x)1 + h(1, x)y. (6.2)

In this case, (Q, ·) is the structurable algebra of the restriction of the
nondegenerate hermitian form −h to {x ∈ Q : h(1, x) = 0}.

(iii) There exists a quaternion algebra H over F such that Q is a free left
Q-module of rank ≥ 2, endowed with a hermitian form h : Q×Q→
H such that (6.2) holds.

(iv) There exists a quaternion algebra H over F and a nonzero scalar
µ ∈ F such that (Q, ·) = H [µ].

(v) There exists a color algebra B over F such that (Q, ·) = B[−2].

(vi) There exists a Cayley algebra C over F such that (Q, ·) = C [9].

Moreover, two algebras in different items above are not isomorphic and:

(i’) Two algebras of type (i) are isomorphic if and only if their quadratic
forms are isometric.

(ii’) Two algebras Q1 and Q2 in item (ii) with associated étale algebras K1

and K2 and hermitian forms h1 and h2 are isomorphic if and only if
the hermitian pairs (Q1, h1) and (Q2, h2) are isomorphic. (That is,
there is an isomorphism of F -algebras σ : K1 → K2 and an F -linear
bijection ϕ : Q1 → Q2 such that h2

(
ϕ(x), ϕ(y)

)
= σ

(
h1(x, y)

)
for

any x, y ∈ Q1.)
(iii’) Two algebras Q1 and Q2 in item (iii) with associated quaternion

algebras H1 and H2 and hermitian forms h1 and h2 are isomorphic if
and only if the hermitian pairs (Q1, h1) and (Q2, h2) are isomorphic.

(iv’) Two algebras H
[µ1]
1 and H

[µ2]
2 in item (iv) are isomorphic if and only

if so are the quaternion algebras H1 and H2 and µ1 = µ2.

(v’) Two algebras B
[−2]
1 and B

[−2]
2 in item (v) are isomorphic if and only

if so are the color algebras B1 and B2.

(vi’) Two algebras C
[9]
1 and C

[9]
2 in item (vi) are isomorphic if and only

if so are the Cayley algebras C1 and C2.

Proof. That the finite dimensional simple quadratic algebras in V over F are
precisely the algebras in the assertion of the Theorem follows directly from
Theorem 4.4, Theorem 4.8 and the classification of the simple (−1,−1)-
BFKTS’s in [EKO03, Theorem 4.3].

For the isomorphism problem, notice that any isomorphism ϕ between two
flexible quadratic algebras satisfies ϕ(x̄) = ϕ(x) for any x, where x 7→ x̄ de-
notes the standard involution) and hence extends to an isomorphism between
the corresponding (−1,−1)-BFKTS’s, because of (4.6). Conversely, any iso-
morphism between the corresponding (−1,−1)-BFKTS’s that matches the
unity elements of the quadratic algebras is indeed an isomorphism of the
quadratic algebras.

Now, the assertions in (i’)–(iii’) would follow from the corresponding as-
sertions in [EKO03, Theorem 4.3] if it could be proved that if the her-
mitian or quadratic pairs (Q1, h1) and (Q2, h2) are isomorphic, the iso-
morphism can be taken to match the unity elements. This is a direct
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consequence of Witt’s Theorem [Sc85] in case (i’) and in cases (ii’) and
(iii’) with K and H being division algebras. For the split cases in (ii’)
(K = F × F ) and (iii’) (H = Mat2(F )) an extra argument is needed. First,
if K = F ×F and Q is a free K-module of rank ≥ 3 endowed with a nonde-
generate hermitian form h, then (see [EKO03, p. 358], up to isomorphism,
Q =W×W ∗ for a vector spaceW (W ∗ being its dual) and h

(
(u, f), (v, g)

)
=(

g(u), f(v)
)
∈ F × F = K. Now, given any two elements (u, f) and (u′, f ′)

with h
(
(u, f), (u, f)

)
= 1 = h

(
(u′, f ′), (u′, f ′)

)
(that is, f(u) = 1 = f ′(u′)),

there is a linear bijection ϕ : W →W such that ϕ(u) = u′ and f ◦ϕ−1 = f ′

(just complete {u, f} and {u′, f ′} to a couple of dual bases of W and W ∗).
Then the linear map ψ : Q → Q given by ψ

(
(v, g)

)
=

(
ϕ(v), g ◦ ϕ−1) is

an automorphism of the hermitian pair (Q,h) that carries (u, f) to (u′, f ′).
This finishes the proof of (ii’). Also, if H = Mat2(F ) and Q is a free left
H-module of rank ≥ 2 endowed with a nondegenerate hermitian form h,
then ([EKO03, p. 359]), up to isomorphism, Q = U ⊗F W , where U is
the irreducible (two dimensional) left H-module and W is a vector space,
and h(u1 ⊗ w1, u2 ⊗ w2) = ψ(w1, w2)ϕ(−, u2)u1 ∈ EndF (U) = H, where
ϕ : U × U → F and ψ : W ×W → F are nondegenerate skew symmetric
bilinear forms. Let {a1, a2} be a basis of U with ϕ(a1, a2) = 1. Then for
any element x = a1 ⊗ w1 + a2 ⊗w2 ∈ Q,

h(x, x) = ψ(w1, w2)ϕ(−, a2)a1 + ψ(w2, w1)ϕ(−, a1)a2

= ψ(w1, w2)
(
ϕ(−, a2)a1 − ϕ(−, a1)a2

)

= ψ(w1, w2)1.

Thus h(x, x) = 1 if and only if ψ(w1, w2) = 1. But if x = a1 ⊗w1 + a2 ⊗w2

and y = a1 ⊗w′
1+ a2⊗w′

2 are two elements of Q with h(x, x) = 1 = h(y, y),
that is, ψ(w1, w2) = 1 = ψ(w′

1, w
′
2), there is an element in the symplectic

group Φ ∈ Sp(W,ψ) such that Φ(w1) = w′
1 and Φ(w2) = w′

2. Then 1 ⊗ Φ
is an automorphism of the hermitian pair (Q,h) that carries x to y. This
completes the proof of (iii’).

For (iv’)–(vi’) notice that any isomorphism of quadratic algebras ϕ :

Q
(
V1, (.|.)1,×1

)
→ Q

(
V2, (.|.)2,×2

)
restricts to an isomorphism of anti-

commutative algebras ϕ|V1 : (V1,×1) → (V2,×2), which is also an isom-
etry

(
V1, (.|.)1

)
→

(
V2, (.|.)2

)
. But for a quaternion or Cayley algebra

Q
(
V, (.|.),×

)
, the bilinear form (.|.) is determined by × due to the identity:

(x× y)× y = (x|y)y − (y|y)x, (6.3)

and the same happens for color algebras due to the identity:

((x× y)× y)× y =
1

2
(y|y)x× y. (6.4)

(See [Eld88].) Thus, for instance, if

ϕ : H
[µ1]
1 = Q

(
V1, µ1(.|.)1,×1

)
→ H

[µ2]
2 = Q

(
V2, µ2(.|.)2,×2

)

is an isomorphism of algebras in item (iv), where Vi is the set of vectors

of the quaternion algebra Hi = Q
(
Vi, (.|.)i,×i

)
, i = 1, 2, then ψ = ϕ|V1 :
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(V1,×1) → (V2,×2) is an isomorphism of anticommutative algebras and also
an isometry ψ :

(
V1, µ1(.|.)1

)
→

(
V2, µ2(.|.)2

)
. By (6.3), ψ is an isometry too

between
(
V1, (.|.)1

)
and

(
V2, (.|.)2

)
, so that µ1 = µ2 and ϕ is an isomorphism

between the quaternion algebras H1 and H2. The cases (v’) and (vi’) follow
using the same arguments (but with (6.4) instead of (6.3) for case (v’)). �

There appears the natural open question of studying the quadratic sim-
ple algebras in V over arbitrary fields of characteristic 6= 2 and check if
some other kind of algebras appear. This would lead to a classification of
the simple (−1,−1)-BFKTS’s over these fields. The known classification
in characteristic 0 depends heavily on the classification of the simple Lie
superalgebras in characteristic 0, and the restriction on the characteristic
there is essential.
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