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THE INNER AMENABILITY OF THE GENERALIZED

THOMPSON GROUP

GABRIEL PICIOROAGA

Abstract. In this paper we prove that the general version, F (N) of the
Thompson group is inner amenable. As a consequence we generalize a re-

sult of P.Jolissaint. To do so, we prove first that F (N) together with a normal
subgroup are i.c.c (infinite conjugacy classes) groups. Then, we investigate
the relative McDuff property out of which we extract property Γ for the group
von Neumann algebras involved. By a result of E.G.Effros, F (N) follows inner
amenable.

1. Introduction

The Thompson group F can be regarded as the group of piecewise-linear,
orientation-preserving homeomorphisms of the unit interval which have breakpoints
only at dyadic points and on intervals of differentiability the slopes are powers of
two. The group was discovered in the ’60s by Richard Thompson and in connection
with the now celebrated groups T and V it led to the first example of a finitely
presented infinite simple group. Since then, these groups have received considerable
applications in such fields as homotopy theory or operator algebras. The group V
has been generalized by Higman ([Hig]) and F by Brown ([Br]) and M. Stein ([St]).
The generalized Thompson group we study in this paper corresponds to F (p) in
[St] (or Fp,∞ in [Br]).

In 1979 Geoghegan conjectured that F is not amenable. This problem is still
open and of great importance for group theory: either outcome will produce a
strict inclusion related to groups satisfying certain properties (i.e. there would
exist a finitely presented group that is not amenable and does not contain a free
subgroup of rank 2 or else there would be a finitely presented amenable group which
is not elementary amenable).

Inner amenability (a larger property than amenability eventhough the definition
is just a slightly variation of the amenability one) was introduced by Effros. He
also observed that if the group von Neumann algebra corresponding to a group G
is a II1 factor having the property Γ of Murray and von Neumann then G is inner
amenable. In [Jol1] Jolissaint proved that the Thompson group is inner amenable,
then in [Jol] he proved more: the II1 factor associated with the Thompson group
has the so-called relative McDuff property; in particular property Γ is satisfied.
In this paper we prove that for any integer N ≥ 2 the generalized Thompson group
F (N) satisfies the relative McDuff property and therefore it is inner amenable,
hence the title. To prove the McDuff property we will use two results from [Jol]. We
remark that inner amenability could be proved directly using the ideas in [Jol1] and
the infinite presentation of F (N), however relative McDuff property is a stronger
result. In the next section we prepare some basics on the Thompson groups and
group von Neumann algebras. In the last section we prove the main result of the
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paper and its corollary. We conclude with a question whose answer might connect
the theory of II1 factors and the (non)amenability of F .

2. Background

Definition 2.1. For N ∈ N, N ≥ 2, the Thompson group F (N) is the set of
piecewise linear homeomorphisms from the closed unit interval [0, 1] to itself that
are differentiable except at finitely many N -adic rationals and such that on intervals
of differentiability the derivatives are powers of N .

In [Br] finite and infinite presentations of F (N) are given. For example

F (N) = 〈x0, x1, ...xi, ...| xjxi = xixj+N−1, i < j 〉

We will not make use of them here, our arguments being based on some special
elements of F (N) (see [DutP])

Ad,p(x) =







x/Np, 0 ≤ x ≤ d
x− d+ d/Np, d ≤ x ≤ 1− d/Np

Npx+ 1−Np, 1− d/Np ≤ x ≤ 1

where d is a N-adic, p ∈ Z such that d/Np < 1.
Next, we introduce two subgroups of F (N). Let

F
′

:= {f ∈ F (N) | f|[0,ǫ] = id, f|[δ,1] = id, 0 < ǫ,δ < 1}

and the intermediate subgroup

D := {f ∈ F (N) | f|[δ,1] = id, 0 < δ < 1}

These, of course are the same ones considered in [Jol] for N = 2. It is not hard to

see that F
′

and D are normal subgroups of F (N) . Actually, when N = 2, F
′

is
the commutator subgroup (see [Can] for N = 2 and [Br] for the general case).

A von Neumann algebra can be thought of as a * subalgebra of bounded operators
on some fixed (separable) Hilbert space, that is closed with respect to the weak
topology. As shown by John von Neumann the building blocks of the theory are
the so-called factors. A von Neumann algebra M inside B(H) = the space of all

bounded operators on some Hilbert space H is called a factor ifM ∩M
′

= C, where
M

′

represents the set of all bounded operators commuting with any element of M .
There are three types of factors:
type I, when M admits minimal projections, e.g. n × n matrices over C or the
whole B(H);
type II, no minimal projection and there exists a unique (semi) finite trace. The
factor is called II1 when the trace takes only finite values;
type III means not of type I or II.
For more on factors and von Neumann algebras we refer the reader to the book
[StZ].

Since the beginning of the theory there has been a fruitful interplay between
group theory and factors. For example, if G is a countable discrete group with
infinite conjugacy classes (i.c.c.) then the left regular representation of G on l2(G)
gives rise to a II1 factor, the group von Neumann algebra L(G), as follows:
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Let l2(G) =
{

ψ : G→ C |
∑

g∈G |ψ(g)|2 <∞
}

endowed with the scalar product

〈φ, ψ〉 :=
∑

g∈G

φ(g)ψ(g)

Notice that the Hilbert space l2(G) is generated by the countable colection of vec-
tors {δg |g ∈ G}. Also, an element g ∈ G defines a unitary operator Lg, on l

2(G)
as follows: Lg(ψ)(h) = ψ(g−1h), for any ψ ∈ l2(G) and any h ∈ G. (Sometimes, to
not burden the notation we will write just g instead of Lg). Now, L(G), the von
Neumann algebra generated by G is obtained by taking the wo-closure in B(l2(G))
of the linear span of the set {Lg |g ∈ G}. It is a routine exercise to show that L(G)
is a factor provided any element of G has infinite conjugacy classes, and it is of type
II1. The map defined by tr(L) = 〈L(δe), δe〉, where e ∈ G is the neutral element
and L ∈ L(G) is a faithful, normal trace. The canonical trace also determines the
Hilbertian norm |x|2 = tr(x∗x)1/2. It is easy to see that tr(g) = 0 for g 6= e and
tr(e) = 1. Also, for g 6= h, |g − h|2 = 21/2.

The following is an equivalent definition of (inner)amenability:

Definition 2.2. Let G be a (countable discrete) group. If there exists a mean f
on the algebra l∞(G− {e}), invariant under the action

(gf)(h) = f(g−1h)

then G is amenable. If the action is taken with respect to conjugation then G is
inner amenable.

Let M be a II1 factor and tr its normal, faithful trace.

Definition 2.3. i) A sequence (xn)n ∈ l∞(N,M) is a central sequence if

lim
n→∞

|[x, xn]|2 = 0

for any x ∈M , where [x, y] = xy − yx.
ii) Two central sequences (xn) and (yn) in M are equivalent if

lim
n→∞

|xn − yn|2 = 0

iii)A central sequence is trivial if it is equivalent to a scalar sequence.
iv)M has property Γ of Murray and von Neumann if there exists in M a non trivial
central sequence.

In [Efr] it is shown that if the II1 factor L(G) satisfies property Γ then G is inner
amenable. A stronger property than Γ is the relative McDuff property: a factor
M is McDuff if M is isomorphic to M ⊗ R, where R is the hyperfinite II1 factor
(R can be viewed as L(G) for an amenable, countable, discrete group G). D.Bisch
extended this property to pairs of II1 factors 1 ∈ N ⊂M :

Definition 2.4. The pair N ⊂M has the relative McDuff property if there exists
an isomorphism Φ : M →M ⊗R such that Φ(N) = N ⊗R.

Finally, we prepare the two results from [Jol] that we are going to use. First,
notice that an inclusion H ⊂ G of groups determines naturally an embedding
1 ∈ L(H) ⊂ L(G) of factors. Also, a semidirect productH⋊αG of groups translates
into a crossed product L(H) ⋊α G in the realm of factors (for more on crossed
products see for example [vDa]).
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Proposition 2.5. ( Proposition 2.4. in [Jol]) Let G a countable i.c.c. group and
let H be an i.c.c. subgroup of G with the following property: for every finite subset
E of G there exist elements g and h in H − {e} such that
(1) xg = gx and xh = hx for every x ∈ E;
(2) gh 6= hg.
Then the pair L(H) ⊂ L(G) has the relative McDuff property.

Definition 2.6. Let M be a type II1 factor and let θ be an automorphism of M .
i) θ is centrally trivial if one has for every central sequence (an)n

lim
n→∞

|θ(an)− an|2 = 0

ii)If G is a countable group and if α is an action of G on M , then α is called
centrally free if αg is not centrally trivial for every g ∈ G− {e}.

Proposition 2.7. (Proposition 2.6. in [Jol]) Let N be a McDuff factor of type II1
with separable predual, let G be an amenable countable group and let α be a centrally
free action of G on N . Then the pair N ⊂ N⋊αG has the relative McDuff property.

3. Main result

As in [Jol] we will establish that the pairs L(F
′

) ⊂ L(D) and L(D) ⊂ L(F (N))
have the relative McDuff property. In doing so we will first make sure that the
group von Neumann algebras involved are II1 factors.

Theorem 3.1. F
′

and F (N) are both i.c.c. groups, therefore the von Neumann

algebras L(F
′

) and L(F (N)) are II1 factors.

Proof. The nice argument that F
′

is i.c.c. is due to Dorin Dutkay: notice first
that for any non-trivial g ∈ F

′

there is a unique ǫ such that g[0,ǫ] = id and for any
neighborhood V of ǫ there is x ∈ V , x > ǫ, g(x) 6= x. We call this unique value ǫg.
Now, we prove that for any h ∈ F

(3.1) ǫhgh−1 = h(ǫg)

ǫhgh−1 makes sense because g ∈ F
′

implies hgh−1 ∈ F
′

. Let x ∈ [0, h(ǫg)]. Then
gh−1(x) = h−1(x), hence hgh−1(x) = x. The maximality of ǫhgh−1 implies

ǫhgh−1 ≥ h(ǫg)

For the reversed inequality apply the above with the substitutions h→ h−1 and g →
hgh−1. Therefore (3.1) holds. But, for a fixed non-trivial g, the set {h(ǫg) | h ∈ F

′

}
is infinite, so that by (3.1) above, the conjugacy class of g is infinite. In conclusion,

F
′

is i.c.c.
To prove F (N) is i.c.c we are going to use the elements Ad,p. Notice first

A−1
d,p(x) =







xNp, 0 ≤ x ≤ d/Np

x+ d− d/Np, d/Np ≤ x ≤ 1− d
(x +Np − 1)/Np, 1− d ≤ x ≤ 1

We assume f ∈ F (N) is non-trivial and that in a neighborhood of x = 0 its slope
is positive. Once we prove that its conjugacy class is infinite the class of its inverse
follows infinite, so there is no loss of generality in assuming a positive slope around
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the origin. For any p ∈ Z, p 6= 0 we will find a large α such that for any k > l > α:

(3.2) A−1
d,pfAd,p 6= A−1

d̃,p
fAd̃,p

where d = 1/Nk and d̃ = 1/N l. This relation clearly shows that the conjugacy
class of f is infinite.
From the definition of F (N) there is a N -adic d1 such that f|[0,d1](x) = Nnx, where,
by our assumption n > 0 (the case n = 0 is taken care of by the previous argument,
i.e. when f is trivial around x = 0). Choose now α large enough such that the
following inequalities hold:

1

Nα+p
< d1,

Nn

Nα+p
< 1−

1

Nα

For k > l > α consider the N-adic numbers d and d̃. If (3.2) were not true then
evaluating at x = d = 1/Nk we obtain

A−1
d,pf(

1

Nk+p
) = A−1

d̃,p
f(

1

Nk+p
)

Because 1/Nk+p ∈ [0, d1] the equality becomes

(3.3) A−1
d,p(

Nn

Nk+p
) = A−1

d̃,p
(
Nn

Nk+p
)

Because of the choices of n, α, k and l we have

1

N i+p
<

Nn

N i+p
<

Nn

Nα+p
< 1−

1

Nα
< 1−

1

N i

where i ∈ {k, l}. This shows that

x :=
Nn

Nk+p
∈ [

d

Np
, 1− d]

Using formula of A−1
d,p, equation (3.3) can be rewritten

(3.4) x+ d−
d

Np
= A−1

d̃,p
(x)

Because of the way α has been chosen we get x < 1− d̃, so that there are only two
cases to discuss:
x ∈ [ d̃

Np , 1− d̃]. Relation (3.4) easily implies d = d̃, which of course is not allowed.

x ∈ [0, d̃
Np ]. Using formula for A−1

d̃,p
on [0, d̃

Np ] and putting x = Nn

Nk+p and d = 1
Nk

back in (3.4) we obtain

Nn

Nk+p
+

1

Nk
−

1

Nk+p
=
Nn

Nk

which reduces (using n 6= 0) to Nk+p = Nk. This would imply p = 0, a value that
we avoid.
In conclusion, (3.2) is true and we finish the proof. �

We prove the following lemma, useful for scaling down graphs of elements in
F (N) and still remaining in F (N):

Lemma 3.2. Let 0 < δ < ǫ < 1, N -adic numbers such that ǫ−δ ∈ NZ. Then there
exists f ∈ F (N) with f|[0,δ](x) = x and f|[ǫ,1](x) = x and f has no fixed points in
(δ, ǫ).
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Proof. Take r : [δ, ǫ] → [0, 1] defined by r(x) = x
ǫ−δ −

δ
ǫ−δ . For d, a non-zero N -adic

and p 6= 0, consider the following homeomorfism

f(x) =







x, 0 ≤ x ≤ δ
r−1Ad,pr(x), δ ≤ x ≤ ǫ
x, ǫ ≤ x ≤ 1

When the derivative exists, f
′

(x) = A
′

d,p(r(x)), for x ∈ (δ, ǫ). Thus we obtain

f ∈ F (N). Also, there can be no fixed point of f in (δ, ǫ) as Ad,p has no other fixed
points besides 0 and 1. �

Next, we are going to check the hypotheses of Proposition 2.4 from [Jol]:

Proposition 3.3. For every finite subset {g1, g2, ..., gn} of D there exist non-trivial

distinct elements g and h of F
′

such that
(1) gig = ggi and gih = hgi for all i ∈ {1, 2, ...n}
(2) hg 6= gh.

Proof. Because gi ∈ D, there exists δ such that gi|[δ,1] = id for all i ∈ {1, 2, ..., n}.

Also, we may take δ N -adic. For ǫ1 chosen such that ǫ1− δ ∈ NZ apply the Lemma
above: there exists g ∈ F

′

with g[0,δ] = id, having no fixed points inside (δ, ǫ1).

An easy check shows gig = ggi. Now, for ǫ2 > ǫ1 such that ǫ2 − δ ∈ NZ we find,
using Lemma again, a h ∈ F

′

with the very same properties. Therefore (1) is

satisfied. Now, for any f ∈ F
′

let ǫh the smallest ǫ such that f|[ǫ,1] =id and for any
neighborhood V of ǫ there exists a x ∈ V , x < ǫ with f(x) 6= x. For g and f found
above we clearly have ǫ1 = ǫg and ǫ2 = ǫh. Moreover, as in the proof of Theorem
3.1 the following equality holds true: ǫhgh−1 = h(ǫg). If (2) were not satisfied then
we would obtain ǫ1 = h(ǫ1), which contradicts the fact that h has no fixed point
inside (δ, ǫ2). �

Corollary 3.4. The pair L(F
′

) ⊂ L(D) has the relative McDuff property.

Proof. Apply Proposition 2.4. of [Jol] �

Remark 3.5. We will continue on the ideas in [Jol] to show that the pair
L(D) ⊂ L(F (N)) has the relative McDuff property. Notice first that the general
Thompson group can be realized as a semiproduct D ⋊α Z where the action α is
defined as follows: choose x0 ∈ F (N) such that its first piece of graph is trivial and
the slope of the last piece is N (it is elementary to construct such an element in
F (N), see the proof of Proposition 3.8 below). Then the action α(n)(f) = xn0fx

−n
0

is well defined onD. Also, any element of F (N) can be written as fx−n
0 for some f ∈

D and n ∈ Z, therefore the map (f, n) ∈ D ⋊α Z → fx−n
0 is a group isomorphism.

For a central sequence in L(D) we choose the unitary operators corresponding to
the following sequence (an)n ⊂ D: let (dn)n and (dn)n two sequences of N -adic

numbers in [0, 1] such that dn < dn are consecutives with dn → 1. Applying the

scalling-down lemma we obtain a non-trivial an ∈ F
′

. Moreover, for any g in a
finite subset of D and for large n, an commutes with g (see the proof of Proposition
3.3).

Notice that F
′

is inner amenable: in particular, by the Corolarry above, L(F
′

)

has property Γ, so that me may apply the result in [Efr] to conclude F
′

is inner
amenable.
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Theorem 3.6. The pair L(D) ⊂ L(F (N)) has the relative McDuff property.

Proof. We will make use of Proposition 2.6 in [Jol]: it suffices to check that the
action α is centrally free. Having already a central sequence given by (an)n, it is
enough to show limn|α

m(an) − an|2 > 0, for all m 6= 0. Notice that for g 6= h in a
i.c.c group, we have |g − h|2 = 21/2, hence it suffices to prove that αm(an) is not
equal to an, for sufficiently large n. Using the notation in the proof of Theorem 3.1
(see relation (3.1)) we get ǫan

= dn. If α
m(an) = an then we obtain

ǫxm
0
anx

−m
0

= ǫan

Applying (3.1)

xm0 (dn) = dn

The last equality cannot happen though, as xm0 has slope equal to Nm near x = 1
and dn → 1. �

Corollary 3.7. For any integer N ≥ 2, the generalized Thompson group F (N) is
inner amenable.

Proof. From the theorems above L(F (N)) has property Γ. �

The next proposition establishes an exact sequence that allows us once again
to conclude F (N) is inner amenable. For N = 2 this proposition specializes in
Theorem 4.1. of [Can] (except the part about the commutator subgroup, see also
[Che]) and also appears in a more general form in [St].

Proposition 3.8. One has the short exact sequence

1 → F
′

→ F (N) → Z
2 → 1

Proof. We prove that the following group morphism is onto: φ : F (N) → Z2,
φ(f) = (a, b), where f has slope Na near x = 0 and slope N b near x = 1. Suffices to
show that there exist f1 and f2 in F (N) such that φ(f1) = (1, 0) and φ(f2) = (0, 1).
Let p > 0 and d := 1/Np such that d(N + 1) < 1. Define now

f1(x) =







Nx, 0 ≤ x ≤ d
x
N +Nd− d

N , d ≤ x ≤ d(N + 1)
x, d(N + 1) ≤ x ≤ 1

Clearly f1 ∈ F (N) and φ(f1) = (0, 1); f2 can be obtained by applying a sym-
metry to f1. In conclusion φ is onto. Notice that its kernel is exactly the normal
subgroup F

′

. �

Question: Following [Br] in a particular case we obtain that F (2) = F is not
isomorphic to F (3). Is it true that L(F (2)) ∼= L(F (3))? Notice that if these factors
are not isomorphic then by the uniqueness of the hyperfinite II1 factor at least one
of the groups F or F (3) follows non amenable.
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