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ON THE STABILITY OF DUAL SCATTERING CHANNEL

SCHEMES

STEFFEN HEIN

Abstract. Dual scattering channel (DSC) schemes generalize Johns’

TLM algorithm in replacing transmission lines with abstract scattering
channels in terms of paired distributions. A well known merit of TLM
schemes is unconditional stability, a property that is commonly drawn
upon the passivity of linear transmission line networks. So the question
arises, if DSC algorithms remain stable in a neat sense. It is shown
that a large class of α-passive processes are in fact unconditionally sta-
ble. The analysis applies to TLM and DSC schemes alike and includes
non-linear situations.

Westerham on June 8, 2004

1. Introduction

Dual scattering channel (DSC) schemes result from an incisive revision of
the transmission line matrix (TLM) numerical method. The latter has origi-
nally been introduced by P.B.Johns and coworkers in the early 1970s [JoBe]
and has since been subject to assiduous study and publication [Tlm1-3]. The
TLM method is today commonplace in scientific computing and largely ap-
plied to the numerical solution of Maxwell’s equations [Hoe] but also to
manifold wave propagation, transport, and diffusion phenomena; we can
here refer to the monographs of Christopoulos [Ch] and de Cogan [dC].
Also, Rebel [Re] gives a fairly complete survey over the state of the art of
TLM by the year 2000.

DSC schemes are generalized TLM methods in arising from a twofold
abstraction [He1]. Firstly, the scattering channel concept underlying TLM
is redefined in terms of paired distributions. (Characteristic impedances
are thus neither needed, nor in general defined, e.g.) In the second place,
non trivial cell interface scattering is admitted during the connection step of
iteration, thus taking advantage of the intrinsic duality in the connection-
reflection cycle of the algorithm.

The extended framework bypasses a set of modeling limitations induced
by transmission lines ( and discussed in more detail in [He1, section2] ) while
it preserves the main advantages of the TLM method. In particular, the
convolution type updating scheme and Johns’ two step connection-reflection
cycle are essentially retained. The question arises, however, if DSC schemes
remain unconditionally stable in a well-defined sense.

TLM schemes are unconditionally stable in that they are equivalent to
passive linear transmission line network models [Jo2]. A concept that applies
to DSC and TLM algorithms alike is α-passivity which paraphrases con-
traction properties with respect to a non-negative (de)limiting functional;
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cf. section 2. In the TLM context, α is essentially the sum over the squared
incident and outgoing transmission line voltages. The sum is contracted at
each scattering event due to energy conservation (or loss).

In a like manner α-passivity characterizes the reflection and connection
maps of an unconditionally stable DSC algorithm, but the ’energy’ func-
tional α (which may in fact measure any conserved quantity) needs not to
be a quadratic form. For instance, energy may be linearly related to tem-
perature and quadratically to particle velocity, within the same algorithm.
The following approach is sufficiently general to apply to such and other,
even non-linear situations.

2. Stability

Algorithm stability prevents the computational process from piling up to
infinity (it does not yet imply convergence, or consistence of the algorithm, of
course). TLM models are unconditionally stable in that they are equivalent
to passive linear transmission line networks [Jo2]. DSC schemes, in not using
lines, need a more general characterization which here is given in terms of
α-passive causal functions.

Let L be a real or complex linear space and I a totally ordered set ( e.g.
I ∈ {N ,Z ,R} ; intervals are then naturally defined in I by the order re-
lation. We commonly think with I of a discrete or continuous time do-
main.) Also, let E ⊂ LI be a set of functions such that f ∈ E implies
χ

s6t
(s)f(s) ∈ E , for every t ∈ I , where χ

P
(s) denotes the characteristic

function of property P (which is 1 if s shares that property and 0 else).

Definition 2.1. A function F : E → E is called causal , iff for every f ∈ E

and t ∈ I
F f ( t ) = F [ χ

s6t
f ( s ) ] ( t ) .

Such functions are also called (causal) propagators.

Remark. In some respect, causal functions generalize lower triangular ma-
trices or integral operators such as

F f ( t ) =

∫ t

−∞
K ( t − s ) f ( s ) ds

with a Green’s function kernel K, e.g. Note that in general F : f 7→ Ff
needs not to be linear.

Typically f represents a state evolving in time ( i.e. a process ). Then
causality of F means that F f ( t ) depends on the history of f only up to
present time t .

The proof of the following is easy and left to the reader.

Proposition.

For every t ∈ I ; f, g ∈ E and causal functions F, G : E → E

(i) Ff ( s ) = F [ χ
r6t

( r ) f ( r ) ] ( s ) , for every s 6 t .

(ii) If f(s) = g(s) for every s 6 t ,

then Ff (s) = Fg (s) for every s 6 t .
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(iii) The product of causal functions

FG : E −→ E

f 7−→ F Gf : = F [G [ f ] ]

is again causal. In fact, if E is a linear space, then the causal func-

tions over E form an algebra.

Let ‖...‖ be a norm on L and α ∈ R
L a continuous non-negative real

functional on L.

Definition 2.2.

(i) We call a process g : I → L stable, iff g is uniformly bounded on I ,
i.e. iff there exists b ∈ R+ such that ‖ g (t) ‖ < b for every t ∈ I .

(ii) The functional α : L → R is named a (de)limiting functional , iff
there exist any non-negative real constants a, b, c such that

(1) ‖ z ‖ 6 a + b (α ( z ) )c ,

for every z ∈ L . Then obviously b, c > 0 , and we say also that α
is minimal increasing (in any order ) not lesser than 1/c .

Let µ be a measure on I such that intervals are µ-measurable sets.
Functions on I are henceforth read modulo µ (viz. as equivalence classes of
functions that differ at most on sets of µ-measure zero). Also, let α ∈ RL

be a delimiting functional on L (i.e. one that is increasing not lesser than
any positive order 1/c ), and assume that α ◦ f is µ−summable over finite
intervals in I for every f ∈ E . The latter is for instance the case if α ( z ) =
‖ z ‖ p for any real p > 1 and E ⊂ L p( I, L ) , which is the metric completion
of

{ f ∈ L
I | (

∫

I
‖ f ‖p dµ )

1

p 6 ∞} ,

i.e. E is a subset of the Banach space with norm ‖ f ‖p : = (
∫

I ‖ f ‖p dµ )
1

p .

Definition 2.3. A causal function F : E → E is called α-passive, iff

(2)

∫

s<t
α (Ff ( s ) ) dµ(s) 6

∫

s<t
α ( f ( s ) ) dµ(s) ,

for every f ∈ E and t ∈ I.

Remark. If α = ‖...‖p for any real p > 1 and ‖ f ‖p is µ-summable over
I , i.e. f ∈ L p( I, L ) , then (2) clearly implies Ff ∈ L p( I, L ) and

‖Ff ‖p 6 ‖ f ‖p .

Hence, every ‖...‖p-passive causal function F defines a contraction operator
on E ∩ L p( I, L ).

Assume, furthermore, that τ ∈ R+ and let on I : = R the measure µ be
concentrated in { kτ | k ∈ Z } with uniform weight µ ( {kτ} ) = τ , k ∈ Z .
Alternatively, let I : = { kτ | k ∈ Z } with ’the same’ measure µ .
(Virtually we deal of course with that discrete situation, even in working on
the real axis with functions that are constant over intervals [ kτ, (k + 1) τ) ;
k ∈ Z . Indeed we retain the integral formalism for simplicity, and the reader
may optionally re-write the following integrals as sums.) For every f ∈ E let
f(t− τ) ∈ E, i.e. E is closed under time shifts by negative integer multiples
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of τ . Then, for arbitrary N ∈ N+ and exciting function e ∈ E ⊂ LI with
support on [ 0, Nτ ) ⊂ I , the following holds

Theorem 2.1. [ Stability of the iterated passive causal process ]
For any α-passive causal function F : E → E and e ∈ E as stated,

if g ∈ LI is a process such that g(t) ≡ 0 for t 6 0 and recursively for

t = nτ ; n ∈ N

(3) g ( t + τ ) = F [ e + g ] ( t ) ,

then g is uniquely defined (modulo µ) and for every t > Nτ holds

(4) ‖ g ( t ) ‖ 6 a + (
b

τ

∫

[ 0, Nτ )
α ( e + g )− α ( g ) dµ ) c

with every constants a, b, c that satisfy (1). Hence g is stable.

Remark. A process g ∈ LI which is recursively generated according to (3)
by iteration of an α-passive causal function F is called an α-passive process.

The theorem ensures thus that for any excitation of finite duration (and
with no further restrictions) the α-passive process is necessarily stable and
in this sense unconditionally stable.

Note that existence of such a process g is not apriori guaranteed, since
this obviously depends on the condition that with s0 : = e ∈ E recursively
also the functions

(5) sn(t) := e(t) + F [ sn−1 ] ( t− τ ) ∈ E ,

for 0 < n < N - which eventually has to be checked.
Clearly, conditions (5) are always true (and hence g exists) if E is a linear
space. We do not universally premise this, in order to potentially apply the
theorem to non-linear situations, where conditions (5) may only be satisfied
for sufficiently small excitations e .

Corollary.

(i) In the special case α = ‖...‖ estimates (1) holds with a = 0, b = 1,
c = 1. Then the triangle inequality applies to the integrand of (4)
and validates the bound

‖ g ( t ) ‖ 6
1

τ

∫

[ 0, Nτ )
‖ e ‖ dµ .

(ii) If N = 1 , i.e. e(t) is a Dirac excitation concentrated on [ 0 , τ )
(where g = 0 ), then (4) reads simply

‖ g ( t ) ‖ 6 a + (
b

τ

∫

[ 0,τ )
α ( e ) dµ ) c ,

provided that α ( 0 ) = 0 ( which is the normal case ).

Proof. Clearly, g ∈ LI is uniquely defined by the given recurrence relations,
since e + g ( and hence g ) at the right hand side of (3) is evaluated only
up to time t = n τ , in virtue of the causality of F .
Furthermore, if N 6 n and a 6 ‖ g (nτ ) ‖ with any a satisfying (1), then
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with pertinent b, c that satisfy (1)

0 6 (
1

b
( ‖ g (nτ ) ‖ − a ) ) 1/c 6 α ( g (nτ ) )

=
1

τ
(

∫

s<(n+1) τ
α ( g ) dµ(s) −

∫

s<nτ
α ( g ) dµ(s) )

=
1

τ
(

∫

s<nτ
α (F [ e + g ] ) dµ(s) −

∫

s<nτ
α ( g ) dµ(s) )

 recursion formula (3)

6
1

τ
(

∫

s<nτ
α ( e + g ) dµ(s) −

∫

s<nτ
α ( g ) dµ(s) )

 since F is passive

=
1

τ

∫

[ 0, Nτ )
α ( e + g ) − α ( g ) dµ(s)

 since e( t ) ≡ 0 if t /∈ [ 0, Nτ) .

Thus, estimates (4) holds true in the case a 6 ‖ g (nτ ) ‖ and trivially
otherwise. It follows that ‖ g ‖ is uniformly bounded on I r [ 0, Nτ) , hence
also on I , that is to say g is stable. �

3. DSC Processes

In this section DSC schemes are represented as paired α-passive processes
such as are dealt with in Theorem 2.1 and which hence are stable.

Just as the TLM algorithm, DSC schemes operate on a space P of prop-
agating fields, which is a product of (real or complex) normed linear spaces

(6) P = Pin × Pout ,

cf. [He1]. The two factors are named (somewhat off-hand) the incident and
outgoing subspace of P. They are isomorphic in that there is canonical
involutary isomorphism of normed linear space

(7)
nb : P → P

z = ( zin , zout ) 7→ ( zout , zin ) = : nb ( z ) ,

which is commonly called the node-boundary map. Hence, there exists a
space (L , ‖...‖ ) such that

(8) Pin
∼= Pout

∼= (L , ‖...‖ )

in the sense of isomorpy of normed spaces and

(9)
P ∼= (L2 , ‖...‖∼ ) ,

e.g. with norm ‖ ( a , b ) ‖∼ : =
√

‖a‖2 + ‖b‖2 ; a, b ∈ L

(or any equivalent norm).
As is well known, DSC and TLM algorithms follow a two-step iteration

cycle in working with alternate application of a connection and reflection

map
C : I × P

I
out → Pin and R : J × P

J
in → Pout ,
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which respectively update the propagating fields at even and odd inte-
ger multiples of half the time step, i.e. on I : = { kτ | k ∈ Z } and J : =
{ (2k + 1)τ/2 | k ∈ Z }. To these maps the following functions F

C
, F

R
are

associated in a one-to-one correspondence

(10) F
C

: LI → L
I

f 7→ F
C
f with F

C
f ( t ) := nb ◦ C ( t , f )

and

(11) F
R

: LJ → L
J

g 7→ F
R
g with F

R
g ( t ) := nb ◦R ( t , g ) .

Proposition 3.1.

(i) F
C

and F
R

are causal on LI and LJ , respectively.

(ii) For r, s ∈ J and Ts : f(t) 7→ f(t+ s) the shift operator on LI ∪ J ,

( r, s 6 0 and

{

F
C

F
R

is α-passive on

{

LI

LJ ) =⇒

=⇒ (

{

Tr ◦ FC
◦ Ts

Tr ◦ FR
◦ Ts

is α-passive on

{

LJ

LI ) .

Indeed, the first statement is only a trivial consequence of the definition
of the DSC propagators R and C as functions on back-in-time running
sequences of incident and outgoing states, cf. [He1], section 3. Then (ii)
follows from Definition 2.3. ✷

Definition 3.1.

The

{

connection map C

reflection map R
is called α-passive, iff

{

F
C

F
R

is α-passive

in the sense of Definition 2.3.

We now claim the main statement:

Theorem 3.1. With every time limited excitation, the DSC process gen-

erated by α-passive reflection and connection maps is uniformly bounded,

hence stable.

Proof. It is sufficient to show that every finitely excited DSC process that
is generated by α-passive R and C can be written as a pair of processes,
either of which satisfies Theorem 2.1.

With H : = I ∪ J = {kτ/2 | k ∈ Z} and the measure on H inherited
from I and J jointly, the space of all DSC processes is

E : = { h = ( f, g ) ∈ (L2)H | f((2k + 1) τ/2 ) = f( kτ )

and g( kτ ) = g((2k − 1) τ/2 ) , for every k ∈ Z } ,

i.e. the functions f : H → L and g : H → L in h = ( f , g ) ∈ E ’switch’
at even and odd integer multiples of τ/2 , respectively. So, there is a natural
bijection

E → L
I × L

J

h = ( f , g ) 7→ ( f ⇂ I , g ⇂ J ) ,
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in virtue of which the first and second components in E can be naturally
identified with LI and LJ , respectively.

For any incident function e ∈ LI × { 0 } ⊂ E supported on a finite
interval [ 0 , Nτ ) ⊂ I , the DSC process excited with e and generated by
C and R is the well-defined function h ∈ (L2 )H such that h ( t ) = 0 for
t 6 0 and recursively for 0 < t ∈ H

(12) h ( t +
τ

2
) =

{

(h1 ( t ) , T− τ
2

F
R
T− τ

2

[ e + h1 ] ( t ) ) if t ∈ I

(T− τ
2

F
C
T− τ

2

[h2 ] ( t ) , h2( t ) ) if t ∈ J .

Actually h is well and uniquely defined by relations (12) which provide
separate recurrence relations for the two processes h1 , h2 ; for instance for
h1 and t ∈ I

(13)

h1 ( t + τ ) = h1 ( t
∼

+
τ

2
) with t

∼

: = t +
τ

2
∈ J

= T−τ
2

F
C
T−τ

2

[h2 |t∼ ] ( t
∼

) by (12)

= F
C
T−τ

2

[ h2 |t∼
︸ ︷︷ ︸

= T τ
2

h2|t∼ , cf. (12)

] ( t
∼

−
τ

2
)

= F
C
T−τ

2

F
R
T−τ

2

[h1 + e ] ( t ) .

In virtue of the causality of F
C
T−τ

2

F
R
T−τ

2

function h1 enters the last

expression in (13) only up to argument t . Moreover, since products of
α-passive operators are obviously α-passive, F

C
T−τ/2 FR

T−τ/2 is α-passive
due to Proposition 3.1 (ii). Hence Theorem 2.1 applies to h1 , which thus is
stable, just as then also is h2 = F

R
T−τ/2 [ e+ h1 ] . �

4. Conclusions

It has been demonstrated that a class of α-passive processes, charac-
terised by simple contraction properties with respect to a limiting functional
α , are unconditionally stable. Finitely excited DSC processes, generated by
α-passive reflection and connection maps, are then necessarily stable.
Stability analysis reduces so in pursuant cases to finding any limiting func-
tional α in relation to which the reflection and connection maps are
α-passive. In reverse: If the connection and reflection maps are per se

so designed as to conserve ( or admit loss of ) any quantity ’measured’ by
a limiting functional, then the DSC process generated by those maps is
essentially stable.
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