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4 THE MOMENTS OF THE GENERATING OPERATOR OF

L(F2) ∗L(F1) L(F2)

ILWOO CHO

Abstract. In this paper, we will consider an example of a (scalar-valued)
moment series, under the compatibility. Suppose that we have an amalgamated
free product of free group algebras, L(F2)∗L(F1)L(F2) = L(< a, b >)∗L(<h>)

L(< c, d >)
We will provide the method how to find the moment series of a+ b+a−1 +

b−1 + c + d + c−1 + d−1. Amalgamated freeness of a + b + a−1 + b−1 and
c + d + c−1 + d−1 over L(F1) is used and some combinatorial functions (to
explain the recurrence relations) are used to figure out the n-th moment of
this element.

Voiculescu developed Free Probability Theory. Here, the classical concept of In-
dependence in Probability theory is replaced by a noncommutative analogue called
Freeness (See [9]). There are two approaches to study Free Probability Theory.
One of them is the original analytic approach of Voiculescu and the other one is
the combinatorial approach of Speicher and Nica (See [23], [1] and [24]).

Speicher defined the free cumulants which are the main objects in Combinatorial
approach of Free Probability Theory. And he developed free probability theory by
using Combinatorics and Lattice theory on collections of noncrossing partitions
(See [24]). Also, Speicher considered the operator-valued free probability theory,
which is also defined and observed analytically by Voiculescu, when C is replaced
to an arbitrary algebra B (See [23]). Nica defined R-transforms of several random
variables (See [1]). He defined these R-transforms as multivariable formal series in
noncommutative several indeterminants. To observe the R-transform, the Möbius
Inversion under the embedding of lattices plays a key role.

In [16], we observed the amalgamated R-transform calculus. Actually, amalga-
mated R-transforms are defined originally by Voiculescu and are characterized com-
binatorially by Speicher (See [23]). In [16], we defined amalgamated R-transforms
slightly differently from those defined in [23] and [13]. We defined them as B-formal
series and tried to characterize, like in [1] and [24].

In [15], we observed the compatibility of a noncommutative probability space and
an amalgamated noncommutative probability space over an unital algebra. In this
paper, we have a nice compatibility of

(
L(F2) ∗L(F1) L(F2), ϕ

)
and

(
L(F2) ∗L(F1) L(F2), E

)
,

Key words and phrases. Free Group Algebras, Amalgamated R-transforms, Amalgamated Mo-
ment Series, Compatibility.

1

http://arxiv.org/abs/math/0405107v4


2 ILWOO CHO

where tr : L(F2) ∗L(F1) L(F2) → C is the canonical trace and F is the free product
of conditional expectations E : L(F2) → L(F1).

In this paper, we will compute the n-th (scalar-valued) moment

a+ b+ a−1 + b−1 + c+ d+ c−1 + d−1 ∈ L(F2) ∗L(F1) L(F2),

where < a, b >= F2 =< c, d > .

1. Preliminaries

1.1. Amalgamated Free Probability.

In this section, we will summarize and introduced the basic results from [23] and
[16]. Throughout this section, let B be a unital algebra. The algebraic pair (A,ϕ) is
said to be a noncommutative probability space over B (shortly, NCPSpace over B)
if A is an algebra over B (i.e 1B = 1A ∈ B ⊂ A) and ϕ : A → B is a B-functional
(or a conditional expectation) ; ϕ satisfies

ϕ(b) = b, for all b ∈ B

and

ϕ(bxb′) = bϕ(x)b′, for all b, b′ ∈ B and x ∈ A.

Let (A,ϕ) be a NCPSpace over B. Then, for the given B-functional, we can

determine a moment multiplicative function ϕ̂ = (ϕ(n))∞n=1 ∈ I(A,B), where

ϕ(n)(a1 ⊗ ...⊗ an) = ϕ(a1....an),

for all a1 ⊗ ...⊗ an ∈ A⊗Bn, ∀n ∈ N.

We will denote noncrossing partitions over {1, ..., n} (n ∈ N) by NC(n). Define
an ordering on NC(n) ;

θ = {V1, ..., Vk} ≤ π = {W1, ...,Wl}
def
⇔ For each block Vj ∈ θ, there exists only

one block Wp ∈ π such that Vj ⊂ Wp, for j = 1, ..., k and p = 1, ..., l.

Then (NC(n),≤) is a complete lattice with its minimal element 0n = {(1), ..., (n)}
and its maximal element 1n = {(1, ..., n)}. We define the incidence algebra I2
by a set of all complex-valued functions η on ∪∞

n=1 (NC(n)×NC(n)) satisfying
η(θ, π) = 0, whenever θ � π. Then, under the convolution

∗ : I2 × I2 → C

defined by
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η1 ∗ η2(θ, π) =
∑

θ≤σ≤π

η1(θ, σ) · η2(σ, π),

I2 is indeed an algebra of complex-valued functions. Denote zeta, Möbius and
delta functions in the incidence algebra I2 by ζ, µ and δ, respectively. i.e

ζ(θ, π) =

{
1 θ ≤ π

0 otherwise,

δ(θ, π) =

{
1 θ = π

0 otherwise,

and µ is the (∗)-inverse of ζ. Notice that δ is the (∗)-identity of I2. By using the
same notation (∗), we can define a convolution between I(A,B) and I2 by

f̂ ∗ η (a1, ..., an ; π) =
∑

π∈NC(n)

f̂(π)(a1 ⊗ ...⊗ an)η(π, 1n),

where f̂ ∈ I(A,B), η ∈ I1, π ∈ NC(n) and aj ∈ A (j = 1, ..., n), for all n ∈ N.
Notice that f̂ ∗ η ∈ I(A,B), too. Let ϕ̂ be a moment multiplicative function in
I(A,B) which we determined before. Then we can naturally define a cumulant
multiplicative function ĉ = (c(n))∞n=1 ∈ I(A,B) by

ĉ = ϕ̂ ∗ µ or ϕ̂ = ĉ ∗ ζ.

This says that if we have a moment multiplicative function, then we always get
a cumulant multiplicative function and vice versa, by (∗). This relation is so-called
”Möbius Inversion”. More precisely, we have

ϕ(a1...an) = ϕ(n)(a1 ⊗ ...⊗ an)
=

∑
π∈NC(n)

ĉ(π)(a1 ⊗ ...⊗ an)ζ(π, 1n)

=
∑

π∈NC(n)

ĉ(π)(a1 ⊗ ...⊗ an),

for all aj ∈ A and n ∈ N. Or equivalently,

c(n)(a1 ⊗ ...⊗ an) =
∑

π∈NC(n)

ϕ̂(π)(a1 ⊗ ...⊗ an)µ(π, 1n).

Now, let (Ai, ϕi) be NCPSpaces over B, for all i ∈ I. Then we can define a
amalgamated free product of Ai ’s and amalgamated free product of ϕi’s by

A ≡ ∗BAi and ϕ ≡ ∗iϕi,

respectively. Then, by Voiculescu, (A,ϕ) is again a NCPSpace over B and, as a
vector space, A can be represented by

A = B ⊕

(
⊕∞

n=1

(
⊕

i1 6=... 6=in

(Ai1 ⊖B)⊗ ...⊗ (Ain ⊖B)

))
,
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where Aij ⊖ B = kerϕij
. We will use Speicher’s combinatorial definition of

amalgamated free product of B-functionals ;

Definition 1.1. Let (Ai, ϕi) be NCPSpaces over B, for all i ∈ I. Then ϕ = ∗iϕi is
the amalgamated free product of B-functionals ϕi’s on A = ∗BAi if the cumulant
multiplicative function ĉ = ϕ̂ ∗ µ ∈ I(A,B) has its restriction to ∪

i∈I
Ai, ⊕

i∈I
ĉi, where

ĉi is the cumulant multiplicative function induced by ϕi, for all i ∈ I and, for each
n ∈ N,

c(n)(a1 ⊗ ...⊗ an) =

{
c
(n)
i (a1 ⊗ ...⊗ an) if ∀aj ∈ Ai

0B otherwise.

Now, we will observe the freeness over B ;

Definition 1.2. Let (A,ϕ)be a NCPSpace over B.

(1) Subalgebras containing B, Ai ⊂ A (i ∈ I) are free (over B) if we let ϕi =
ϕ |Ai

, for all i ∈ I, then ∗iϕi has its cumulant multiplicative function ĉ such that its
restriction to ∪

i∈I
Ai is ⊕

i∈I
ĉi, where ĉi is the cumulant multiplicative function induced

by each ϕi, for all i ∈ I.

(2) Sebsets Xi (i ∈ I) are free (over B) if subalgebras Ai’s generated by B and
Xi’s are free in the sense of (1). i.e If we let Ai = A lg (Xi, B) , for all i ∈ I, then
Ai’s are free over B.

In [23], Speicher showed that the above combinatorial freeness with amalgama-
tion can be used alternatively with respect to Voiculescu’s original freeness with
amalgamation.

Let (A,ϕ) be a NCPSpace over B and let x1, ..., xs be B-valued random variables
(s ∈ N). Define (i1, ..., in)-th moment of x1, ..., xs by

ϕ(xi1bi2xi2 ...binxin),

for arbitrary bi2 , ..., bin ∈ B, where (i1, ..., in) ∈ {1, ..., s}n, ∀n ∈ N. Similarly,
define a symmetric (i1, ..., in)-th moment by the fixed b0 ∈ B by

ϕ(xi1b0xi2 ...b0xin).

If b0 = 1B, then we call this symmetric moments, trivial moments.

Cumulants defined below are main tool of combinatorial free probability theory
; in [16], we defined the (i1, ..., in)-th cumulant of x1, ..., xs by
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kn(xi1 , ..., xin) = c(n)(xi1 ⊗ bi2xi2 ⊗ ...⊗ binxin),

for bi2 , ..., bin ∈ B, arbitrary, and (i1, ..., in) ∈ {1, ..., s}n, ∀n ∈ N, where ĉ =
(c(n))∞n=1 is the cumulant multiplicative function induced by ϕ. Notice that, by
Möbius inversion, we can always take such B-value whenever we have (i1, ..., in)-th
moment of x1, ..., xs. And, vice versa, if we have cumulants, then we can always
take moments. Hence we can define a symmetric (i1, ..., in)-th cumulant by b0 ∈ B

of x1, ..., xs by

k
symm(b0)
n (xi1 , ..., xin) = c(n)(xi1 ⊗ b0xi2 ⊗ ...⊗ b0xin).

If b0 = 1B, then it is said to be trivial cumulants of x1, ..., xs.

By Speicher, it is shown that subalgebras Ai (i ∈ I) are free over B if and only
if all mixed cumulants vanish.

Proposition 1.1. (See [23] and [16]) Let (A,ϕ) be a NCPSpace over B and let
x1, ..., xs ∈ (A,ϕ) be B-valued random variables (s ∈ N). Then x1, ..., xs are free if
and only if all their mixed cumulants vanish. �

Remark 1.1. The above noncommutative probability space with amalgamation can
be replaced by W ∗-probability space with amalgamation and later, we will use the
W ∗-probability framework.

1.2. Amalgamated R-transform Theory.

In this section, we will define an R-transform of several B-valued random vari-
ables. Note that to study R-transforms is to study operator-valued distributions.
R-transforms with single variable is defined by Voiculescu (over B, in particular,
B = C. See [9] and [13]). OverC,Nica defined multi-variable R-transforms in [1]. In
[16], we extended his concepts, over B. R-transforms of B-valued random variables
can be defined as B-formal series with its (i1, ..., in)-th coefficients, (i1, ..., in)-th
cumulants of B-valued random variables, where (i1, ..., in) ∈ {1, ..., s}n, ∀n ∈ N.

Definition 1.3. Let (A,ϕ) be a NCPSpace over B and let x1, ..., xs ∈ (A,ϕ) be B-
valued random variables (s ∈ N). Let z1, ..., zs be noncommutative indeterminants.
Define a moment series of x1, ..., xs, as a B-formal series, by

Mx1,...,xs
(z1, ..., zs) =

∑∞
n=1

∑
i1,..,in∈{1,...,s}

ϕ(xi1bi2xi2 ...binxin) zi1 ...zin ,

where bi2 , ..., bin ∈ B are arbitrary for all (i2, ..., in) ∈ {1, ..., s}n−1, ∀n ∈ N.
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Define an R-transform of x1, ..., xs, as a B-formal series, by

Rx1,...,xs
(z1, ..., zs) =

∑∞
n=1

∑
i1,...,in∈{1,...,s}

kn(xi1 , ..., xin) zi1 ...zin ,

with

kn(xi1 , ..., xin) = c(n)(xi1 ⊗ bi2xi2 ⊗ ...⊗ binxin),

where bi2 , ..., bin ∈ B are arbitrary for all (i2, ..., in) ∈ {1, ..., s}n−1, ∀n ∈ N.
Here, ĉ = (c(n))∞n=1 is a cumulant multiplicative function induced by ϕ in I(A,B).

Denote a set of all B-formal series with s-noncommutative indeterminants (s ∈
N), by Θs

B. i.e if g ∈ Θs
B, then

g(z1, ..., zs) =
∑∞

n=1

∑
i1,...,in∈{1,...,s}

bi1,...,in zi1 ...zin ,

where bi1,...,in ∈ B, for all (i1, ..., in) ∈ {1, ..., s}n, ∀n ∈ N. Trivially, by definition,
Mx1,...,xs

, Rx1,...,xs
∈ Θs

B. By Rs
B , we denote a set of all R-transforms of s-B-valued

random variables. Recall that, set-theoratically,

Θs
B = Rs

B, sor all s ∈ N.

We can also define symmetric moment series and symmetric R-transform by
b0 ∈ B, by

M
symm(b0)
x1,...,xs (z1, ..., zs) =

∑∞
n=1

∑
i1,...,in∈{1,...,s}

ϕ(xi1b0xi2 ...b0xin) zi1 ...zin

and

R
symm(b0)
x1,...,xs (z1, ..., zs) =

∑∞
n=1

∑
i1,..,in∈{1,...,s}

k
symm(b0)
n (xi1 , ..., xin) zi1 ...zin ,

with

k
symm(b0)
n (xi1 , ..., xin) = c(n)(xi1 ⊗ b0xi2 ⊗ ...⊗ b0xin),

for all (i1, ..., in) ∈ {1, ..., s}n, ∀n ∈ N.

If b0 = 1B, then we have trivial moment series and trivial R-transform of x1, ..., xs

denoted by M t
x1,...,xs

and Rt
x1,...,xs

, respectively. By definition, for the fixed random
variables x1, ..., xs ∈ (A,ϕ), there are infinitely many R-transforms of them (resp.
moment series of them). Symmetric and trivial R-transforms of them are special
examples. Let

C = ∪
(i1,...,in)∈Nn

{(1B, bi2 , ..., bin) : bij ∈ B}.

Suppose that we have

coefi1,...,in (Rx1,...,xs
) = c(n) (xi1 ⊗ bi2xi2 ⊗ ...⊗ binxin) ,

where (1B, bi2 , ..., bin) ∈ C, for all (i1, ..., in) ∈ Nn. Then we can rewite the R-
transform of x1, ..., xs, Rx1,...,xs

by RC
x1,...,xs

. If C1 and C2 are such collections,
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then in general RC1
x1,...,xs

6= RC2
x1,...,xs

(resp. MC1
x1,...,xs

6= MC2
x1,...,xs

). From now, for
the random variables x1, ..., xs, y1, ..., ys, if we write Rx1,...,xs

and Ry1,...,ys
, then it

means that RC
x1,...,xs

= RC
y1,....,ys

, for the same collection C. If there’s no confusion,
we will omit to write such collection.

The followings are known in [23] and [16] ;

Proposition 1.2. Let (A,ϕ) be a NCPSpace over B and let x1, ..., xs, y1, ..., yp ∈
(A,ϕ) be B-valued random variables, where s, p ∈ N. Suppose that {x1, ..., xs} and
{y1, ..., yp} are free in (A,ϕ). Then

(1) Rx1,...,xs,y1,...,yp
(z1, ..., zs+p) = Rx1,...,xs

(z1, ..., zs) +Ry1,...,yp
(z1, ..., zp).

(2) If s = p, then Rx1+y1,...,xs+ys
(z1, ..., zs) = (Rx1,...,xs

+Ry1,...,ys
) (z1, ..., zs).

�

The above proposition is proved by the characterization of freeness with respect
to cumulants. i.e {x1, ..., xs} and {y1, ..., yp} are free in (A,ϕ) if and only if their
mixed cumulants vanish. Thus we have

kn(pi1 , ..., pin) = c(n)(pi1 ⊗ bi2pi2 ⊗ ...⊗ binpin)

= (ĉx ⊕ ĉy)
(n)

(pi1 ⊗ bi2pi2 ⊗ ...⊗ binpin)

=

{
kn(xi1 , ..., xin) or

kn(yi1 , ..., yin)

and if s = p, then
kn(xi1 + yi1 , ..., xin + yin)
= c(n) ((xi1 + yi1)⊗ bi2(xi2 + yi2)⊗ ...⊗ bin(xin + yin))
= c(n)(xi1 ⊗ bi2xi2 ⊗ ...⊗ binxin) + c(n)(yi1 ⊗ bi2yi2 ⊗ ...⊗ binyin) + [Mixed]

where [Mixed] is the sum of mixed cumulants of xj ’s and yi’s, by the bimodule

map property of c(n)

= kn(xi1 , ..., xin) + kn(yi1 , ..., yin) + 0B.

Note that if f, g ∈ Θs
B, then we can always choose free {x1, ..., xs} and {y1, ..., ys}

in (some) NCPSpace over B, (A,ϕ), such that

f = Rx1,...,xs
and g = Ry1,...,ys

.

Definition 1.4. (1) Let s ∈ N. Let (f, g) ∈ Θs
B ×Θs

B. Define * : Θs
B ×Θs

B → Θs
B

by

(f, g) =
(
RC1

x1,...,xs
, RC2

y1,...,ys

)
7−→ RC1

x1,...,xs
* RC2

y1,...,ys
.

Here, {x1, ..., xs} and {y1, ..., ys} are free in (A,ϕ). Suppose that
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coefi1,..,in
(
RC1

x1,...,xs

)
= c(n)(xi1 ⊗ bi2xi2 ⊗ ...⊗ binxin)

and

coefi1,...,in(R
C2
y1,...,ys

) = c(n)(yi1 ⊗ b′i2yi2 ⊗ ...⊗ b′inyin),

for all (i1, ..., in) ∈ {1, ..., s}n, n ∈ N, where bij , b
′
in

∈ B arbitrary. Then

coefi1,...,in
(
RC1

x1,...,xs
* RC2

y1,...,ys

)

=
∑

π∈NC(n)

(ĉx ⊕ ĉy) (π ∪Kr(π))(xi1 ⊗ yi1 ⊗ bi2xi2 ⊗ b′i2yi2 ⊗ ...⊗ binxin ⊗ b′inyin)

denote
=

∑
π∈NC(n)

(
kC1
π ⊕ kC2

Kr(π)

)
(xi1 , yi1 , ..., xinyin),

where ĉx ⊕ ĉy = ĉ |Ax∗BAy
, Ax = A lg ({xi}

s
i=1, B) and Ay = A lg ({yi}

s
i=1, B)

and where π ∪Kr(π) is an alternating union of partitions in NC(2n)

Proposition 1.3. (See [16])Let (A,ϕ) be a NCPSpace over B and let x1, ..., xs, y1, ..., ys ∈
(A,ϕ) be B-valued random variables (s ∈ N). If {x1, ..., xs} and {y1, ..., ys} are free
in (A,ϕ), then we have

kn(xi1yi1 , ..., xinyin)

=
∑

π∈NC(n)

(ĉx ⊕ ĉy) (π ∪Kr(π))(xi1 ⊗ yi1 ⊗ bi2xi2 ⊗ yi2 ⊗ ...⊗ binxin ⊗ yin)

denote
=

∑
π∈NC(n)

(
kπ ⊕ k

symm(1B)
Kr(π)

)
(xi1 , yi1 , ..., xin , yin),

for all (i1, ..., in) ∈ {1, ..., s}n, ∀n ∈ N, bi2 , ..., bin ∈ B, arbitrary, where ĉx⊕ ĉy =
ĉ |Ax∗BAy

, Ax = A lg ({xi}
s
i=1, B) and Ay = A lg ({yi}

s
i=1, B) . �

This shows that ;

Corollary 1.4. (See [16]) Under the same condition with the previous proposition,

Rx1,...,xs
* Rt

y1,...,ys
= Rx1y1,...,xsys

.

�

1.3. B-valued Even Random Variables.
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In this section, we will consider the B-evenness. Let (A,ϕ) be a NCPSpace over
B.

Definition 1.5. Let a ∈ (A,ϕ) be a B-valued random variable. We say that this
random variable a is B-even if

ϕ(ab2a...bma) = 0B, whenever m is odd,

where b2, ..., bm ∈ B are arbitrary. In particular, if a is B-even, then ϕ(am) =
0B, whenever m is odd. But the converse is not true, in general.

Recall that in the ∗-probability space model, the B-evenness guarantees the self-
adjointness (See [16]). But the above definition is more general. By using the
Möbius inversion, we have the following characterization ;

Proposition 1.5. Let a ∈ (A,ϕ) be a B-valued random variable. Then a is B-even
if and only if

km


a, ......., a︸ ︷︷ ︸

m−times


 = 0B, whenever m is odd.

The above proposition says that B-evenness is easy to veryfy when we are dealing
with either B-moments or B-cumulants. Now, define a subset NC(even)(2k) of
NC(2k), for any k ∈ N ;

NC(even)(2k) = {π ∈ NC(2k) : π does not contain odd blocks}.

We have that ;

Proposition 1.6. Let k ∈ N and let a ∈ (A,ϕ) be B-even. Then

k2k


a, ......., a︸ ︷︷ ︸

2k−times


 =

∑
π∈NC(even)(2k)

ϕ̂(π) (a⊗ b2a⊗ ...⊗ b2ka)µ(π, 12k)

equivalently,

ϕ (ab2a...b2ka) =
∑

π∈NC(even)(2k)

ĉ(π) (a⊗ b2a⊗ ...⊗ b2ka) .
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Proof. By the previous proposition, it is enough to show one of the above two
formuli. Fix k ∈ N. Then

k2k (a, ..., a) = c(2k) (a⊗ b2a⊗ ...⊗ b2ka)

=
∑

π∈NC(2k)

ϕ̂(π) (a⊗ b2a⊗ ...⊗ b2ka)µ(π.12k).

Now, suppose that θ ∈ NC(2k) and θ contains its odd block Vo ∈ π(o) ∪ π(i).
Then

(2.2.1)

ϕ̂(θ) (a⊗ b2a⊗ ...⊗ b2ka) = 0B.

Define

NC(odd)(2k) = {π ∈ NC(2k) : π contains at least one odd block}.

Then, for any θ ∈ NC(odd)(2k), the formular (2.2.1) holds. So,

k2k(a, ..., a) =
∑

π∈NC(2k) \ NC(odd)(2k)

ϕ̂(π)(a⊗ b2a⊗ ...⊗ b2ka)µ(π, 12k).

It is easy to see that, by definition,

NC(even)(2k) = NC(2k) \ NC(odd)(2k).

Proposition 1.7. Let a1 and a2 be B-even elements in (A,ϕ). If a1 and a2 are
free over B, then a1 + a2 ∈ (A,ϕ) is B-even, again.

2. Free Probability Theory on L(F2) ∗L(F1) L(F2) over L(F1)

In this chapter, we will consider the free group W ∗-algebras B = L(F1) and
A = L(F2), where FN is a free group with N -generators (N ∈ N). i.e

B = {
∑

h∈F1

thh : th ∈ C}
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and

A = {
∑

g∈F2

tgg : tg ∈ C}.

Recall that there is a map E : A → B defined by

E

(
∑

g∈F2

tgg

)
=
∑

h∈F1

thh.

Notice that E : A → B is a conditional expectation (B-functional) and hence
(A,E) is a NCPSpace over B.

Now, for any N ∈ N, define the canonical trace ϕ on L(FN ) ;

ϕ

(
∑

g∈FN

tgg

)
= teFN

,

for all
∑

g∈FN

tgg ∈ L(FN ), where eFN
is the identity of FN . For the convenience

of using notation, we will denote eFN
by e.

In this paper, we will concentrate on finding scalar-valued moments of a + b +
a−1 + b−1 + c+ d+ c−1 + d−1 ∈ L(F2) ∗L(F1) L(F2),

τ
(
(a+ b+ a−1 + b−1 + c+ d+ c−1 + d−1)n

)
,

where L (< a, b >) = L(F2) = L(< c, d >) and τ : L(F2) ∗L(F1) L(F2) → C is the
trace, for all n ∈ N, defined by

τ (y1...yn) = te, for all yj ∈ L(F2), j = 1, ..., n.

Remark that, since each yj has the form, yj =
∑

g∈F2

t
(j)
g g, in L(F2), we can find the

coefficien of e = 1B = 1A in y1...yn ∈ L(F2)∗L(F1)L(F2). So, to find moments of an
element in L(F2)∗L(F1)L(F2) is to find e-terms of the element in L(F2)∗L(F1)L(F2).
To directely compute this moments is very complicated. So, later, we will use the
compatibility and B-freeness. Also, later, we will denote this linear functional τ by
ϕ, because

τ(x) = ϕ (E ∗ E(x)) , for all x ∈ L(F2) ∗L(F1) L(F2).

3. Compatibility of
(
L(F2) ∗L(F1) L(F2), ϕ

)
and

(
L(F2) ∗L(F1) L(F2), F

)
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From now on, byA andB, we will denote L(F2) and L(F1), A and B, respectively.
By the very definitions of E : A → B and τ : A → C,

E

(
∑

g∈F2

tgg

)
=
∑

h∈F1

thh and τ

(
∑

g∈F2

tgg

)
= te,

a NCPSpace (A,ϕ) and an amalgamated NCPSpace over B, (A,E) are compat-
ible. In this section, we will show that

ϕ(x) = ϕ ◦ E(x), for all x ∈ A.

We can regard e as the identity element in B and A. i.e

1A = e = 1B.

Lemma 3.1. Let B ⊂ A, ϕ and E be given as before. Then a NCPSpace (A,ϕ)
and a NCPSpace over B, (A,E) are compatible.

Note that the trace ϕ on A1 ∗B A2 and ϕ ◦ (E ∗ E) coincide. So we have that ;

Theorem 3.2. (A1 ∗B A2, ϕ) and (A1 ∗B A2, E ∗ E) are compatible.

3.1. B-Evenness and B-identically distributedness of x and y in (A1 ∗B
A2, E ∗E).

By F, we will denote the B-functional E ∗E : A1 ∗B A2 → B. And in the rest of
this paper, we will let

x = a+ b+ a−1 + b−1 and y = c+ d+ c−1 + d−1,

in A1 ∗B A2.

Lemma 3.3. As a B-valued random variable, x = a+b+a−1+b−1 ∈ (A1∗BA2, F )
is B-even. �

The above lemma is proved by a straightforward observation. Next section, we
will observe the B-evenness of x, in detail.
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Proposition 3.4. Let x and y be given as before, as B-valued random variables in
(A1 ∗B A2, F ) . Then {x} and {y} are free over B, in (A1 ∗B A2, F ) and they are
identically distributed. i.e

Rx = Ry or Mx = My.

Proof. Since x ∈ A1 and y ∈ A2 in A1∗BA2, they are free over B, in (A1 ∗B A2, F ) .
By the generating property of {a, b} and {c, d} (i.e they generate same group F2),
they are identically distributed. Equivalently,

Rx(z) = Ry(z)

⇐⇒

Kn


x⊗ .....⊗ x︸ ︷︷ ︸

n−times


 = C(n) (x⊗ b2x⊗ ...⊗ bnx)

= C(n)(y ⊗ b2y ⊗ ...⊗ bny)

= Kn


y, ....., y︸ ︷︷ ︸

n−times


 ,

for all n ∈ N. By the Möbius inversion,

Mx(z) = My(z),

as B-formal series.

Corollary 3.5. Let x and y be given as before, in (A1 ∗B A2, F ). Then

Rx+y(z) = (Rx +Ry) (z) = 2Rx(z).

�

Corollary 3.6. Let x and y be given as before. Then x+ y is B-even, too.

Proof. By the previous lemma, x is B-even. Since y is identically distributed with
x, their R-transforms are same and hence y is B-even, too. In [16], we showed that
if two B-even B-valued random variables are B-free, then the sum of them is also
B-even. Since our B-valued random variables are B-even, x+ y is also B-even.
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3.2. Computation of B-valued moments of x, E(xn).

To compute E(xn), we will use some results in [15]. We have that x ∈ (A1 ∗B A2, F )
is B-even. Thus

F (xn) = 0B, whenever n is odd.

So, we concentrate on finding B-valued 2n-th moments of x = a+ b+ a−1+ b−1,

in (A1 ∗B A2, F ). It is known that if we denote

Xn =
∑

|w|=n

w ∈ C[FN ] (N ∈ N),

then

X1X1 = X2 + 2N · e

and

X1Xn = Xn+1 + (2N − 1)Xn−1,

where e = eFN
, for all n ∈ N \ {1}.

In our case, we can regard our x = a+ b+ a−1 + b−1 as X1 in C[F2] = A1. Thus
we have that

X1X1 = X2 + 4e

and

X1Xn = Xn+1 + 3Xn−1 (n = 2, 3, ...).

By using those two results, we can express xn in terms of Xk’s ; For example,

x2 = x · x = X1X1 = X2 + 4e,

x3 = x ·x2 = X1 (X2 + 4e) = X1X2+4X1 = X3+3X1+4X1 = X3+(3+4)X1,

continuing

x4 = X4 + (3 + 3 + 4)X2 + 4(3 + 4)e,
x5 = X5 + (3 + 3 + 3 + 4)X3 + (3(3 + 3 + 4) + 4(3 + 4))X1,

x6 = X6 + (3 + 3 + 3 + 3 + 4)X4

+(3(3 + 3 + 3 + 4) + 3(3 + 3 + 4) + 4(3 + 4))X2

+4 (3(3 + 3 + 4) + 4(3 + 4)) e,
etc.

So, we can find a recurrence relation to get xn (n ∈ N) with respect to Xk’s
(k ≤ n). Inductively, we have that x2k−1 and x2k have their representations in
terms of Xj ’s as follows ;

x2k−1 = X2k−1
1 = X2k−1 + q2k−1

2k−3X2k−3 + q2k−1
2k−5X2k−5 + ...+ q2k−1

3 X3 + q2k−1
1 X1
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and

x2k = X2k
1 = X2k + p2k2k−2X2k−2 + p2k2k−4X2k−4 + ...+ p2k2 X2 + p2k0 e,

where k ≥ 2. Also, we have the following recurrence relation ;

Proposition 3.7. Let’s fix k ∈ N \ {1}. Let q2k−1
i and p2kj (i = 1, 3, 5, ..., 2k−1, ....

and j = 0, 2, 4, ..., 2k, ...) be given as before. If p20 = 4 and q31 = 3 + p20, then we
have the following recurrence relations ;

(1) Let

x2k−1 = X2k−1 + q2k−1
2k−3X2k−3 + ...+ q2k−1

3 X3 + q2k−1
1 X1.

Then

x2k = X2k +
(
3 + q2k−1

2k−3

)
X2k−2 +

(
3q2k−1

2k−3 + q2k−1
2k−5

)
X2k−4

+
(
3q2k−1

2k−5 + q2k−1
2k−7

)
X2k−6+

+...+
(
3q2k−1

3 + q2k−1
1

)
X2 + 4q2k−1

1 e.

i.e,

p2k2k−2 = 3 + q2k−1
2k−3 , p2k2k−4 = 3q2k−1

2k−3 + q2k−1
2k−5 , ..., p2k2 = 3q2k−1

3 + q2k−1
1 and

p2k0 = 4q2k−1
1 .

(2) Let

x2k = X2k + p2k2k−2X2k−2 + ...+ p2k2 X2 + p2k0 e.

Then

x2k+1 = X2k+1 +
(
3 + p2k2k−2

)
X2k−1 +

(
3p2k2k−2 + p2k2k−4

)
X2k−3

+
(
3p2k2k−4 + p2k2k−6

)
X2k−5+

+...+
(
3p2k4 + p2k2

)
X3 +

(
3p2k2 + p2k0

)
X1.

i.e,

q2k+1
2k−1 = 3+ p2k2k−2, q2k+1

2k−3 = 3p2k2k−2+ p2k2k−4, ..., q2k+1
3 = 3p2k4 + p2k2 and q2k+1

1 =

3p2k2 + p2k0 . �

The above recurrence relations give us an algorithm, how to find the 2n-th B-
valued moments of x2n ∈ (A1 ∗B A2, F ).

Example 3.1. Let p20 = 4 and q31 = 3 + p20 = 3 + 4 = 7. Put

x8 = X8 + p86X6 + p84X4 + p82X4 + p80e.

Then, by the previous proposition, we have that
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p86 = 3 + q75 , p84 = 3q75 + q73 , p82 = 3q73 + q71 and p80 = 4q71 .

Similarly, by the previous proposition,

q75 = 3 + p64, q73 = 3p64 + p62 and q71 = 3p62 + p60,

p64 = 3 + q53 , p62 = 3q53 + q51 and p60 = 4q51,

q53 = 3 + p42 and q51 = 3p42 + p42,

p42 = 3 + q31 and p40 = 4q31 ,

and

q31 = 3 + p20 = 7.

Therefore, combining all information,

x8 = X8 + 22X6 + 202X4 + 744X2 + 1316 e.

We have the following diagram with arrows which mean that

ււ : 3 + [former term]
ց : 3 · [former term]
ւ : ·+ [former term]

and

ցց : 4 · [former term].

p20 = 4
↓
q31 = 7

ււ ցց
p42 p40

ււ ց ւ
q53 q51

ււ ց ւ ցց
p64 p62 p60

ււ ց ւ ց ւ
q75 q73 q71

ււ ց ւ ց ւ ցց
p86 p84 p82 p80
...

...
...

...

Now, recall that h = aba−1b−1 (or h = cdc−1d−1) in (A1 ∗B A2, F ) ,where
F1 =< h > . So, since F1 =< h > is a cyclic group, WLOG, we denote

∑
g∈F1

tgg ∈
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B →֒ A1 ∗B A2 by
∑∞

n=−∞ tnh
n ∈ B, where tg, tn ∈ C, with t0 = te. Therefore,

we can let

ϕ
(∑∞

n=−∞ tnh
n
)
= t0 ≡ te

And hence, to find a B-value moment of x is to find hn-terms, where n ∈ Z.Note
that h and h−1 are words with their length 4. Therefore, X4k contains hk-terms
and h−k-terms, for k ∈ N !

Theorem 3.8. Fix k ∈ N. Let h = aba−1b−1 ∈ A1 ∗B A2 with h0 = e.

(1) E
(
x4k
)
=
(
hk + h−k

)
+
∑k−1

j=1 p
4k
4k−4j

(
hk−j + h−(k−j)

)
+ p4k0 h0,

where p40 = 28.

(2) If 4 ∤ 2k and if there are X4l1 , ..., X4lp terms in x2k, then

E(x2k) =
∑k−1

j=1 p
2k
(2k−2)−4j

(
h

k−1
2 −2j + h−( k−1

2 −2j)
)
+ p2k0 h0,

where p20 = 4.

Proof. (1) By the straightforward computation using the previous proposition, we
have that

E
(
x4k
)

= E
(
X4k + p4k4k−2X4k−2 + p4k4k−4X4k−4 + ...+ p4k4 X4 + p4k2 X2 + p4k0 h0

)

= E(X4k) + p4k4k−2E(X4k−2) + p4k4k−4E(X4k−4)+

...+ p4k4 E(X4) + p4k2 E(X2) + p4k0 h0.

Since hp and h−p terms are in X4p, for any p ∈ N, we can continue the above
computation ;

= E(X4k) + p4k4k−4E(X4k−4) + ...+ p4k4 E(X4) + p4k0 h0

=
(
hk + h−k

)
+ p4k4k−4(h

k−1 + h−(k−1)) + ...+ p4k4 (h+ h−1) + p4k0 h0.

(2) If 4 ∤ 2k, then k = 1, 3, 5, ..... If k = 1, then the above formula holds true ;

E(x2) = E
(
X2 + 4h0

)
= 4h0.
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If k 6= 1 is odd, then

E(x2k)

= E(X2k + p2k2k−2X2k−2 + p2k2k−4X2k−4 + p2k2k−6X2k−6+

...+ p2k4 X4 + p2k2 X2 + p2k0 h0)

= E(X2k) + p2k2k−2E(X2k−2) + p2k2k−4E(X2k−4) + p2k2k−6E(X2k−6)+

...+ p2k4 E(X4) + p2k2 E(X2) + p2k0 h0

= 0B + p2k2k−2

(
hk−1 + h−(k−1)

)
+ 0B + p2k2k−6

(
hk−3 + h−(k−3)

)
+

...+ p2k4 (h+ h−1) + 0B + p2k0 h0,

since X2k−2, X2k−6, ..., X4 contain hp-terms and h−p-terms.

4. The Amalgamated R-transform of x+ y

Throughout this section, we will use the same notations used in the previous
sections. To compute F ((x+ y)n) , we will consider the Rt

x+y. Since x and y are
free over B, we have that

Rt
x+y = Rt

x +Rt
y.

And since x and y are identically distributed,

Rt
x+y = Rt

x +Rt
y = 2Rt

x or 2Rt
y.

The above paragraph shows that why we need to observe Rt
x+y, to get a n-th

coefficients of Mx+y. By the B-freeness of x and y, we can compute n-th coefficients
of Rt

x+y = 2Rt
x, relatively easier than to compute n-th coefficients ofM t

x+y, directly.
Moreover, since we have the recurrence relation for F (xn) = E(xn), n ∈ N, we have
a tool for computing n-th coefficients of 2Rt

x. But there is a difficulty to compute
them, because of the insertion property of noncrossing partitions (different from
the scalar-valued case). Hence we need to find other recurrence relation related to
this insertion property. By the B-evenness of x ∈ (A1 ∗B A2, F ) , we have that
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coefn (R
t
x) = ktn


x, ......, x︸ ︷︷ ︸

n−times


 = 0B, whenever n is odd.

So, we will only consider the even coefficient of Rt
x.

Lemma 4.1. For k ∈ N,

coef2k (R
t
x) =

∑
l1,...,lp∈{2,4,...,2k}, l1+l2+..+lp=2k

∑
θ∈NCl1,...,lp (2k)

F̂ (θ) (x⊗ ...⊗ x)µ(θ, 12k).

The above lemma shows that we need to construct a recurrence relation for

F
(
xm1k1xm2hk2xm3 ...hknxmn

)
= E

(
xm1hk1xm2hk2xm3 ...hknxmn

)
,

where mj ∈ N and kj ∈ Z, j = 1, ..., n, for all n ∈ N. This recurrence relation can
explain the computation of partition-dependent B-valued moments with respect to
E. By the observation of Section 3.2.2, it suffices to find the recurrence relation for

F
(
Xq1h

k1Xq2h
k2Xq3 ...h

knXqn

)
= E

(
Xq1h

k1Xq2h
k2Xq3 ...h

knXqn

)
,

where q1, ..., qn ∈ N and XN =
∑

|w|=N

w, where w is a word in {a, b, a−1, b−1}, for

N ∈ N.

4.1. Recurrence Relation For E
(
XmhkXn

)
.

In this section, we will consider the recurrence relation for E(XmhXn). Then we
can generalize this case to E(XmhkXn), where k ∈ Z and m,n ∈ N. We have that

E(X1hX3) = e = E(X3hX1) and E(X2hX2) = e

and

Proposition 4.2. Let m,n ∈ N and k ∈ Z. Then

(1)

E
(
hkXn

)
=





hkh
n
4 = hk+n

4 if 4 | n

0B otherwise.
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(2)

E(Xmhk) =





h
m
4 hk = h

m
4 +k if 4 | m

0B otherwise.

Proof. Since E : Aj → B is a conditional expectation (j = 1, 2), we have that

(1)

E(hkXn) = hkE(Xn) =





hkh
n
4 = hk+ n

4 if 4 | n

0B otherwise.

(2)

E(Xmhk) = E(Xm)hk =





h
m
4 hk = h

m
4 +k if 4 | m

0B otherwise.

Now fix the sufficiently big numbers m and n in N. Then we can have that
(3.3.1.1)

XmhXn =

(
∑

|w|=m

w

)
h

(
∑

|w′|=n

w′

)
,

where w and w′ are words in {a, b, a−1, b−1}. Recall that h = aba−1b−1 is a word
with length 4. Hence, by the possible cancellation, we can rewrite (3.3.1.1) as

XmhXn

= Wm+n+4 +Wm+n+2 +Wm+n +Wm+n−2

+

(
∑

|w|=m−4, End(w) 6=b

w

)
(Xn)+Xm

(
∑

|w|=n−4, Init(w) 6=a

w

)
(3.3.1.2)

+

(
∑

|w|=m−3, End(w) 6=a−1

w

)(
∑

|w|=n−1, Init(w) 6=b−1

w

)
(3.3.1.3)

+

(
∑

|w|=m−1, End(w) 6=a

w

)(
∑

|w|=n−3, Init(w) 6=b

w

)
(3.3.1.4)

+

(
∑

|w|=m−2, End(w) 6=a

w

)(
∑

|w|=n−2, Init(w) 6=a−1

w

)
, (3.3.1.5)
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where Wm+n+k is the subsum of words with length m + n + k. In the above
formula, (3.3.1.2) is gotten from the full cancellation of Xm and h, and the full
cancellation of h and Xn. (3.3.1.3) (resp. (3.3.1.4)) is gotten from the 3-letter-
cancellation of Xm and h (resp. 1-letter-cancellation of Xm and h) and the 1-
letter-cancellation of Xn and h (resp. 3-letter-cancellation of Xn and h). Similarly,
(3.3.1.5) is gotten from the 2-letter-cancellation from the left and right of h. Similar
to the full h-cancellation, (3.3.1.2) ∼ (3.3.1.5), we can rewrite that

(3.3.1.6)

Wm+n+2 =

(
∑

|w|=m−1, End(w) 6=a

w

)
(ba−1b−1)Xn+Xm(aba−1)

(
∑

|w|=n−1, Init(w) 6=b−1

w

)
,

(3.3.1.7)

Wm+n =

(
∑

|w|=m−2, End(w) 6=b

w

)
(a−1b−1)Xn+Xm(ab)

(
∑

|w|=n−2, Init(w) 6=a−1

w

)

+

(
∑

|w|=m−1, End(w) 6=a

w

)
ba−1

(
∑

|w|=n−1, Init(w) 6=b−1

w

)

and

(3.3.1.8)

Wm+n−2 =

(
∑

|w|=m−3, End(w) 6=a−1

w

)
b−1Xn +Xma

(
∑

|w|=n−3, Init(w) 6=b

w

)
.

Now, we will define a function Fpq from N× N to B.

Definition 4.1. Define a function F : N× N → B by

Fpq(k, l) = E

((
∑

|w|=k, End(w)=p

w

)(
∑

|w′|=l, Init(w′)=q

w′

))
,

where p, q ∈ {a, b, a−1, b−1}, where End(w) and Init(w) mean the end letter of
the word w and initial letter of the word w, respectively.

Definition 4.2. Let p, q ∈ {a, a−1, b, b−1} and let w = p1...pk be a word with length
k in {a, a−1, b, b−1}. We define the following relation denoted by ”✁ ” ;

pq ✁ w = p1...pk
def
⇐⇒ ∃ j ∈ {1, ..., k − 1} s.t pq = pjpj+1 and pq 6= e
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For example,

pq ✁ h = aba−1b−1

if and only if

pq = ab or pq = ba−1 or pq = a−1b−1.

Again recall that, for all n ∈ N,

E(Xn) =





h
n
4 + h− n

4 if 4 | n

0B otherwise.

Then we have the following lemmas ;

Lemma 4.3. Let p, q ∈ {a, b, a−1, b−1} and k, l ∈ N (sufficiently big). Then

Fpq(k, l) = 0B, whenever pq ⋪ h = aba−1b−1.

Proof. Suppose that pq ⋪ aba−1b−1. Then

Fpq(k, l) = E

((
∑

|w|=k−1, End(w) 6=p−1

w

)
pq

(
∑

|w′|=l−1, Init(w′) 6=q−1

))
= 0B,

since every word W = li1 ....lik−1
pqlj1 ...ljl−1

cannot be h
k+l
4 , where li1 ...lik−1

is

the word with length k − 1 such that lik−1
6= p−1 and lj1 ...ljl−1

is the word with

length l − 1 such that lj1 6= q−1, we can get the above equality.

Lemma 4.4. We have the following equalities ;

(1)

Fab(k, l) =





h
k+l
4 + h− k+l

4 if 4 | (k − 1) and 4 | k + l

0B otherwise.

(2)

Fba−1(k, l) =





h
k+l
4 + h− k+l

4 if 4 | k and 4 | k + l

0B otherwise.

(3)
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Fa−1b−1(k, l) =





h
k+l
4 + h− k+l

4 if 4 | (l − 1) and 4 | k + l

0B otherwise.

Lemma 4.5. We have the following recurrence relation for Fp,q(k, l), where p, q ∈
{a, b, a−1, b−1} and k, l ∈ N (sufficiently large) ;

(4) Faa−1(k, l) = Faa−1(k − 1, l− 1) + Fab(k − 1, l− 1)
+Fba−1(k − 1, l− 1) + Fbb−1 (k − 1, l− 1) + Fb−1b(k − 1, l− 1).

(5) Fbb−1 (k, l) = Fbb−1(k − 1, l− 1) + Faa−1(k − 1, l− 1)
+Fa−1a(k − 1, l− 1) + Fba−1 (k − 1, l− 1) + Fa−1b−1(k − 1, l− 1).

(6) Fa−1a(k, l) = Fbb−1(k − 1, l − 1) + Fa−1a(k − 1, l− 1)
+Fb−1b(k − 1, l − 1) + Fa−1b−1(k − 1, l− 1).

(7) Fb−1b(k, l) =Faa−1(k − 1, l − 1) + Fa−1a(k − 1, l− 1)
+Fb−1b(k − 1, l − 1) + Fab(k − 1, l− 1).

By the previous lemmas, we can get three equalities (1), (2) and (3) and four
recurrence relations (4) ∼ (7). Again, by the previous lemmas, we can conclude
that

Theorem 4.6. Let k, l ∈ N be sufficeintly big and let p, q ∈ {a, b, a−1, b−1}. Then

(i) If pq ⋪ h = aba−1b−1, then Fpq(k, l) = 0B.

(ii) If pq ✁ h = aba−1b−1, then

Fpq(k, l) =





h
k+l
4 , if pq = ab, 4 | (k − 1) & 4 | (k + l)

h
k+l
4 , if pq = ba−1, 4 | k & 4 | k + l

h
k+l
4 ,

0B

if pq = a−1b−1, 4 | (l − 1) & 4 | (k + l)
otherwise.

(iii) If pq = e, then we have the following recurrence relation ;

Fpq(k, l) =
∑

r,s∈{a,b,a−1,b−1}, (r,s) 6=(q,p)

Frs(k − 1, l− 1).

Proof. (i) is proved by Lemma 3.12 and (ii) is proved by Lemma 3.13. Now, by
using the results (i) and (ii), we can characterize Lemma 3.14. The characterization
is the statement (iii) ;
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Suppose that pq = e = aa−1 = a−1a = bb−1 = b−1b. Then

Fpq(k, l) = E

((
∑

|w|=k, End(w)=p

w

)(
∑

|w′|=l, Init(w′)=q

w

))

= E

((
∑

|w|=k−1, End(w) 6=p−1

w

)(
∑

|w′|=l−1, Init(w′)=q−1

w

))

=
∑

r,s∈{a,b,a−1,b−1}, r 6=p−1, s6=q−1

E

((
∑

|w|=k−1, End(w)=r

w

)(
∑

|w′|=l−1, Init(w′)=s

w

))

(3.15.1)

=
∑

r,s∈{a,b,a−1,b−1}, r 6=p−1, s6=q−1

Frs(k − 1, l − 1).

Since pq = e, q = p−1 and hence

r 6= p−1 and s 6= q−1 ⇐⇒ r 6= q and s 6= p.

Therefore, the formula (3.15.1) is equivalent to

(3.15.2)

∑
r,s∈{a,b,a−1,b−1}, (r,s) 6=(q,p)

Frs(k − 1, l − 1).

Now, we will consider the case Xmh−1Xn. But this case will be very similar to
the previous case.

Theorem 4.7. Let k, l ∈ N be sufficeintly big and let p, q ∈ {a, b, a−1, b−1}. Then

(i) If pq ⋪ h−1 = bab−1a−1, then Fpq(k, l) = 0B.

(ii) If pq ✁ h−1 = bab−1a−1, then

Fpq(k, l) =





h− k+l
4 , if pq = ba, 4 | (k − 1) & 4 | (k + l)

h− k+l
4 , if pq = ab−1, 4 | k & 4 | k + l

h− k+l
4 ,

0B

if pq = b−1a−1, 4 | (l − 1) & 4 | (k + l)
otherwise.
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(iii) If pq = e, then we have the following recurrence relation ;

Fpq(k, l) =
∑

r,s∈{a,b,a−1,b−1}, (r,s) 6=(q,p)

Frs(k − 1, l− 1).

�

Now, by using the above equalities and recurrence relation, we can compute the
E (XmhXn). We need the following definition ; Recall that

XmhXn

= Wm+n+4 +Wm+n+2 +Wm+n +Wm+n−2

+

(
∑

|w|=m−4, End(w) 6=b

w

)
(Xn)+Xm

(
∑

|w|=n−4, Init(w) 6=a

w

)
(3.3.1.2)

+

(
∑

|w|=m−3, End(w) 6=a−1

w

)(
∑

|w|=n−1, Init(w) 6=b−1

w

)
(3.3.1.3)

+

(
∑

|w|=m−1, End(w) 6=a

w

)(
∑

|w|=n−3, Init(w) 6=b

w

)
(3.3.1.4)

+

(
∑

|w|=m−2, End(w) 6=a

w

)(
∑

|w|=n−2, Init(w) 6=a−1

w

)
, (3.3.1.5)

where

(3.3.1.6)

Wm+n+2 =

(
∑

|w|=m−1, End(w) 6=a

w

)
(ba−1b−1)Xn+Xm(aba−1)

(
∑

|w|=n−1, Init(w) 6=b−1

w

)
,

(3.3.1.7)

Wm+n =

(
∑

|w|=m−2, End(w) 6=b

w

)
(a−1b−1)Xn+Xm(ab)

(
∑

|w|=n−2, Init(w) 6=a−1

w

)

+

(
∑

|w|=m−1, End(w) 6=a

w

)
ba−1

(
∑

|w|=n−1, Init(w) 6=b−1

w

)

and

(3.3.1.8)
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Wm+n−2 =

(
∑

|w|=m−3, End(w) 6=a−1

w

)
b−1Xn +Xma

(
∑

|w|=n−3, Init(w) 6=b

w

)
.

Now, define a certain generalization of Fpq(k, l) ;

Definition 4.3. Let p1, ..., pN ∈ {a, b, a−1, b−1} and let d, N < M ∈ N. Define the
relation ✁ by

p1...pN ✁ l1.....lM
def
⇐⇒ ∃ j ∈ {1, ...,M −N − 1} s.t p1...pN = lj+1...lj+N .

Also, define a map Fp1...pj] [pj+1...pN
: N× N → B, for all j = 1, ..., N − 1 by

Fp1...pj ] [pj+1...pN
(k, l) = E

((
∑

|w|=k, End(w)=p1...pj

w

)(
∑

|w′|=l, Init(w′)=pj+1...pN

w′

))
.

For example,

aba−1
✁ h or bab−1

✁ h

and

a2b ⋪ h

etc.

By using the above new definition, we can rewrite that

Fpq(k, l) = Fp] [q(k, l),

for all p, q ∈ {a, b, a−1, b−1}, where k and l are sufficiently large natural numbers.

Proposition 4.8. Suppose that k, l and d > N ≥ 3 in N. Then

Fp1...pj ] [pj+1...pN
(k, l)

=









h
k+l
4 if p1 = a, 4 | (k − j) & 4 | (k + l)

h
k+l
4 if p1 = b, 4 | (k − j + 1) & 4 | (k + l)

h
k+l
4 if p1 = a−1, 4 | (k − j + 2) & 4 | (k + l)

h
k+l
4 if p1 = b−1, 4 | (k − j + 3) & 4 | (k + l).

0B otherwise.





if p1...pN ✁ hd

0B if p1...pN ⋪ hd

where j ∈ {1, ..., N − 1}. Moreover, if 4 | (k − j + i) and 4 | (k + l), for the
fixed i ∈ {0, 1, ..., 3}, then, 4 ∤ (k − j + i′), whenever i′ 6= i. (i.e, if 4 | (k − j), then
4 ∤ (k − j + i), for all i = 1, 2, 3.)
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Corollary 4.9. Suppose that d > N ≥ 3 in N. Then

Fp1...pj ] [pj+1...pN
(k, l) =









h− k+l
4 if p1 = b, 4 | (k − j) & 4 | (k + l)

h− k+l
4 if p1 = a, 4 | (k − j + 1) & 4 | (k + l)

h− k+l
4 if p1 = b−1, 4 | (k − j + 2) & 4 | (k + l)

h− k+l
4 if p1 = a−1, 4 | (k − j + 3) & 4 | (k + l).

0B otherwise.





if p1...pN ✁ h−d

0B if p1...pN ⋪ h−d

where j ∈ {1, ..., N − 1}. �

Corollary 4.10. Let p, q ∈ {a, b, a−1, b−1} and k, l ∈ N, sufficiently large. If
pq 6= e, then

Fpq(k, l) = Fp] [q(k, l)

=





h
k+l
4 if p = a, 4 | (k − 1) & 4 | (k + l)

h
k+l
4 if p = b, 4 | k & 4 | (k + l)

h
k+l
4 if p = a−1, 4 | (k + 1) & 4 | (k + l)

h
k+l
4 if p = b−1, 4 | (k + 2) & 4 | (k + l).

0B otherwise.

and

Fpq(k, l) = Fp] [q(k, l)

=





h− k+l
4 if p = b, 4 | (k − 1) & 4 | (k + l)

h− k+l
4 if p = a, 4 | k & 4 | (k + l)

h− k+l
4 if p = b−1, 4 | (k + 1) & 4 | (k + l)

h− k+l
4 if p = a−1, 4 | (k + 2) & 4 | (k + l).

0B otherwise.

In particular, this is the generalization of (ii) of the Theorem 3.6. �

Now, consider the case of F
p
−1
1 p1...pN

(k, l) and F
p1...pN p

−1
N
(k, l). Of course, we

will restrict our interests to the case when p1...pN ✁ hd.
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Proposition 4.11. Let k, l and d > N > 2 be in N. Assume that p1...pN ✁ hd.

Then

Fp
−1
1 ] [p1...pN

(k, l) = Fp
−1
2 ] [p2...pN

(k − 1, l − 1)

and

Fp1...pN ] [p−1
N
(k, l) = Fp1...pN−1] [p−1

N−1
(k − 1, l− 1).

Now, we need the following new function from N× N to B ;

Definition 4.4. Let p1, ..., pM ∈ {a, b, a−1, b−1} and assume that p1...pM ✁ hd.

Let p1, ..., pi, pj, ..., pN ∈ {a, b, a−1, b−1} and let p1...pi and pj...pN be words in
{a, b, a−1, b−1}. Always assume that

∣∣p1...pipj ...pN
∣∣ < |p1...pM | . Define a map

Fp1...pi] <p1...pM> [pj ...pN : N× N → B

by

Fp1...pi] <p1...pM> [pj ...pN (k,M, l)

= E

((
∑

|w|=k, End(w)=p1...pi

w

)
(p1...pM )

(
∑

|w′|=l, Init(w′)=pj ...pM

w′

))
,

for all k, l ∈ N.

For example,

Fp1...pi] <e> [pj ...pN (k, 0, l) = Fp1...pi] [pj ...pN (k, l).

Proposition 4.12. By using the same notations in the previous definition, we have
that

(1) If p1...pip1...pMpj...pN ⋪ hd, then

Fp1...pi] <p1...pM> [pj ...pN (k,M, l) = 0B.

(Remaind that
∣∣p1, , , pipj ...pN

∣∣ < |p1...pM | and hence p1...pip1...pMpj ...pN 6=
e.)

If p1...pip1...pMpj ...pN ✁ hd, then

Fp1...pi] <p1...pM> [pj ...pN (k,M, l)
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=





h
k+M+l

4 if p1 = a, 4 | (k − i) & 4 | (k +M + l)

h
k+M+l

4 if p1 = b, 4 | (k − j + 1) & 4 | (k +M + l)

h
k+M+l

4 if p1 = a−1, 4 | (k − j + 2) & 4 | (k +M + l)

h
k+M+l

4 if p1 = b−1, 4 | (k − j + 3) & 4 | (k +M + l)
0B otherwise.

(2) Assume that pi = p−1
1 . Then

Fp1...pi] <p1...pM> [pj ...pN (k,M, l) = Fp1...pi−1] <p2...pM> [pj ...pN (k − 1,M − 1, l).

In particular, if p1...pip1...pMpj ...pN ✁ hd, then Fp1...pi] <p1...pM> [pj ...pN (k,M, l) =
0B.

(3) Assume that pj = p−1
M . Then

Fp1...pi] <p1...pM> [pj ...pN (k,M, l) = Fp1...pi p1...pM−1 pj+1...pN (k,M − 1, l− 1).

In particular, if p1...pip1...pMpj ...pN ✁ hd, then Fp1...pi] <p1...pM> [pj ...pN (k,M, l) =
0B.

(4) Let pi = p−1
1 and pj = p−1

M . Then

Fp1...pi] <p1...pM> [pj ...pN (k,M, l) =
Fp1...pi−1] <p2...pM−1> [pj+1...pN (k − 1,M − 1, l − 1).

In particular, if p1...pip1...pMpj ...pN ✁ hd, then Fp1...pi] <p1...pM> [pj ...pN (k,M, l) =
0B.

Proposition 4.13. Let p1...pipi+1...pM ✁ hd. Then

(1) Fp
−1
M

...p
−1
1 ] <p1...pM> [pj ...pN (k,M, l)

=
∑

p0∈{a,b,a−1,b−1}, p0 6=pM , p0pj ...pN✁hd

Fp0] [pj ...pN (k −M, l).

where p0 6= pM and p0p
j ...pN ✁ hd.

(2) Fp1...pi] <p1...pM> [p−1
M

...p
−1
1
(k,M, l)

=
∑

p0∈{a,b,a−1,b−1}, p0 6=p1, p1...pip0✁ hd

Fp0] [pj ...pN (k −M, l).
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(3) Fp
−1
i

...p
−1
1 ] <p1...pipi+1...pM> [p−1

M
...p

−1
i+1

(k,M, l)

=
∑

p6=pi, q 6=pi+1

Fp] [q(k − i, l− (M − i)).

Now, we will compute E (XmhXn) ;

Lemma 4.14. We have that

(1) E (Wm+n+4) =





hm+n+1 if 4 | m and 4 | n

0B otherwise.

(2) E (Wm+n+2) = Fb−1] [ba−1b−1(m− 1, n+ 3) + Faba−1] [a(m+ 3, n− 1).

(3) E (Wm+n) =
∑

p6=b, q 6=a−1

Fp] [q(m− 2, n− 2).

(4) E(Wm+n−2) =
∑

p6=a−1

Fp] [b−1(m− 3, n+ 1) +
∑
p6=b

Fa] [p(m+ 1, n− 3)

+
∑

p6=b, q 6=b−1

Fp] <a> [q(m− 2, 1, n− 1)+
∑

p6=a, q 6=a−1

Fp] <b> [q(m− 1, 1, n− 2).

Now, we will consider the general case E(XmhdXn), where d ∈ N.

Lemma 4.15. Let m,n, d ∈ N. Then

E (Wm+n+4d) =





h
m+n+4d

4 if 4 | m and 4 | n

0B otherwise.

The above case is the NO-cancellation case of XmhdXn.

Lemma 4.16. Let m,n ∈ N be sufficiently big and d ∈ N. Then

E
(
Wm+n+(4d−2j)

)
=

∑
p6=p2j

Fp] [p2j+1...p4d
(m− 2j, n+ 4d)

+
∑

i,j∈{1,...,2d−1}, (m−i)+(n+j)=m+n+(4d−2j)∑
p6=pi, p′ 6=pj

Fp] <pi+1...pj−1> [p′(m− i, j − 1− i, n+ j)

+
∑

p6=p4d−(2j+1)

Fp1...p4d−2j ] [p(m+ 4d, n− 2j).
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We will call the above cancellation case a (i + j)-cancellation from the left and
from the right.

Lemma 4.17. Let m,n, d ∈ N. Then

E(Wm+n−4d) =
∑

p∈{a,b,a−1},p′∈{a,b,a−1,b−1}

Fp] [p′(m− 4d, n)

+
∑

p∈{a,b,a−1,b−1},p′∈{b,a−1,b−1}

Fp] [p′(m,n− 4d)

+
∑4d

i=1

∑
p6=pi, p′ 6=pi+1

Fp] [p′(m− i, n− (4d− i)).

Lemma 4.18. Let m,n,N ∈ N. If pi1 ...piN ✁ hd, then

∑2d−1
j=0 E(Wm+n−2j) =

∑2d−1
j=0

∑
k+N+l=m+n−2j

∑
i1 6=i2 6=... 6=iN∈{1,...,4d}

∑
p,q∈{a,b,a−1,b−1}, ppi1 ...piN

✁hd

Fp] [pi1 ...piN
(k,N, l).

�

Finally, we can get the B-functional value E(XmhdXn) ;

Theorem 4.19. Let m,n, d ∈ N. We have that

E
(
XmhdXn

)
= E(Wm+n+4d) +

∑2d−1
j=1 E(Wm+n+(4d−2j))

+
∑2d−1

j=0 E(Wm+n−2j) + E(Wm+n−4d),

where, by putting hd = p1...p4d,

E(Wm+n+4d) =





h
m+n+4d

4 if 4 | m and 4 | n

0B otherwise,

∑2d−1
j=1 E(Wm+n+(4d−2j)) =

∑2d−1
j=1 (

∑
p6=p2j

Fp] [p2j+1...p4d
(m− 2j, n+ 4d)

+
∑

i,j∈{1,...,2d−1}, (m−i)+(n+j)=m+n+(4d−2j)∑
p6=pi, p′ 6=pj

Fp] <pi+1...pj−1> [p′(m− i, j − 1− i, n+ j)

+
∑

p6=p4d−(2j+1)

Fp1...p4d−2j ] [p(m+ 4d, n− 2j) )
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∑2d−1
j=0 E(Wm+n−2j) =

∑2d−1
j=0

∑
k+N+l=m+n−2j

∑
i1 6=i2 6=... 6=iN∈{1,...,4d}

∑
p,q∈{a,b,a−1,b−1}, ppi1 ...piN

✁hd

Fp] [pi1 ...piN
(k,N, l).

and

E(Wm+n−4d) =
∑

p∈{a,b,a−1},p′∈{a,b,a−1,b−1}

Fp] [p′(m− 4d, n)

+
∑

p∈{a,b,a−1,b−1},p′∈{b,a−1,b−1}

Fp] [p′(m,n− 4d)

+
∑4d

i=1

∑
p6=pi, p′ 6=pi+1, pipi+1✁ hd

Fp] [p′(m− i, n− (4d− i)).

�

For considering h−d (d ∈ N), we have the following result, like the former theorem
;

Theorem 4.20. Let m,n, d ∈ N. We have that

E
(
Xmh−dXn

)
= E(Wm+n+4d) +

∑2d−1
j=1 E(Wm+n+(4d−2j))

+
∑2d−1

j=0 E(Wm+n−2j) + E(Wm+n−4d),

where, by putting h−d = p1...p4d,

E(Wm+n+4d) =





h− m+n+4d
4 if 4 | m and 4 | n

0B otherwise,

∑2d−1
j=1 E(Wm+n+(4d−2j)) =

∑2d−1
j=1 (

∑
p6=p2j

Fp] [p2j+1...p4d
(m− 2j, n+ 4d)

+
∑

i,j∈{1,...,2d−1}, (m−i)+(n+j)=m+n+(4d−2j)∑
p6=pi, p′ 6=pj

Fp] <pi+1...pj−1> [p′(m− i, j − 1− i, n+ j)

+
∑

p6=p4d−(2j+1)

Fp1...p4d−2j ] [p(m+ 4d, n− 2j) )

∑2d−1
j=0 E(Wm+n−2j) =

∑2d−1
j=0

∑
k+N+l=m+n−2j

∑
i1 6=i2 6=... 6=iN∈{1,...,4d}

∑
p,q∈{a,b,a−1,b−1}, ppi1 ...piN

✁hd

Fp] [pi1 ...piN
(k,N, l).
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and

E(Wm+n−4d) =
∑

p∈{a,a−1,b−1},p′∈{a,b,a−1,b−1}

Fp] [p′(m− 4d, n)

+
∑

p∈{a,b,a−1,b−1},p′∈{a,a−1,b−1}

Fp] [p′(m,n− 4d)

+
∑4d

i=1

∑
p6=pi, p′ 6=pi+1, pipi+1✁ hd

Fp] [p′(m− i, n− (4d− i)).

�

4.2. Recerrence Relation For E
(
Xm1h

d2Xm2h
d3 ...hdnXmn

)
.

In this section, we will compute more general form

E
(
Xm1h

d2Xm2h
d3 ...hdnXmn

)
,

where m1, ...,mn ∈ N and d2, ..., dn ∈ Z. First, we will consider the most simple
form, among them,

E
(
Xm1h

d2Xm2h
d3Xm3

)
,

for m1,m2,m3 ∈ N and d2, d3 ∈ Z. Notice that, by the evenness of x = a+ b +
a−1 + b−1, we have the following trivial condition ;

m1 + ...+mn ∈ N should be even.

Throughout this paper, we will assume that m1+ ...+mn are even! (Notice that
each mj need not be even. For instance, we can have that m1 = 1,m2 = 3 and
m3 = 2.) Recall that, by the previous section, we have that, for m1,m2 ∈ N and
d2 ∈ N,

E
(
Xm1h

d2Xm2

)
= E(Wm1+m2+4d2) +

∑2d2−1
j=1 E(Wm1+m2+(4d2−2j))

+
∑2d2−1

j=0 E(Wm+n−2j) + E(Wm+n−4d2),

where each summands are determined recurssively.

But, in Xm1h
d2Xm2h

d3Xm3 , there will be much more terms which we have to
consider. Also, different from the Xm1h

d2Xm2 , we have to consider the case when
both d2 and d3 are positive integers or both d2 and d3 are negative integers or either
d2 or d3 is a positive integer and the other is negative. So, we need the following
new definition.
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Definition 4.5. Letm1,m2,m3, N2, N3 ∈ N. Define a map Φ0 from N× N× N× N× N
to B

FpE
m1

] <p11...p1N2> [pE
m2

pI
m2

] <p21...p2N3> [pI
m3

(m1, N2,m2, N3,m3),

denoted by Φ0(m1, N2,m2, N3,m3), by

E

(
∑

|w|=m1, End(w)=pE
m1

w

)
(p11...p1N2)

(
∑

|w|=m2, Init(w)=pI
m2

, End(w)=pE
m2

w

)

·(p21...p2N3)

(
∑

|w|=m3, Init(w)=pI
m3

w

)
.

If p11...p1N2 = e or p21...p2N3 = e, then we have that

Φ0(m1, 0,m2, N3,m3)
= FpE

m1
] [pE

m2
pI
m2

] <p21...p2N3> [pI
m3

(m1, 0,m2, N3,m3)
or

Φ0(m1, N2,m2, 0,m3)
= FpE

m1
] <p11...p1N2> [pE

m2
pI
m2

] [pI
m3

(m1, N2,m2, 0,m3).

And if both of them are e, then we can define

Φ0(m1, 0,m2, 0,m3)
= FpE

m1
] [pE

m2
pI
m2

] [pI
m3

(m1, 0,m2, 0,m3).

In the above definition of Φ0(m1, N2,m2, N3,m3), the half-open bracket ” [p
” and ” p] ” mean that words with initial letter p and the words with ending
letter p. Also the bracket < p...q > means the word p...q and [pI pE ] means∑
Init(w)=pI , End(w)=pE

w.

Now, we will observe the above function Φ0(m1, N2,m2, N3,m3).

Lemma 4.21. Let m1,m2,m3, N2, N3 ∈ N. Assume that [pEm1
6= p−1

11 and pIm2
6=

p−1
1N2

] or [pEm2
6= p−1

21 and pIm3
6= p−2

2N3
]. Then

Φ0(m1, N2,m2, N3,m3) = 0B,

whenever p11...p1N2 ⋪ hd2 or p21...p2N3 ⋪ hd3 , where d2, d3 ∈ Z \ {0}.

Proof. By defintion, we have that
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Φ0(m1, N2,m2, N3,m3)

= E (

(
∑

|w|=m1, End(w)=pE
m1

w

)
(p11...p1N2)

(
∑

|w|=m2, Init(w)=pI
m2

, End(w)=pE
m2

w

)

·(p21...p2N3)

(
∑

|w|=m3, Init(w)=pI
m3

w

)
).

Under the hypothesis, since p11...p1N2 ⋪ hd2 or p21...p2N3 ⋪ hd3 , it vanishs.

From now assume that

(A) p11...p1N2 ✁ hd2 and p21...p2N3 ✁ hd3 ,

where N2, N3 ∈ N and d2, d3 ∈ Z. Observe that if (A) is satisfied, then

(
∑

|w|=m1, End(w)=pE
m1

w

)
(p11...p1N2)

(
∑

|w|=m2, Init(w)=pI
m2

, End(w)=pE
m2

w

)

·(p21...p2N3)

(
∑

|w|=m3, Init(w)=pI
m3

w

)

= (
∑N2

j2=0

(
∑

|w|=m1, End(w)=pE
m1

w

)
(p11...p1j2)

· (p1(j2+1)...p1N2)

(
∑

|w|=m2, Init(w)=pI
m2

, End(w)=pE
m2

w

)
)

·(p21...p2N3)

(
∑

|w|=m3, Init(w)=pI
m3

w

)

(3.3.2.1)

=
∑N2−1

j2=0

∑N3

j3=0

(
∑

|w|=m1, End(w)=pE
m1

w

)
(p11...p1j2)

· (p1(j2+1)...p1N2)

(
∑

|w|=m2, Init(w)=pI
m2

, End(w)=pE
m2

w

)

·(p21...p2j3)(pj3+1...pN3)

(
∑

|w|=m3, Init(w)=pI
m3

w

)
,

where p10 = e and p20 = e. Above, the case [j2 = 0] (resp. [j2 = N2]) means the

case when there is no cancellation (resp. full cancellation) for

(
∑

|w|=m1, End(w)=pE
m1

w

)
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and p11...p1N2 . Similarly, the case [j3 = 0] (resp. [j3 = N3]) means the case when

there is no cancellation (resp. full cancellation) for p21...p2N3 and

(
∑

|w|=m3, Init(w)=pI
m3

w

)
.

Consider the summand,

Sm1,(j2,N2),m2,(j3,N3),m3
=

(
∑

|w|=m1, End(w)=pE
m1

w

)
(p11...p1j2)

· (p1(j2+1)...p1N2)

(
∑

|w|=m2, Init(w)=pI
m2

, End(w)=pE
m2

w

)

·(p21...p2j3)(p2(j3+1)...p2N3)

(
∑

|w|=m3, Init(w)=pI
m3

w

)
.

Lemma 4.22. If we have the assumption (A), then the formula (3.3.2.1) contains
the following h-terms ;

(
FpE

m1
] <p11...p1j2>

(m1, (j2 − 1))
)

·
(
F<p1(j2+1)...p1N2> [pI

m2
...pE

m2
] <p21,...,p2j3>

((N2 − (j2 + 1)),m2, (j3 − 1))
)

·
(
F<p2(j3+1)...p2N3> [pI

m3
((N3 − (j3 + 1)),m3)

)
,

where

F<p1...pn> [pI pE ] <q1...qm>(n, k,m)

def
= E

(
(p1...pn)

(
∑

|w|=k, Init(w)=pI ,End(w)=pE

w

)
(q1...qm)

)
.

Proof. To find the h-terms in the given summand (3.3.2.1) is equivalent to compute

E(Sm1,(j2,N2),m2,(j3,N3),m3
).

Then

E
(
Sm1,(j2,N2),m2,(j3,N3),m3

)

=
(
FpE

m1
] <p11...p1j2>

(m1, (j2 − 1))
)

·
(
F<p1(j2+1)...p1N2> [pI

m2
...pE

m2
] <p21,...,p2j3>

((N2 − (j2 + 1)),m2, (j3 − 1))
)

·
(
F<p2(j3+1)...p2N3> [pI

m3
((N3 − (j3 + 1)),m3)

)
.
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So, we can conclude that ;

Theorem 4.23. Suppose that (A) is satisfied. Then

Φ0(m1, N2,m2, N3,m3) =
∑N2−1

j2=0

∑N3−1
j3=0 E

(
Sm1,(j2,N2),m2,(j3,N3),m3

)
.

�

Now, we will apply the above theorem to our case ;

Theorem 4.24. Let m1,m2,m3 ∈ N and d2, d3 ∈ Z. Then

E
(
Xm1h

d2Xm2h
d3Xm3

)
=

∑
pE
1 , pI

2∈{a,b,a−1,b−1}

∑4d2

j2=0

∑4d3

j3=0

(FpE
m1

] <p21...p2j2>
(m1, (j2 − 1))

·F<p2(j2+1)...p2(4d2)> [pI
m2

...pE
m2

] <p31...p3j3>
((4d2 − (j2 + 1)),m2, (j3 − 1))

·F<p3(j3+1)...p3(4d3)> [pI
m3

((4d3 − (j3 + 1)),m3)),

where

hd2 = p21...p2(4d2) and hd3 = p31...p3(4d3).

Based on the above results, we can extend our interests to the generalE(Xm1h
d2Xm2 ...h

dnXmn
)-

case.

Definition 4.6. Let n ∈ N, m1, ...,mn ∈ N and N2, ..., Nn ∈ N ∪ {0}. Define a
map Φ from N×.....×N︸ ︷︷ ︸

(2n−1)−times

to B by

Φ (m1, N2,m2, ..., Nn,mn)

:=
∑

pE
m1

,pI
m2

,pE
m2

,pI
m3

,pE
m3

,...,pI
mn−1

,pE
mn−1

,pI
mn

∈{a,b,a−1,b−1}

FpE
m1

] <p21...p2N2> [pI
m2

...pE
m2

] <p31...p3N3> [pI
m3

...pE
m3

] ... <pn1...pnNn> [pI
mn

(m1, N2,m2, ...Nn,mn)

= E(

(
∑

|w|=m1

w

)
(p21...p2N2)

(
∑

|w|=m2

w

)
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·(p31...p3N3)

(
∑

|w|=m3

w

)
(p41...p4N4)

·.....(pn1...pnNn
)

(
∑

|w|=mn

w

)
),

where pij , p
I
mk

, pEmk
∈ {a, b, a−1, b−1}.

For the fixed pEm1
, pImn

, pImj
, pEmj

∈ {a, b, a−1, b−1}, for j = 2, ..., n− 1, define

Sm1, (j2,N2),m2,(j3,N3),m3,...,(jn,Nn),mn

=

(
∑

|w|=m1, End(w)=pE
m1

w

)
(p21...p2j2)

· (p2(j2+1)...p2N2)

(
∑

|w|=m2, Init(w)=pI
m2

, End(w)=pE
m2

w

)

·(p31...p3j3)(p3(j3+1)...p3N3)

(
∑

|w|=m3, Init(w)=pI
m3

,End(w)=pE
m3

w

)

·(p41...p4j4)(p4(j4+1)...p4N4)

(
∑

|w|=m4, Init(w)=pI
m4

,End(w)=pE
m3

w

)

· · ··
· · ··

·(pn1...pnjn)(pn(jn+1)...pnNn
)

(
∑

|w|=mn, Init(w)=pI
mn

w

)

Also, similar to the former discussion, we will assume that

(AA) pk1 ...pkNk
✁ hdk , for all k = 1, ..., n,

where dk ∈ Z.

Theorem 4.25. Suppose that the condition (AA) is satisfied. Then

E
(
Sm1, (j2,N2),m2,(j3,N3),m3,...,(jn,Nn),mn

)

=
(
FpE

m1
] <p21...p2j2>

(m1, j2 − 1)
)

·
(∏n−1

k=2 F<pkjk+1)...pkNk
> [pI

mk
...pE

mk
] <p(k+1)1...p(k+1)jk+1

>(Nk − (jk + 1),mk, jk+1 − 1)
)

·
(
F<pn(jn+1)...pnNn> pI

mn
(Nn − (jn + 1),mn)

)
.
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Proof. If (AA) is satisfied, then

E
(
Sm1, (j2,N2),m2,(j3,N3),m3,...,(jn,Nn),mn

)

= E(

(
∑

|w|=m1, End(w)=pE
m1

w

)
(p21...p2j2)

· (p2(j2+1)...p2N2)

(
∑

|w|=m2, Init(w)=pI
m2

, End(w)=pE
m2

w

)

·(p31...p3j3)(p3(j3+1)...p3N3)

(
∑

|w|=m3, Init(w)=pI
m3

,End(w)=pE
m3

w

)

·(p41...p4j4)(p4(j4+1)...p4N4)

(
∑

|w|=m4, Init(w)=pI
m4

, End(w)=pE
m4

w

)

· · ··
· · ··

·(pn1...pnjn)(pn(jn+1)...pnNn
)

(
∑

|w|=mn, Init(w)=pI
mn

w

)
)

=
(
FpE

m1
] <p21...p2j2>

(m1, j2 − 1)
)

·
(
F<p2(j2+1)...p2N2> [pI

m2
...pE

m2
] <p31...p3j3>

(N2 − (j2 + 1),m2, j3 − 1)
)

·
(
F<p3j3+1)...p3N3> [pI

m3
...pE

m3
] <p41...p4j4>

(N2 − (j2 + 1),m2, j3 − 1)
)

· · ·
· · ·
·
(
F<p(n−1)jn−1+1)...p(n−1)N(n−1)

> [pI
mn−1

...pE
mn−1

] <p(n)1...pnjn1>
(Nn−1 − (jn−1 + 1),mn−1, jn − 1)

)

·
(
F<pn(jn+1)...pnNn> pI

mn
(Nn − (jn + 1),mn)

)

=
(
FpE

m1
] <p21...p2j2>

(m1, j2 − 1)
)

·
(∏n−1

k=2 F<pkjk+1)...pkNk
> [pI

mk
...pE

mk
] <p(k+1)1...p(k+1)jk+1

>(Nk − (jk + 1),mk, jk+1 − 1)
)

·
(
F<pn(jn+1)...pnNn> pI

mn
(Nn − (jn + 1),mn)

)
.

By using the above theorem, we have that ;

Theorem 4.26. Suppose that the condition (AA) is satisfied. Then

Φ (m1, N2,m2, ..., Nn,mn)

=
∑

pE
m1

,pI
mn

,pI
mj

,pE
mj

∈{a,b,a−1,b−1}, j=2,...,n−1

∑N2

j2=0

∑N3

j3=0 · · ·
∑Nn

jn=0
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E
(
Sm1, (j2,N2),m2,(j3,N3),m3,...,(jn,Nn),mn

)
.

�

Applying the above two theorems, we have that ;

Theorem 4.27. Let n ∈ N, m1, ...,mn ∈ N and d2, ..., dn ∈ Z. Then

E
(
Xm1h

d2Xm2h
d3Xm3 ...h

dnXmn

)

= Φ(m1, 4d2,m3, 4d3, ..., 4dn,mn),

by the triangular relation ”✁ ”. �

Theorem 4.28. Let n ∈ N, m1, ...,mn ∈ N and d2, ..., dn ∈ N ∪ {0}. Then

E
(
Xm1(h

d2 + h−d2)Xm2(h
d3 + h−d3)Xm3 ...(h

dn + hdn)Xmn

)

=
∑

r2∈{±d2}, r3∈{±d3},...,rn∈{±dn}

Φ (m1, 4r2,m3, 4r3, ..., 4rn,mn) .

4.3. Computing Trivial Cumulants of x.

Let k ∈ N. Consider the 2k-th trivial cumulants of x = a+ b+ a−1 + b−1,

Kt
2k


x, ......, x︸ ︷︷ ︸

2k−times


 =

∑
π∈NC(even)(2k)

Ê(π) (x⊗ ...⊗ x)µ(π, 12k)

=
∑

l1,...,lp∈2N, l1+...+lp=2k

∑
π∈NCl1,...,lp

(2k)

Ê(π) (x⊗ ...⊗ x)µ(π, 12k),

where

NCl1,...,lp(2k) = {π ∈ NC(even)(2k) : V ∈ π ⇔ |V | = lj, j = 1, ..., p}.

For example,

NC(even)(8) = NC2,2,2,2(8) ∪NC2,2,4(8) ∪NC2,6(8) ∪NC4,4(8) ∪NC8(8).
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Lemma 4.29. (See Section 3.2.2) Fix k ∈ N. Let h = aba−1b−1 ∈ A1 ∗B A2 with
h0 = e.

(1) If 4 | 2k, then

E
(
x2k
)
=
∑ k−2

2

j=0 p2k2k−4j

(
h

k
2−j + h−( k

2−j)
)
+ p2k0 h0,

where p40 = 28 and p2k2k = 1.

(2) If 4 ∤ 2k and if there are X4l1 , ..., X4lp terms in x2k, then

E(x2k) =
∑k−3

2

j=0 p2k(2k−2)−4j

(
h

k−1
2 −2j + h−( k−1

2 −2j)
)
+ p2k0 h0,

where p20 = 4. �

Definition 4.7. Let n ∈ N and let π ∈ NC(n). Let V = (v1, ..., vk),W =
(w1, ..., wl) ∈ π and assume that there exists j ∈ {1, ..., k} such that

1 ≤ v1 < ... < vj < w1 < ... < wl < vj+1 < ... < vk ≤ n,

in {1, ..., n}. Then we say that the block W is a subblock of the block V.

Suppose that V ∈ π(i) is an inner block of a partition π with its outer block
W ∈ π(o). Then V is a subblock of W.

Definition 4.8. Let π ∈ NCl1,...,lp(2k). Let V
o ∈ π(o) and let V,W ∈ π be sub-

blocks in V o. We say that V is inner in W, if V is a subblok of W. It has the
following pictorial expression ;

....................︸ ︷︷ ︸
V

......

︸ ︷︷ ︸
W

.

Notice that it does not mean V ∈ π(i) with its outer block W ∈ π(o). i.e we can
have the following pictorial expression of subblocks V ′, V,W,W ′ in V o ∈ π(o) ;

................................︸ ︷︷ ︸
V ′

......

︸ ︷︷ ︸
V

......

︸ ︷︷ ︸
W

.......

︸ ︷︷ ︸
W ′

,
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where V ′ and W ′ are other blocks in π which are subblocks of V o ∈ π(o). We
also say that V is a deepest subblock if there is no subblcok V ′ which is inner in
V. We define that V ∈ π(o) containing no inner blocks is also a deepest block. We
will express pictorially,

....................︸ ︷︷ ︸
V

......

︸ ︷︷ ︸
W

by m1 .............︸ ︷︷ ︸
V

m2

︸ ︷︷ ︸
W

,

where m1 = |W |(1) and m2 = |W |(2) such that |W | = m1 +m2.

Definition 4.9. Suppose that π ∈ NCl1,...,lp(2k). Then π = {Vl1 , ..., Vlp} with∣∣Vlj

∣∣ = lj , ∀ j = 1, ..., p. Define a map Λ from

∪∞
k=1

(
∪

l1,...,lp∈2N, l1+...+lp=2k
NCl1,...,lp(2k)

)

to

∪∞
n=1


N× ...× N︸ ︷︷ ︸

n−times


 ,

by the following rules with respect to subblocks in each outer block of π ;

(1) Let π ∈ NCl1,...,lp(2k) and V ∈ π(o) and let V1, ..., Vk,W be subblocks in V.

Let V1, V2, ..., Vk be deepest subblocks in W, which is outer of V1, ..., Vk. If

m1 ............︸ ︷︷ ︸
V1

m2............︸ ︷︷ ︸
V2

m3...mk............︸ ︷︷ ︸
Vk

mk+1

︸ ︷︷ ︸
W

with

|V1| = n1, ..., |Vk| = nk

then the restriction of Λ to (V1, ..., Vk,W ) is

Λ |(V1,...,Vk,W ) (π) = (m1, [n1],m2, [n2],m3, ...,mk, [nk],mk+1) .

(2) Let V ∈ π(o), W ∈ π(i) be given as in the step (1). Suppose that the subblock
of V, W1 ∈ π is outer of W such that

p1 ..........︸ ︷︷ ︸
W

p2

︸ ︷︷ ︸
W1

with |W1| = p1 + p2.
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Then the restriction of Λ to (W,W1) is

Λ |(W,W1) (π) =
(
p1, [Λ |(V1,...,Vk,W ) (π)], p2

)
.

If W2 is outer of W1, then, similarly, we can define Λ |(W1,W2) (π), inductively.
This is the insertion property of the map Λ. Suppose that there are restrictions of
the map Λ, Λ |(V 1

1 ,...,V 1
k1

,W 1) (π), ...,Λ |(V l
1 ,...,V

l
k
,W l) (π) given as in (1) and assume

that W 1, ...,W l are inner in W1 and W1 is outer of them. Then similar to (1), we
have that

Λ(W 1,...,W l,W1)(π)

=
(
q1, [Λ |(V 1

1 ,...,V 1
k1

,W 1) (π)], q2, ..., ql, [Λ |(V l
1 ,...,V

l
k
,W l) (π)], ql+1

)

(3) Let V o ∈ π(o) be an outer block having the above insertion property (1) and
(2). Then the restriction of the map Λ to V o, Λ |V o (π), is defined like in (2),
inductively.

(4) Let π(o) = {V o
1 , ..., V

o
t }. Define the map Λ for π ∈ NCl1,...,lp(2k) by

Λ(π) = Λ |V o
1
(π)× ...× Λ |V o

t
(π),

where the Cartesian product “×” is set-theoratically determined. Recall that each
Λ |V o

j
(π) has the insertion property as in (2) and (3).

The map Λ, on even noncrossing partitions is called the “(partition-dependent)
Numbering” map. Remark that the image of this numbering map contains the num-
ber with rectangular bracket [.] which represents the length of the deepest blocks in
the outer blocks of partitions.

Example 4.1. Let π ∈ NC2,4,4,4,4,6(24) be given as follows ;

π = ◦ ◦ ◦ ◦◦︸ ︷︷ ︸
V1

◦ ◦ ◦◦︸ ︷︷ ︸
V2

◦ ◦◦

︸ ︷︷ ︸
W1

◦ ◦ ◦◦ ◦ ◦ ◦ ◦◦︸ ︷︷ ︸
V3

◦

︸ ︷︷ ︸
V4

◦ ◦

︸ ︷︷ ︸
W2

.

Then we can reexpress it by

π = 1 ◦ ◦ ◦◦︸ ︷︷ ︸
V1

◦ ◦ ◦◦︸ ︷︷ ︸
V2

3

︸ ︷︷ ︸
W1

2 1◦ ◦ ◦ ◦ ◦◦︸ ︷︷ ︸
V3

1

︸ ︷︷ ︸
V4

2

︸ ︷︷ ︸
W2



44 ILWOO CHO

and hence, by the map Λ, we have that

Λ(π) = (1, [4], [4], 3)× (2, (1, [6], 1), 2).

Definition 4.10. Fix k ∈ N and π ∈ NCl1,...,lp(2k). Let (A,E) be a NCPSpace
over B and let x0 ∈ (A,E) be a B-even random variable. Define a map

Ψx0 : ∪∞
k=1

(
∪

l1,...,lp∈2N, l1+...+lp=2k
NCl1,...,lp(2k)

)
→ B

by

Ψx0(π) = Φx0 ◦ Λ(π)
def
=

∏
V ∈π(o)

Φx0 (Λ(V )) .

Remark that Λ(V ) satisfies the insertion property and hence Φx0 (Λ(V )) is also
defined by the insertion property. And hence Ψx0 is defined by the insertion prop-
erty.

Example 4.2. Let π ∈ NC2,4,4,4,4,6(24) be given as follows ;

π = 1 ◦ ◦ ◦◦︸ ︷︷ ︸
V1

◦ ◦ ◦◦︸ ︷︷ ︸
V2

3

︸ ︷︷ ︸
W1

2 1◦ ◦ ◦ ◦ ◦◦︸ ︷︷ ︸
V3

1

︸ ︷︷ ︸
V4

2

︸ ︷︷ ︸
W2

and hence,

Ψx0 (π) = (Ψx0(W1)) (Ψx0(W2))

= (Φx0(Λ(W1))) (Φx0(Λ(W2)))

= (Φx0(1, [4], [4], 3)) (Φx0(2, (1, [6], 1), 2))

= E
(
x0E(x4

0)E(x4
0)x

3
0

)
· E
(
x2
0E(x0E(x6

0)x0)x
2
0

)
.

for the (arbitrary) fixed B-valued random variable x0 in (some) NCPSpace over
B, (A,E).

Now, let’s go back to our problem and observe the following ;

Theorem 4.30. Let B-valued random variables, x = a + b + a−1 + b−1 and y =
c+ d+ c−1 + d−1 in (A1 ∗B A2, F := E ∗ E) be given as before.Then
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(1) If Rt
x+y is the trivial B-valued R-transform of x+ y, then

coef2k
(
Rt

x+y

)
= Kt

2k ((x+ y), ..., (x+ y))

= 2
∑

l1,...,lp∈2N, l1+...+lp=2k

∑
π∈NCl1,...,lp (2k)

µπ ·Ψx(π),

where µπ = µ(π, 12k) ∈ C, for all π ∈ NC(even)(2k), k ∈ N.

(2) If M t
x+y is the trivial B-valued moment series of x+ y, then

coef2k
(
M t

x+y

)
= E

(
(x+ y)2k

)

=
∑

θ∈NC(even)(2k)

(
2|θ|

∑
π∈NC(even)(2k), π≤θ

µθ
π ·Ψx(π)

)
,

where µθ
π = µ(π, θ), for all k ∈ N.

So, to compute B-valued 2k-th cumulants of x (and hence to compute B-valued
moments of x), it is sufficeint to compute Ψx(π), for each π ∈ NC(even)(2k), for
k ∈ N.

Notation (1) From now, for the convenience of using notations,
we will denote

E(x2k) =
∑a(2k)

n=0 α2k
4n (h

n + h−n) ∈ B,

where α2k
0 = p2k0 , α2k

4 = p2k4 , α2k
8 = p2k8 , ..., α2k

4n = p2k4n, .... More-
over, we will denote

(h0 + h−0)
denote
≡ e.

Remark that the above equality ”≡” is just mean the notation,
not equality ! Also, we will denote that

a(2k) =





k
2 if 4 | 2k

k−1
2 if 4 ∤ 2k.

(2) Let m ∈ N. By Section 3.2.2, we know that
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xm =





Xm + pmm−2Xm−2 + ...+ pm2 X2 + pm0 e if m ∈ 2N

Xm + qmm−2Xm−2 + ...+ qm3 X3 + qm1 X1 if m ∈ 2N− 1

We will denote xm, at once, by

xm =
∑m

n=0 β
m
n Xn,

where

βm
n =





pmn if m ∈ 2N
qmn if m ∈ 2N− 1
0 if n 6= m− 2j.

Notice that if n 6= m− 2j, then βm
n = 0 in C. �

Recall that, there are two recurrence relations for computing E(x2k), the first is
the case when 4 | 2k and the second is the case when 4 ∤ 2k. The above notation is
used because we want to consider E(x2k), at once.i.e we want to avoid the situation
where we have to observe case-by-case.

Proposition 4.31. Let m1, ...,mn ∈ N and d2, ..., dn ∈ N ∪ {0}. Then

E
(
xm1(hd2 + h−d2)xm2(hd3 + h−d3)xm3 ...(hdn + h−dn)xmn

)

=
∑m1

i1=0

∑m2

i2=0

∑m3

i3=0 · · ·
∑mn

in=0

(
βm1

i1
βm2

i2
βm3

i3
· · · βmn

in

)

(
∑

r2∈{±d2}, r3∈{±d3},...,rn∈{±dn}

Φ ([m1, [4r2],m3, [4r3], ..., [4rn],mn])

)
.

Theorem 4.32. Let k ∈ N. Let l1, ..., lp ∈ 2N and l1 + ... + lp = 2k. Let π ∈
NCl1,...,lp(2k) and V ∈ π. If V1, ..., Vn are deepest subblocks in V which is outer of
V1, ..., Vn and if we have

Λ |(V1,...,Vn,V ) (π) = (m1, [lj2 ],m2, [lj3 ],m3, ..., [ljn ],mn) ,

where lj2 , ..., ljn ∈ {l1, ..., lp} and m1, ...,mn ∈ N∪{0}, then the restriction of Ψx

to (V1, ..., Vn, V ) is

Ψx |(V1,...,Vn,V ) (π) =
∑m1

n1=0

∑m2

n2=0 · · ·
∑mn

nn=0

∑a(lj2 )

i2=0

∑a(lj3 )

i3=0 · · ·
∑a(ljn )

in=0

(
βm1
n1

βm2
n2

· · · βmn

nn

) (
α
lj2
4i2

α
lj3
4i3

· · · α
ljn
4in

)

(
∑

r2∈{±i2}, r3∈{±i3},...,rn∈{±in}

Φ (n1, 4r2, n3, 4r3, ..., 4rn, nn)

)
.
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Proof. Fix π ∈ NCl1,...,lp(2k) and let V o ∈ π(o) and assume that Λ(V o) = (m1, [lj2 ],m2, ..., [ljn ],mn) ,
where 1 ≤ j1 < j2 < ... < jn ≤ p. Then

Ψx |(V1,...,Vn,V ) (π) = Φx ◦ Λ |(V1,...,Vn,V ) (π)

= E
(
xm1E(xlj2 )xm2E(xlj3 )xm3 ...E(xljn )xmn

)

= E(
(∑m1

n1=0 β
m1
n1

Xn1

) (∑a(lj2 )
i2=0 α

lj2
4i2

(hi2 + h−i2)
)

(∑m2

n2=0 β
m2
n2

Xn2

) (∑a(lj3 )
i3=0 α

lj3
4i3

(hi3 + h−i3)
) (∑m3

n3=0 β
m3
n3

Xn3

)

.........................
(∑a(ljn )

in=0 α
ljn
4in

(hin + h−in)
) (∑mn

nn=0 β
mn

nn
Xnn

)
)

=
∑m1

n1=0

∑m2

n2=0 · · ·
∑mn

nn=0

∑a(lj2 )

i2=0

∑a(lj3 )

i3=0 · · ·
∑a(ljn )

in=0(
βm1
n1

βm2
n2

· · · βmn

nn

) (
α
lj2
4i2

α
lj3
4i3

· · · α
ljn
4in

)

E
(
Xn1(h

i2 + h−i2)Xn2(h
i3 + h−i3)Xn3 ...(h

in + h−in)Xnn

)

=
∑m1

n1=0

∑m2

n2=0 · · ·
∑mn

nn=0

∑a(lj2 )
i2=0

∑a(lj3 )
i3=0 · · ·

∑a(ljn )
in=0(

βm1
n1

βm2
n2

· · · βmn

nn

) (
α
lj2
4i2

α
lj3
4i3

· · · α
ljn
4in

)
(

∑
r2∈{±i2}, r3∈{±i3},...,rn∈{±in}

Φ (n1, 4r2, n3, 4r3, ..., 4rn, nn)

)
.

Proposition 4.33. Let k ∈ N and let π ∈ NC(even)(2k). If x = a+b+a−1+b−1 ∈
A1 ∗B A2 is our B-valued random variable, then

Ê(π) (x⊗ ...⊗ x) = Ψx(π).

�

The above proposition is proved by only using the definitions of partition-dependent
B-moments of x and of Ψx0 . Now, we will put all our information ;

Theorem 4.34. Let k ∈ N and let x = a+ b+a−1+ b−1 and y = c+d+ c−1+d−1

be given as before. Then

Kt
2k ((x+ y), ..., (x+ y))

= 2 ·
∑

l1,...,lp∈2N, l1+...+lp=2k

∑
π∈NCl1,...,lp

(2k)

µπ · Ψx(π)

= 2 ·
∑

l1,...,lp∈2N, l1+...+lp=2k

∑
π∈NCl1,...,lp

(2k)

µπ ·

(
∏

V o∈π(o)

(Ψx0 |V o (π))

)
,
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by the previous proposition. �

Theorem 4.35. Let k ∈ N and let x = a+ b+a−1+ b−1 and y = c+d+ c−1+d−1

be given as before. Then

coef2k
(
M t

x+y

)
=

∑
θ∈NC(even)(2k)

2|θ| ·
∑

π∈NC(even)(2k), π≤θ

µθ
π ·Ψx(π).

Proof. Fix k ∈ N. Then we already observed that

E
(
(x+ y)2k

)
=

∑
θ∈NC(even)(2k)

ĈE(θ) ((x+ y)⊗ ...⊗ (x + y))

where Ĉ = (C(n))∞n=1 ∈ I (L(F2), L(F1))
c
is the cumulant multiplicative bimod-

ule map induced by E : L(F2) → L(F1)

=
∑

θ∈NC(even)(2k)

2|θ| · Ĉ(θ) (x⊗ x⊗ ...⊗ x)

by the B-freeness of x and y and by the identically B-distributedness of x and y

=
∑

θ∈NC(even)(2k)

2|θ| ·

(
∑

π∈NC(even)(2k), π≤θ

Ê(π) (x⊗ x⊗ ...⊗ x)µθ
π

)

where µθ
π = µ(π, θ).

Remark 4.1. We have that

Kt
2k ((x+ y), ..., (x+ y)) = 2 ·

∑
π∈NC(even)(2k)

µπ · Ψx(π)

and

E
(
(x+ y)2k

)
=

∑
θ∈NC(even)(2k)

2|θ| ·
∑

π∈NC(even)(2k), π≤θ

µθ
π ·Ψx(π),

for all k ∈ N, where Ψx = Φ0
x ◦ Λ such that

Ψx(π) = Ê(π) (x⊗ ...⊗ x) , for all π ∈ NC(even)(2k).
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Remark 4.2. The above theorems says that the B-valued moments and cmulants
of x + y are determined by certain recurrence relations, introduced in Section 4.2,
which are depending on partitions and images of numbering map of partitions.

4.4. The Trivial R-transform of x + y and The Trivial Moment Series of

x+ y.

By the previous section, we can conclude that

Corollary 4.36. Let x = a+ b+ a−1 + b−1 and y = c+ d+ c−1 + d−1 be given as
before. Then

(1) Rt
x+y(z) =

∑∞
k=1

(
2 ·

∑
π∈NC(even)(2k)

µπ · Ψx(π)

)
z2k

(2) M t
x+y(z) =

∑∞
k=1

(
∑

θ∈NC(even)(2k)

2|θ| ·
∑

π∈NC(even)(2k), π≤θ

µθ
π ·Ψx(π)

)
z2k,

where, for the fixed π ∈ NCl1,...,lp(2k) ⊂ NC(even)(2k),

Ψx(π) = Φx ◦ Λ(π).

�

5. Scalar-Valued Moments of x+ y in
(
L(F2) ∗L(F1) L(F2),

)

5.1. Scalar-Valued Moments of x+ y.

In this section, finally, we will compute the scalar-valued moment,

ϕ ((x + y)n) , for n ∈ N.

In Section 2.6, we showed that x + y is even random variable in (A1 ∗B A2, ϕ).
More generally, if a ∈ (A,E) is a B-even and if (A,E) and (A,ϕ) are compatible,
then a is (scalar-valued) even in (A,ϕ), where B is a unital algebra and A is an
algebra over B (See [15]). So, it suffices to consider
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ϕ
(
(x+ y)2k

)
,

for all k ∈ N, futhermore, by the compatibility, we have that

ϕ
(
(x+ y)2k

)
= ϕ

(
E((x+ y)2k)

)
, for all k ∈ N.

In the previous section, we showed that

Rt
x+y(z) = 2Rt

x(z) =
∑∞

k=1

(
2 ·

∑
π∈NC(even)(2k)

µπ · Ψx(π)

)
z2k

and hence

M t
x+y(z) =

∑∞
k=1

(
∑

θ∈NC(even)(2k)

2|θ| ·
∑

π∈NC(even)(2k), π≤θ

µ(π, θ) ·Ψx(π)

)
z2k.

By the compatibility of (A1 ∗B A2, E) and (A1 ∗B A2, ϕ) , we have that

ϕ ((x+ y)n) = ϕ (E((x+ y)n)) , for all n ∈ N.

By the B-evenness of x and y, since x and y are B-even, x + y is also B-even.
Hence x+ y is (scalar-valued) even, too (See Section 2.6). Thus we have that

ϕ ((x+ y)n) = 0, whenever n ∈ 2N− 1.

So, we need to observe ϕ
(
(x+ y)2k

)
, for all k ∈ N. Fix k ∈ N. Then

ϕ
(
(x+ y)2k

)
= ϕ

(
E
(
(x+ y)2k

))

= ϕ

(
∑

θ∈NC(even)(2k)

2|θ| ·
∑

π∈NC(even)(2k), π≤θ

µθ
π ·Ψx(π)

)

(5.1)

=
∑

θ∈NC(even)(2k)

2|θ| ·
∑

π∈NC(even)(2k), π≤θ

µθ
π · ϕ (Ψx(π)) .

Theorem 5.1. Let x = a+b+a−1+b−1 and y = c+d+c−1+d−1 in
(
L(F2) ∗L(F1) L(F2), F

)
,

where F2 =< a, b >=< c, d > and F1 =< h = aba−1b−1 = cdc−1d−1 > . Then

ϕ ((x+ y)n) = 0, whenever n ∈ 2N− 1
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and

ϕ
(
(x+ y)2k

)
=

∑
θ∈NC(even)(2k)

2|θ| ·
∑

π∈NC(even)(2k), π≤θ

µθ
π · ϕ (Ψx(π)) .

�

5.2. Examples.

In this section, we will compute the scalar-valued moments, τ
(
(x+ y)3

)
and

τ
(
(x+ y)4

)
.

1. τ
(
(x+ y)6

)
;

By the previous result, we have that

ϕ
(
(x+ y)6

)
=

∑
θ∈NC(even)(6)

2|θ| ·
∑

π∈NC(even)(6), π≤θ

µθ
π · ϕ (Ψx(π)) .

(Step 1) Observe NC(even)(6) ;

NC(even)(6) = NC2,2,2(6) ∪NC2,4(6) ∪NC6(6).

We have that NC6(6) = {16} and

NC2,4(6) = {{(1, 2), (3, 4, 5, 6)}, {(1, 4, 5, 6), (2, 3)}
{(1, 2, 5, 6), (3, 4)}, {(1, 2, 3, 6), (4, 5)}
{(1, 2, 3, 4), (5, 6)}, {(1, 6), (2, 3, 4, 5)}}.

The entries of the above set, NC2,4(6), is gotten from the 360o · k
6 -anticlockwise-

rotations of the circular expression of the first entry {(1, 2), (3, 4, 5, 6)}, where k =
0, 1, ..., 5. We will call this fixed entry, {(1, 2), (3, 4, 5, 6)}, a candidate. (Remark
that, for instance, {(1, 4, 5, 6), (2, 3)}, can be the entry of NC2,4(6), etc.) This
candidate can be determined by the relation, 12 + 14. We have that

τ
(
(x+ y)6

)
=

∑
θ∈NC(even)(6)

2|θ| ·
∑

π∈NC(even)(6), π≤θ

µθ
π · τ (Ψx(π))

=
∑

θ∈NC2,2,2(6)

2|θ| ·
∑

π∈NC(even)(6), π≤θ

µθ
π · τ (Ψx(π))

+
∑

θ∈NC2,4(6)

2|θ| ·
∑

π∈NC(even)(6), π≤θ

µθ
π · τ (Ψx(π))

+
∑

θ∈NC6(6)

2|θ| ·
∑

π∈NC(even)(6), π≤θ

µθ
π · τ (Ψx(π))
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=
∑

θ∈NC2,2,2(6)

2|θ| · µθ
θ · τ (Ψx(π))

+
∑

θ∈NC2,4(6)

2|θ| ·
∑

π∈NC(even)(6), π≤θ

µθ
π · τ (Ψx(π))

+
∑

θ∈NC(even)(6)

2|16| · µθ · τ (Ψx(π)) ,

where µθ
θ = µ(θ, θ) = 1 and µθ = µ(θ, 16). Notice that the last line of the above

formular is nothing but the 6-th cumulant of x + y, because that 2|16| = 2 and x

and y are B-valued identically distributed.

(Step 2) Observe
∑

θ∈NC2,2,2(6)

2|θ| · µθ
θ · τ (Ψx(π)) ;

Fix θ ∈ NC2,2,2(6). If π ∈ NC(even)(6) satisfies π ≤ θ, then π = θ, by the
ordering on NC(6). Therefore,

∑
θ∈NC2,2,2(6)

2|θ| · µθ
θ · τ (Ψx(π))

=
∑

θ∈NC2,2,2(6)

23 · τ (Ψx(θ)) =
∑

θ∈NC2,2,2(6)

8 · τ
(
E(x2)3

)
,

since |θ| = 3, for all θ ∈ NC2,2,2(6). So,
∑

θ∈NC2,2,2(6)

8 · τ (Ψx(θ)) = |NC2,2,2(6)| ·
(
8 ·
(
p20
)3)

.

Therefore, since |NC2,2,2(6)| = c32 = 5,

∑
θ∈NC2,2,2(6)

2|θ| ·
∑

π∈NC(even)(6), π≤θ

µθ
π · τ (Ψx(π))

= 5 · 8 ·
(
p20
)3

= 2560.

(Step 3) Observe
∑

θ∈NC2,4(6)

2|θ| ·
∑

π∈NC(even)(6), π≤θ

µθ
π · τ (Ψx(π)) ;

We know all entries, θ, of NC2,4(6), from the (Step 1). It is easy to check

that if θ ∈ NC2,4(6) and if π ∈ NC(even)(6) satisfies π ≤ θ, then π = θ or π ∈
NC2,2,2(6). Moreover, each partition θ ∈ NC2,4(6) contains exactly two partitions
π in NC2,2,2(6) such that π < θ. For example, if θ = {(1, 2), (3, 4, 5, 6)}, then we
have that π1 = {(1, 2), (3, 4), (5, 6)} and π2 = {(1, 2), (3, 6), (4, 5)} in NC2,2,2(6).

Similar to (Step 2), we have that

∑
θ∈NC2,4(6)

2|θ| ·
∑

π∈NC2,2,2(6), π≤θ

µθ
π · τ (Ψx(π))

= (|NC2,4(6)|) · 2
2 · (τ (Ψx(θ))− (τ (Ψx(π1)) + τ (Ψx(π2))))

= (|NC2,4(6)|) · 4 · (τ (Ψx(θ))− 2 (τ (Ψx(π1)))) ,
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where π1, π2 ∈ NC2,2,2(6) such that πi ≤ θ, θ ∈ NC2,4(6) is arbitrarily fixed.
We can get the last line of the above formular, since all Ψx(π)’s are same, for all
π ∈ NC2,2,2(6). Also, we have that

µθ
π = µ

(
[01, 11]

2 × [02, 12]
)

= µ(01, 11)
2 · µ(02, 12) = (−1)2−1c2−1

2

= −1,

for all pair (πi, θ) ∈ NC2,2,2(6)×NC2,4(6), where πi ≤ θ. Futhermore, by (Step
1), we know all entries of NC2,4(6). Hence we can compute each Ψx(θ).

Ψx ({(1, 2), (3, 4, 5, 6)}) = Φ ((2))Φ ((4)) = p20
(
(h+ h−1) + p40

)
.

Ψx ({(1, 4, 5, 6), (2, 3)}) = Φ (1, [1], 3) =
(
(h+ h−1) + p40

)
p20.

Ψx ({(1, 2, 5, 6), (3, 4)}) = Φ ((2, [1], 2)) =
(
(h+ h−1) + p40

)
p20.

Ψx ({(1, 2, 3, 6), (4, 5)}) = Φ ((3, [1], 1)) =
(
(h+ h−1) + p40

)
.

Ψx ({(1, 2, 3, 4), (5, 6)}) = Φ ((4))Φ ((2)) =
(
(h+ h−1) + p40

)
p20.

Ψx ({(1, 6), (2, 3, 4, 5)}) = Φ ((1, [4], 1))
= E

(
x(h+ h−1)x

)
+ p40p

2
0 = 0B + p40p

2
0

= p20p
4
0.

And, for any π ∈ NC(even)(6) such that π < θ, (i.e, π ∈ NC2,2,2(6) !)

µπ = µ(π, θ) = µ
(
[01, 11]

2 × [02, 12]
)
= −1.

Therefore,

(|NC2,4(6)|) · 4 · (τ (Ψx(θ))− 2 (τ (Ψx(π1))))

= 6 · 4 · (112− 128) = 24 · (−16) = −384.

i.e,

∑
θ∈NC2,4(6)

2|θ| ·
∑

π∈NC2,2,2(6), π≤θ

µθ
π · τ (Ψx(π)) = −384.

(Step 4) Observe
∑

π∈NC(even)(6)

µπ · τ (Ψx(π)) ;

It is easy to check that
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∑
π∈NC(even)(6)

2 · µπ · τ (Ψx(π)) =
∑

π∈NC2,2,2(6)

2 · µπ · τ (Ψx(π))

+
∑

π∈NC2,4(6)

2 · µπ · τ (Ψx(π)) + 2 · τ (Ψx(16)) .

Also, it is easy to see that

∑
π∈NC2,2,2(6)

2 · µπ · ϕ (Ψx(π)) = 2 · 2 · µπ1
τ (Ψx(π1)) + 3 · 2 · µπ2

τ (Ψx(π2))

since there are two kinds of block structures in NC2,2,2(6) ; one kind is

{(1, 2), (3, 4), (5, 6)} and its rotations

(there are two such partitions) and another kind is

{(1, 2), (3, 6), (4, 5)} and its rotations

(there are three such partitions), so, we have that,

= 4 · 2 · (p20)
3 + 6 · 1 · (p20)

3 = 8 · 64 + 6 · 64 = 896.

Also,

∑
π∈NC2,4(6)

2 · µπ · τ (Ψx(π)) = 6 · 2 · (−1) · 112 = −1344

and

2 · τ (Ψx(16)) = 2 · p60 = 2 · 232 = 464.

Therefore,

∑
π∈NC(even)(6)

2 · µπ · τ (Ψx(π)) = 16.

(Step 5) Add all information ;

τ
(
(x+ y)6

)
= 2560− 384 + 16 = 2192.

By (Step 1) ∼ (Step 5), we can get that

τ
(
(x+ y)6

)
= 2192.
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Example 5.1. Let x, y ∈ (L(F2)∗L(F1)L(F2), F ) be L(F1)-valued random variables

such that x = a+ b+ a−1 + b−1 and y = c+ d+ c−1 + d−1 and let E : L(F2) ∗L(F1)

L(F2) → L(F1) and τ : L(F2) ∗L(F1) L(F2) → C be the conditional expectation
(finding h-terms) and the canonical trace, respectively. Then

τ
(
(x+ y)6

)
= τ

(
E
(
(x+ y)6

))
= 2192.

�

Remark 5.1. The above result also gotten from the following way ; First, recall
that L(F2) ∗L(F1) L(F2) ≃ L(F2 ∗F1 F2). Also, we can regard the group F2 ∗F1 F2 as
a (topological) fundamental group of torus with genus 2,

G =< a, b, c, d : aba−1b−1d−1c−1dc = e > .

(Remember that aba−1b−1 = cdc−1d−1 is our h !) We need to recognize that
aba−1b−1d−1c−1dc is a word with length 8, without considering the relation in the
group G. Again, denote a + b + a−1 + b−1 and c + d + c−1 + d−1 by x and y,

respectively. Now, define the following trace

τ4 : L(F4) → C

by

τ4

(
∑

g∈F4

αgg

)
= αeF4

,

where F4 =< a, b, c, d > . Notice that

τ4
(
(x + y)6

)
= τ

(
(x+ y)6

)
,

because, in both cases, we cannot make the words with length 8 in (x+ y)
6
. (Of

course, in our case, the word aba−1b−1d−1c−1dc is e, but this can be come from
making the words with length 8 !) Now, let’s compute τ4

(
(x + y)6

)
. This can be

computed by using the method introduced in [35], as follows ; this method is also
used in Section 3.3.

τ4
(
(x+ y)6

)
= τ

(
(a+ b+ a−1 + b−1 + c+ d+ c−1 + d−1)6

)

= τ4
(
(X1)

6
)
,

where X1 = the sum of length 1 words in L(F4). We have the following recurrence
relations, by [35] ;

X1X1 = X2 + 8e

and

X1XN = XN+1 + 7XN−1, for all N ≥ 2.
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So, to get τ4
(
(x+ y)6

)
= τ4

(
(X1)

6
)
, we need to compute that

(x+ y)2 = (X1)
2 = X1X1 = X2 + 8e,

(x + y)3 = (X1)
3 = X1 (X2 + 8e) = X1X2 + 8X1

= (X3 + 7X1) + 8X1 = X3 + 15X1,

(x + y)4 = (X1)
4 = X1 (X3 + 15X1) = X1X3 + 15X1X1

= X4 + 7X2 + 15(X2 + 8e)
= X4 + 22X2 + 120e,

(x + y)5 = (X1)
5 = X1 (X4 + 22X2 + 120e)

= X5 + 29X3 + 274X1,

and

(x + y)6 = (X1)
6 = X1 (X5 + 29X3 + 274X1)

= X6 + 36X4 + 203X2 + 274X2 + 2192e.

Thus, we have that

τ4
(
(x+ y)6

)
= τ4 (X6 + 36X4 + 203X2 + 274X2 + 2192e)
= 2192.

Therefore, we can conclude that

τ
(
(x+ y)6

)
= 2192 = τ4

(
(x + y)6

)
.

2. τ
(
(x+ y)8

)
; by Section 4.4, we have that

τ
(
(x+ y)8

)
=

∑
θ∈NC(even)(8)

2|θ| ·
∑

π∈NC(even)(8), π≤θ

µθ
π · τ (Ψx(π)) .

By the separation of NC(even)(8), we have that

NC(even)(8) = NC2,2,2,2(8) ∪NC2,2,4(8) ∪NC2,6(8) ∪NC4,4(8) ∪ {18}.

Therefore,

τ
(
(x+ y)8

)

=
∑

θ∈NC2,2,2,2(8)

24
∑

π∈NC(even)(8), π≤θ

µθ
π · τ (Ψx(π))
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+
∑

θ∈NC2,2,4(8)

23 ·
∑

π∈NC(even)(8), π≤θ

µθ
π · τ (Ψx(π))

+
∑

θ∈NC2,6(8)

22 ·
∑

π∈NC(even)(8), π≤θ

µθ
π · τ (Ψx(π))

+
∑

θ∈NC4,4(8)

22 ·
∑

π∈NC(even)(8), π≤θ

µθ
π · τ (Ψx(π))

+ 2 ·Kt
8 (x, ..., x)

=
∑

θ∈NC2,2,2,2(8)

(16) · µθ
θ · τ (Ψx(θ))

(since there is no π ∈ NC(even)(8) such that π � θ, for θ ∈ NC2,2,2,2(8))

+
∑

θ∈NC2,2,4(8)

(8) · ·
(
µθ
θτ (Ψx(θ)) + µθ

π1
τ (Ψx(π1)) + µθ

π2
τ (Ψx(π2))

)

(for each given θ ∈ NC2,2,4(8), we have only two proper partitions π1, π2 such
that πi � θ, i = 1, 2)

+
∑

θ∈NC2,6(8)

(4) · (µθ
θτ (Ψx(θ)) + 6 · (µθ

πτ (Ψx(π)))

+
(
2 · (µθ

π1
τ (Ψx(π1))) + 3 · (µθ

π2
τ (Ψx(π2)))

)
)

(for each given θ ∈ NC2,6(8), like in the step 5 in 1., we have the proper
partitions π ∈ NC2,2,4(8) and π1, π2 ∈ NC2,2,2,2(8). Notice that π1 and π2 have
different type of pairings in NC2,2,2(6) →֒ NC2,2,2,2(8))

+
∑

θ∈NC4,4(8)

(4) ·
∑

π∈NC(even)(8), π≤θ

µθ
π · τ (Ψx(π))

+2 ·
∑

θ∈NC(even)(8)

µ18
θ · τ (Ψx(θ))

(Step 1) Compute

∑
θ∈NC2,2,2,2(8)

(16) · µθ
θ · τ (Ψx(θ)) =

∑
θ∈NC2,2,2,2(8)

(16) · τ (Ψx(θ))

since µθ
θ = 1 ∈ C

= (14)(16)ϕ
(
E(x2)4

)
= (14)(16)(256) = 57344.

(Step 2) Compute
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∑
θ∈NC2,2,4(8)

(8) ·
(
µθ
θτ (Ψx(θ)) + µθ

π1
τ (Ψx(π1)) + µθ

π2
τ (Ψx(π2))

)

=
∑

θ∈NC2,2,4(8)

(8) · (τ (Ψx(θ))− τ (Ψx(π1))− τ (Ψx(π2)))

=
∑

θ∈NC2,2,4(8)

(8) ·
(
(p20p

2
0p

4
0)− (p20)

4 − (p20)
4
)

=
∑

θ∈NC2,2,4(8)

(8) · (448− 256− 256) =
∑

θ∈NC2,2,4(8)

(8) · (−64)

=
∑

θ∈NC2,2,4(8)

(−512) = (28) · (−512)

= −14336.

We can get that |NC2,2,4(8)| = 28.

(Step 3) Compute

∑
θ∈NC2,6(8)

(4) · (µθ
θτ (Ψx(θ)) + 6 · (µθ

πτ (Ψx(π)))

+
(
2 · (µθ

π1
τ (Ψx(π1))) + 3 · (µθ

π2
τ (Ψx(π2)))

)
)

=
∑

θ∈NC2,6(8)

(4) · (τ (Ψx(θ))− 6 · τ (Ψx(π))

+2 · 2 · τ (Ψx(π1)) + 3 · 1 · τ (Ψx(π2)))

=
∑

θ∈NC2,6(8)

(4) ·
(
p20p

6
0 − 6 · p20p

2
0p

4
0 + 4 · (p20)

4 + 3 · (p20)
4
)

=
∑

θ∈NC2,6(8)

(4) · (928− 2688 + 1024 + 768)

=
∑

θ∈NC2,6(8)

(4) · (32) =
∑

θ∈NC2,6(8)

(128)

= 8 · (128) = 1024.

(Step 4) Compute

∑
θ∈NC4,4(8)

(4) ·
∑

π∈NC(even)(8), π≤θ

µθ
π · τ (Ψx(π))

=
∑

θ∈NC4,4(8)

(4) · (µθ
θ · ϕ (Ψx(θ)) + µθ

π1
· τ (Ψx(π1))

+µθ
π2

· τ (Ψx(π2)) + µθ
π3

· τ (Ψx(π3))

+µθ
π4

· τ (Ψx(π4)) + µθ
π5

· τ (Ψx(π5))

+µθ
π6

· τ (Ψx(π6)) + µθ
π7

· τ (Ψx(π6))
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+µθ
π8

· τ (Ψx(π6))),

since for each θ ∈ NC4,4(8), there are proper partitions π1, π2, π3, π4 ∈ NC2,2,4(8)
and π5, π6, π7, π8 ∈ NC2,2,2,2(8).

=
∑

θ∈NC4,4(8)

(4) · (
(
(p40)

2 + 2
)
− p20p

2
0p

4
0

−p20p
2
0p

4
0 − p20p

2
0p

4
0

−p20p
2
0p

4
0 + (p20)

4

+(p20)
4 + (p20)

4

+(p20)
4),

=
∑

θ∈NC4,4(8)

(4) · (786 + (4)(−448) + 4(256))

=
∑

θ∈NC4,4(8)

(4) · (786− 1792 + 1024) =
∑

θ∈NC4,4(8)

(4)(18)

=
∑

θ∈NC4,4(8)

(72) = (4)(72)

= 288.

(Step 5) Compute

2 ·
∑

θ∈NC(even)(8)

µ18
θ · τ (Ψx(θ))

= 2 · (2 · (p20)
4µ(04, 14) + 8 · (p20)

4µ(02, 12)µ(03, 13)

+4 · (p20)
4 (µ(02, 12))

3
)

+2 · (8 · (p20)
2(p40)µ(03, 13) + 4 · (p20)

2(p40) (µ(02, 12))
2

+8 · (p20)
2(p40) (µ(02, 12))

2

+8 · (p20)
2(p40) (µ(02, 12))

2
)

+2 ·
(
8 · p20p

6
0 µ(02, 12)

)

+2 ·

(
∑

θ∈NC4,4(8)

µ18
θ · ϕ (Ψx(θ))

)

+2 · p80

= 2 (−2560− 4096− 1024) + 2 (7168 + 1792 + 3584 + 3584)

+2 (−7424) + 2(
∑

θ∈NC4,4(8)

µ18
θ · ϕ (Ψx(θ))) + 2 (2092)

= −15360+ 32256− 14848
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+2

(
∑

θ∈NC4,4(8)

µ18
θ · τ (Ψx(θ))

)
+ 4184

= 2

(
∑

θ∈NC4,4(8)

µ18
θ · τ (Ψx(θ))

)
+ 6232

Now, let’s compute
∑

θ∈NC4,4(8)

µ18
θ · τ (Ψx(θ)) ; we have that

NC4,4(8) = {{(1, 2, 3, 4), (5, 6, 7, 8)}, {(1, 6, 7, 8), (2, 3, 4, 5)}
{(1, 2, 7, 8), (3, 4, 5, 6)}, {(1, 2, 3, 8), (4, 5, 6, 7)}}.

Hence,

Ψx ({(1, 2, 3, 4), (5, 6, 7, 8)}) = Ψx (1, 2, 3, 4)Ψx(5, 6, 7, 8)
= E(x4) · E(x4) =

(
(h+ h−1) + p40

) (
(h+ h−1) + p40

)

= (h+ h−1)2 + 2p40(h+ h−1) + (p40)
2

= h2 + 2e+ h−2 + 2p40(h+ h−1) + 784e
= h2 + h−2 + 2p40(h+ h−1) + 786e,

Ψx ({(1, 6, 7, 8), (2, 3, 4, 5)}) = Ψx (1, [4], 3)
=
(
(h2 + h−2) + 2e

)
+ 784e

= (h2 + h−2) + 786e,

Ψx ({(1, 2, 7, 8), (3, 4, 5, 6)}) = Ψx (2, [4], 2)
= (h2 + h−2) + 786e

and

Ψx ({(1, 2, 3, 8), (4, 5, 6, 7)}) = Ψx (3, [4], 1)
= (h2 + h−2) + 786e.

Notice that, for any π ∈ NC4,4(8), we have that

µ18
π = µ(01, 11)

6µ(02, 12) = −1.

Thus,

∑
θ∈NC4,4(8)

µ18
θ · τ (Ψx(θ)) = −τ

(
h+ h−1 + 2p40(h+ h−1) + 786e

)

−3 · τ
(
(h2 + h−2) + 786e

)

= (−4)(786) = −3144.

Therefore,
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2 ·
∑

θ∈NC(even)(8)

µ18
θ · τ (Ψx(θ))

= 2

(
∑

θ∈NC4,4(8)

µ18
θ · τ (Ψx(θ))

)
+ 6232

= 2 (−3144) + 6232
= −6288 + 6232 = −56

(Step 6) By (Step 1) ∼ (Step 5), we can conclude that

τ
(
(x+ y)8

)
= τ

(
E
(
(x+ y)8

))

= 57344 + (−14336) + 1024 + 288 + (−56)

= 44264.

Example 5.2. Let x, y ∈ L(F2)∗L(F1)L(F2) be L(F1)-valued random variables such

that x = a+b+a−1+b−1 and y = c+d+c−1+d−1 and let E : L(F2)∗L(F2)L(F2) →
L(F1) and τ : L(F2) ∗L(F1) L(F2) → C be the conditional expectation (finding h-
terms) and the canonical trace, respectively. Then

τ
(
(x+ y)8

)
= τ

(
E
(
(x+ y)8

))
= 44256.

�

Remark 5.2. The above result also gotten from the following way ; First, recall
that L(F2) ∗L(F1) L(F2) ≃ L(F2 ∗F1 F2). Also, we can regard the group F2 ∗F1 F2 as
a (topological) fundamental group of torus with genus 2,

G =< a, b, c, d : aba−1b−1d−1c−1dc = e > .

(Remember that aba−1b−1 = cdc−1d−1 is our h !) We need to recognize that
aba−1b−1d−1c−1dc is a word with length 8, without considering the relation in the
group G. Again, denote a + b + a−1 + b−1 and c + d + c−1 + d−1 by x and y,

respectively. Now, define the following trace

τ4 : L(F4) → C

by

τ4

(
∑

g∈F4

αgg

)
= αeF4

,

where F4 =< a, b, c, d > . (Of course, in our case, the word aba−1b−1d−1c−1dc

is e, but this can be come from making the words with length 8 !) Now, let’s
compute τ

(
(x+ y)8

)
. This can be computed by using the method introduced in

[35], as follows ; this method is also used in Section 3.3.
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τ4
(
(x + y)8

)
= 44284.

By the relation

aba−1b−1d−1c−1dc = e

and

c−1d−1cdbab−1a−1 = e−1 = e,

we have to add 16 to τ
(
(x+ y)8

)
. i.e

τ
(
(x + y)8

)
= τ

(
E
(
(x+ y)8

))

= τ4
(
(x+ y)8

)
+ 16

= 44264.

The above method introduced in the previous remark looks much more easy to
compute the moments of x + y. However, when we deal with the higher degree
computation, it is very hard to find the suitable relation for the identity e.
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Invariant, Pacific J. of Math, vol. 151, No 2 (1991), 297-306.

[16] I. Cho, Amalgamated Boxed Convolution and Amalgamated R-transform Theory

(preprint).

[17] I. Cho, Compressed Amalgamated R-transform Theory, preprint.

[18] I. Cho, Perturbed R-transform Theory, preprint.

[19] I. Cho, Compatibility of a noncommutative probability space and an amalgamated

noncommutative probability space, preprint

[20] J.A.Mingo and A.Nica, Annular Noncrossing Permutations and Partitions and

Second-order Asymptotics for Random Variables, preprint.
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