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SYMPLECTIC TORUS BUNDLES AND GROUP EXTENSIONS

PETER J. KAHN

Abstract. Symplectic torus bundles ξ : T 2
→ E → B are classified by the second cohomology

group of B with local coefficients H1(T
2). For B a compact, orientable surface, the main theorem

of this paper gives a necessary and sufficient condition on the cohomology class corresponding to
ξ for E to admit a symplectic structure compatible with the symplectic bundle structure of ξ :
namely, that it be a torsion class. The proof is based on a group-extension-theoretic construction
of J. Huebschmann [5]. A key ingredient is the notion of fibrewise-localization.

1. Introduction

A symplectic F -bundle in this paper is a smooth fibre bundle ξ : F
i
→ E

p
→ B whose structure

group is the group of symplectomorphisms Symp(F, σ) for some symplectic form σ on F . For
such a bundle, the fibres Fb = p−1(b) admit canonical symplectic forms σb, the pullbacks of σ via
symplectic trivializations. A natural question to ask about ξ is under what conditions the forms σb
“piece together” to produce a symplectic form on E. More exactly, when is there a closed 2-form
β on E such that

(1) β|Fb = σb, for all b ∈ B,

with β non-degenerate? When B is connected, an argument of W. Thurston (cf. [7, page 199])
shows that a closed 2-form β satisfying (1) exists if and only if the de Rham cohomology class of
σ is contained in image(i∗ : H2

DR(E) → H2
DR(F )). Thurston further shows that when such a β

exists and E is compact and B is symplectic, then β may be modified to be non-degenerate while
still satisfying (1). McDuff and Salamon [7, page 202] use Thurston’s result to settle the existence
question for a large family of surface bundles:

Theorem. Suppose that F is a closed, oriented, connected surface of genus 6= 1, and let ξ : F →
E → B be a symplectic F -bundle with B a compact, connected symplectic manifold. Then, E
admits a symplectic structure inducing the given structures on the fibres. �

Their argument does not apply to the case of torus bundles, however; indeed, they present the
following simple counterexample in that case. Consider the composition

S1 × S3 pr
→ S3 H

→ S2,

where H is the well-known Hopf map. This composition is the projection of a symplectic torus
bundle. No symplectic form can exist on the total space S1×S3, however, because H2

DR(S
1×S3) =

0.
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1.1. The results. This paper obtains a necessary and sufficient condition for the existence of β
in the case of symplectic torus bundles over surfaces. Before stating our main result, however, we
remind the reader of some subsidiary facts. For any fibre bundle ξ : F → E → B with group G,
the action of G on F produces a π0(G)-action on the homology and cohomology of F . When B is
a pointed space, there is a well-defined homomorphism π1(B) → π0(G) that gives each homology
or cohomology group of F the structure of a Zπ1(B)-module. Now suppose that F is the 2-torus
T 2 and G = Symp(T 2, σ). It is not hard to show (see Appendices A and B) that π0(G) ≈ SL(2,Z)
and that the π0(G)-action on H1(T

2) may be identified with the natural action of SL(2,Z) on
Z2. Given any representation ρ : π1(B) → π0(G) = SL(2,Z), we let Z2

ρ denote the corresponding
Zπ1(B)-module.
Proposition 1.1. Assume that B has the homotopy type of a pointed, path-connected CW com-
plex, and choose any representation ρ : π1(B) → SL(2,Z). Then there is a natural, bijective
correspondence between the equivalence classes of symplectic torus bundles over B inducing the
module structure Z2

ρ on H1(T
2) and the elements of H2(B;Z2

ρ), the second cohomology group of B

with local coefficients Z2
ρ. �

Remark. We call the cohomology class corresponding to the symplectic torus bundle ξ the char-
acteristic class of ξ and denote it by c(ξ). The characteristic class c(ξ) vanishes if and only if ξ
admits a section. When the representation ρ is trivial, c(ξ) = 0 if and only if ξ is trivial.

The proposition and remark follow immediately from known, classical results of algebraic topol-
ogy, as described in Appendices A and B.

We can now state the main result of this paper.

Theorem 1.1. Suppose that ξ is a symplectic torus bundle over a connected surface B. Then the
total space of ξ admits a closed form β satisfying (1) if and only if the characteristic class c(ξ) is a
torsion element of H2(B;Z2

ρ). If, in addition, B is compact and orientable and such a form exists,
it can be chosen to be a symplectic form.

The last statement of the theorem is simply an application of Thurston’s argument mentioned
above. So our proof of the theorem focuses exclusively on the existence of a closed 2-form β
satisfying (1).

The following consequences of the theorem are almost immediate. We give proofs in § 5.

Corollary 1.2. Let B be a connected surface, and let ρ : π1(B) → SL(2,Z) be a representation.
Among the symplectic torus bundles over B that induce the representation ρ, there are, up to
equivalence, only finitely many whose total spaces admit closed forms β satisfying (1).

Corollary 1.3. Every principal torus bundle has a canonical structure as a symplectic torus bundle.
Let ξ : T 2 → E → B be such a bundle, with B a connected surface. Then, E fails to admit a closed
2-form β satisfying (1) if and only if B is closed and orientable and ξ is non-trivial.

A specialization of this corollary perhaps deserves a separate statement.

Corollary 1.4. Suppose the closed, connected symplectic 4-manifold E admits a free T 2-action
such that the orbits are symplectic submanifolds. Then, as T 2-manifolds, E ≈ T 2 × (E/T 2).

Remark. There does not appear to be a reasonable, non-trivial sense in which the T 2-equivariant
diffeomorphism of this corollary can be taken to be a symplectomorphism. There is simply too
much leeway allowed by the hypotheses for symplectic forms on E.
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The proof of Theorem 1.1 breaks into three cases according as the base surface B is non-closed,
closed of genus zero, and closed of genus different from zero. The first two cases are substantially
easier than the third and are proved at the end of this section and in § 4, respectively. In these two
cases, the theorem reduces to the following propositions.

Proposition 1.2. Every symplectic torus bundle over a connected, non-closed surface admits a
section and has a total space that admits a closed 2-form β satisfying (1).

Proposition 1.3. (a) The total space of a symplectic torus bundle over S2 admits a closed
2-form satisfying (1) if and only if the bundle is trivial.

(b) Let E be the total space of a symplectic torus bundle ξ over RP 2. If the representation ρ
corresponding to ξ is trivial, then E admits a closed 2-form β satisfying (1). If ρ is non-
trivial, then E admits such a 2-form if and only if c(ξ) = 0, that is, if and only if ξ admits
a section.

The case in which B is a closed surface of genus 6= 0 forms the heart of the paper and occupies
§§2,3. The following two examples suggest the variety of concrete possibilities in this case. In
both examples the base space B is itself the torus T 2. Thus, in both, the representation ρ is a
homomorphism π1(T

2) = Z2 → SL(2,Z).

Example 1. For any (a, b) ∈ Z2, define ρ by the equation

ρ(a, b) =

(

1 b
0 1

)

.

In this example, one computes that the bundles are classified by H2(T 2;Z2
ρ) = Z. Consequently,

up to equivalence, there is only one torus bundle ξ—namely, the one satisfying c(ξ) = 0— for
which the total space admits a symplectic form satisfying (1). According to the classification, this
is the unique bundle admitting a section. The total space of ξ is the renowned Kodaira-Thurston
manifold, the earliest known example of a symplectic manifold that is not Kähler (cf. [7, page 89]).

Example 2. Let m and n be any fixed integers ≥ 0. Then, for (a, b) ∈ Z2, define ρ by

ρ(a, b) =

(

−2mn+ 1 2mn2 + n
−m mn+ 1

)a+b

.

In this example, the bundles are classified by H2(T 2;Z2
ρ) = Zm ⊕ Zn. So, when m,n 6= 0, there

are exactly mn symplectic torus bundles over the torus, and, for every one of them, the total space
admits the desired symplectic form.

Both examples proceed by computing H2 and then applying Theorem 1.1. The computation
begins with Poincaré duality for T 2 (with twisted coefficients), which implies that the desired result
is just the group of coinvariants of the module Z2

ρ (cf. [1, page 57]). We leave this computation to
the reader.

1.2. Reformulating Thurston’s criterion. We conclude this introduction with a brief reformu-
lation of Thurston’s cohomology criterion for the existence of the desired closed 2-forms β in the
context of symplectic torus bundles. This will immediately imply Proposition 1.2.
Thurston’s criterion is stated in our opening paragraph in terms of de Rham cohomology, but

clearly, by de Rham’s theorem, it may be equivalently stated in terms of singular cohomology
with real coefficients. In fact, a further easy reduction is desirable: namely, we pass to rational
coefficients. Indeed, note that since H2(T 2;R) ≈ R, the existence of a non-trivial class in the image
of i∗ : H2(E;R) → H2(T 2;R) is equivalent to the surjectivity of this map, and this in turn is easily
checked to be equivalent to the surjectivity of i∗ : H2(E;Q) → H2(T 2;Q) ≈ Q.
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Now using rational coefficients, we consider the Serre cohomology spectral sequence for the sym-

plectic torus bundle ξ : T 2 i
→ E

p
→ B, for which the E2-term is given by

Ep,q
2 = Hp(B;Hq(T 2;Q)).

Therefore, E0,2
2 = H0(B;H2(T 2;Q)) = H2(T 2;Q)π1(B), the group of π1(B)-invariant classes in

H2(T 2;Q). But π1(B) acts via symplectomorphisms, which are orientation-preserving, so E0,2
2 =

H2(T 2;Q). Now when B is a surface, its cohomology vanishes above dimension two, so that d0,22

is the only possibly non-trivial differential issuing from E0,2
r , r ≥ 2. Thus ker(d0,22 : H2(T 2;Q) →

H2(B;H1(T 2;Q))) = E0,2
∞ , which equals i∗(H2(B;Q)). Therefore, in this context, Thurston’s

cohomology criterion becomes

(2) d0,22 = 0.

Proof of Proposition 1.2: Proposition 1.2 now follows easily, using the fact that every connected,
non-closed surface has the homotopy type of a 1-dimensional simplicial complex. Every F -bundle
over such a base space admits a section when F is path-connected. Moreover, the target of d0,22 ,
namely H2(B;H1(T 2;Q)), is identically zero, so (2) is satisfied. �

To conclude this introduction, I am pleased to to acknowledge my indebtedness to K. Brown for
a number of very helpful conversations during the preparation of this paper.

2. An interpretation of the main theorem in terms of group extensions

Let B be a connected, closed surface of genus 6= 0 and fundamental group π. As is well known,
B is a K(π, 1), and so one sees easily that the homotopy exact sequence of the symplectic torus

bundle ξ : T 2 i
→ E

p
→ B collapses to the short exact sequence

(3) E : Z2 i∗
֌ G

p∗
։ π,

which will be convenient to regard as a group extension of π by Z2. Thus, the group G equals π1(E),
and E is a K(G, 1). Huebschmann [5] uses the cohomology spectral sequence of (3) (which is the
same as the Serre spectral sequence of ξ) and obtains group-extension-theoretic interpretations of
some of its differentials. We are interested in his interpretation of

d0,22 : H2(Z2;Q) → H2(π;H1(Z2;Q).

Here, we follow Huebschmann and use group-cohomology notation for the cohomology groups, but
of course these are the same as the cohomology groups of the base and fibre of ξ as before. Since

2-dimensional group cohomology classifies group extensions with abelian kernel, the map d0,22 may
be regarded as mapping extensions of Z2 by Q—more precisely, central extensions, since Z2 acts
trivially on Q—to extensions of π by H1(Z2;Q). Huebschmann presents a construction that uses
E to pass from an extension E1 of the first kind to an extension E2 of the second.

2.1. Huebschmann’s construction. Let E1 denote an arbitrary central extension of Z2 by Q

(4) Q ֌ G1
r1
։ Z2.

We follow Huebschmann by using E and E1 to construct an extension E2

(5) H1(Z2;Q) ֌ G2 ։ π.

We do this in several steps.
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Step (a): Since Z2 is normal in G, inner automorphisms of G determine automorphisms of Z2,
which give a representation

ρ : π → Aut(Z2) = GL(2,Z).

We shall make use of the composition

G
p∗
։ π

ρ
→ GL(2,Z).

Further, every automorphism of G1 determines a representation

(6) ρ1 : Aut(G1) → Aut(G1/Q) = GL(2,Z).

The homomorphisms ρ ◦ p∗ and ρ1 allow us to form the fibre product Π = G ×GL(2,Z) Aut(G1).
Let p1 and p2 denote the projections Π → G, Π → Aut(G1), respectively.

Step (b): Combining (3) and (4), we have a composite homomorphism

(7) λ : G1
r1
։ Z2 i∗

֌ G.

and a homomorphism µ : G1 → Π given by

(8) µ(x) = (λ(x), ιx),

where ιx denotes inner automorphism by x. It is not hard to check that

ρ ◦ p∗(λ(x)) = ρ1(ιx) = I,

where I is the 2 × 2 identity matrix in GL(2,Z). Therefore, µ does indeed take values in Π. Let
G2 denote the quotient Π/im(µ) and λ2 the projection Π → G2.

Step(c): Note that µ vanishes on ker(r1) so that it factors as G1
r1
։ Z2

֌ Π, where the second
map lifts the injection i∗ : Z2

֌ G. It follows that p1 maps im(µ) bijectively onto im(i∗) ,
which implies that p1 descends to a surjection r : G2 ։ π, and λ2 maps ker(p1) = H1(Z2;Q)
isomorphically onto ker(r). Therefore, r : G2 ։ π is an extension of π by H1(Z2;Q), which is the
desired extension E2 (see (5) above). The following diagram of exact sequences summarizes the
situation:

0 0 0




y





y





y

Q
0

−−−−→ H1(Z2;Q) H1(Z2;Q)




y





y





y

G1
µ

−−−−→ Π
λ2−−−−→ G2 −−−−→ 0

r1





y

p1





y

r





y

0 −−−−→ Z2 i∗−−−−→ G
p∗

−−−−→ π −−−−→ 0




y





y





y

0 0 0

Now let c(E1) and c(E2) denote the cohomology classes of the extensions E1 and E2 , respectively.
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Theorem (Huebschmann, [5] ). d0,22 (c(E1)) = c(E2).

Huebschmann’s result allows us to analyze properties of d0,22 (e.g., condition (2)) by applying
his construction to a certain family of central extensions. Note, however, that the family we are
interested in may be described as H2(Z2;Q) ≈ Q, a 1-dimensional vector space over Q. So, to

determine the vanishing of d0,22 , it suffices to analyze Huebschmann’s construction for any single
central extension of Z2 by Q that represents a non-zero element of cohomology. We describe such
an extension shortly, but first we must make a short preparatory digression.

2.2. Fibrewise-localization. The theory of localization in algebraic topology has been well known
since the work of Quillen, Sullivan, Bousfield, Kan, Dwyer, Hilton, Mislin and others. We summarize
only that small fragment of the subject that we need here. A useful reference for the reader is [4].
We shall confine ourselves to localizing at 0, i.e., to rationalization, although most of what we
describe applies to the general case.
Localization of a nilpotent group N is equivalent to localization of the Eilenberg-MacLane space

K(N, 1). We’ll use the language of groups here, however, rather than that of topology. For the
moment, we restrict entirely to nilpotent groups. A local group may be defined here as a nilpotent
group that is uniquely p-divisible for all primes p. A localization of the nilpotent group N consists
of a localization homomorphism (or localization map) ℓ : N → N0, where N0 is local, such
that ℓ is universal for homomorphisms of N into local groups (i.e., every such homomorphism
h : N → L factors as h0ℓ for a unique homomorphism h0 : N0 → L). N0 and ℓ are uniquely
determined up to the obvious equivalence. When N is abelian, N0 may be taken to be N ⊗Q and
ℓ given by x 7→ x⊗ 1. A key fact about localization is that localization maps induce localization
homomorphisms of homology. Localization respects exact sequences. Indeed, it is not hard to
show that, given any exact sequence S of nilpotent groups, we may localize its terms and maps,
obtaining an exact sequence S0 of local groups and a map of exact sequences ℓS : S → S0 that
localizes the individual terms. Thus, we may apply this to group extensions in which all the groups
are nilpotent.
Let

S : N ′
֌ N ։ N ′′

be a short exact sequence of nilpotent groups, and let

S0 : N
′

0 ֌ N0 ։ N ′′

0

denote its localization. Then ℓS may be thought of as a triple of localization maps (ℓN ′ , ℓN , ℓN ′′).
We use ℓN ′′ : N ′′ → N ′′

0 to pull back the sequence S0 to an exact sequence

Sf0 : N
′

0 ֌ Nf0 ։ N ′′,

which we call the fibrewise-localization of S. The pullback construction produces a natural map of
exact sequences ℓf : S → Sf0 which on N ′′ is just the identity and on N ′ is just the localization
map ℓN ′ : N ′ → N ′

0.
While this construction is perfectly valid, we want to use fibrewise-localization in the case of

group extensions with abelian kernel without assuming any nilpotency restrictions. So we present
another construction, valid for all such extensions. Consider a group extension with abelian kernel
A,

(9) S : A֌ B ։ C,

and consider any normalized 2-cocycle φ associated with S. This is a function φ : C × C → A
subject to normalization and 2-cocyle identities (cf. [1, pp.91 ff.]). φ is defined by choosing a
function C → B that splits the surjection B ։ C in (9) and measuring how far this deviates from
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being a homomorphism. Now, form the composite C × C
φ
→ A

ℓ
→ A0, where ℓ is a localization

map. This composite is a new normalized 2-cocycle for an extension of C by A0. We define this
extension to be the fibrewise-localization of S and denote it by Sf0. There is an obvious map
of extensions S → Sf0 with the same properties as before. It is not hard to show, using basic
facts about extensions, that, up to equivalence of extensions, this construction is independent of
the initial choice of 2-cocycle φ corresponding to S and independent of the choice of localization
map ℓ, and it coincides with our earlier description of fibrewise-localization for nilpotent extensions
of nilpotent groups with abelian kernels. Note also that this construction shows that if c(S) and
c(Sf0) are the cohomology classes of the corresponding extensions (i.e., the cohomology classes of
the corresponding 2-cocycles), then the homomorphism H2(C;A) → H2(C;A0) induced by the
localization map ℓ : A→ A0 sends c(S) to c(Sf0).
We now present a useful and well-known extension of Z2 by Z.
The discrete Heisenberg group H may be described as the set Z3 of all integer triples with the

following multiplication

(10) (a, b, c) • (x, y, z) = (a+ x+ bz, b+ y, c+ z).

The center Z[H] and commutator [H,H] both equal Z = Z× 0× 0, so that we clearly obtain the
central extension

H : Z ֌ H ։ Z2.

We call this the Heisenberg extension. The following result about H is well known. For the
convenience of the reader, we present a proof due to K. Brown.

Lemma 1. The cohomology class c(H) generates H2(Z2;Z) ≈ Z.

Proof. Let the group H be given by the presentation < x, y : [x, [x, y]], [y, [x, y]] >. If a, b ∈ H
are the triples (0, 1, 0), (0, 0, 1), respectively, then it is not hard to check that they generate H,
that [a, b] = (1, 0, 0), and that, accordingly, a and b satisfy the relations for x and y in H above.
Therefore, the rule x 7→ a, y 7→ b well-defines a surjective homomorphism f : H → H. We let the
reader check that this is injective as well. Thus, H ≈ H, so that, given any group H ′ and elements
c, d ∈ H ′ satisfying the stated relations, there is a unique homomorphism H → H ′ sending a to c
and b to d.
We apply this last fact to an arbitrary central extension M : Z ֌ M ։ Z2, choosing the

elements c, d ∈ M to be arbitrary lifts of (1, 0), (0, 1) ∈ Z2, respectively. Let h : H → M be the
corresponding homomorphism. h clearly induces a map of extensions H → M which is the identity
on Z2 and is an endomorphism on Z, say multiplication by some integer k. By tracing out the
definition of the 2-cocycle corresponding to an extension, it is easy to check that c(M) = kc(H).
Thus, c(H) generates H2(Z2;Z) ≈ Z. �

We now define the extension of Z2 by Q that interests us: namely, it is the fibrewise-localization
of the Heisenberg extension, Hf0.

Corollary 2. c(Hf0) is a basis element of the 1-dimensional Q vector space H2(Z2;Q).

Proof. Let ℓ∗ : H2(Z2;Z) → H2(Z2;Q) denote the homomorphism induced by the coefficient
injection Z → Q. As already observed, ℓ∗ maps c(H) to c(Hf0). At the same time, it is clear that
ℓ∗ is a localization map, essentially the same as the standard injection Z → Q. Therefore, by the
foregoing lemma, c(Hf0) 6= 0, as desired. �
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2.3. Reinterpreting the main theorem. Let us return to the context with which this section

opened: namely, to the symplectic torus bundle ξ : T 2 i
→ E

p
→ B with B a closed, connected

K(π, 1) surface. The group π acts via symplectomorphisms on H1(T
2) = Z2. Thus, we have a

representation ρ and corresponding (left) Z[π]-module Z2
ρ, as explained before. In a similar way,

the cohomology group H1(T 2;Q) ≈ Q2 receives the structure of a Z[π]-module. We want this to be
a left Z[π]-module also despite the contravariance of cohomology, so we use the standard convention
for this, which we may describe here as follows: Identify H1(T 2;Q) with Hom(H1(T

2),Q), and for
any α ∈ π, h ∈ Hom(H1(T

2),Q), and x ∈ H1(T
2), let (αh)(x) = h(α−1x).

We now return to our use of group cohomology notation in the following lemma, the proof of
which is given in the next section.

Lemma 3. Let D : H1(Z2;Q) → H1(Z
2;Q) denote Poincaré duality, and let ψ be the composite

Z2 = H1(Z
2;Z)

ℓ
→ H1(Z

2;Q)
D−1

→ H1(Z2;Q),

where, here, ℓ is the localization map induced by the usual injection Z ֌ Q. Then, using the module
structures described above, ψ is a Z[π]-injection and a localization map.
Therefore,

ψ♯ : H
2(π;Z2) → H2(π;H1(Z2;Q))

induced by ψ is also a localization map.

We can now state a reinterpretation of Theorem 1.1 in this group-extension context.

Theorem 2.1. Let Hf0 be the fibrewise-localization of the Heisenberg extension, and let E be the
group extension ( 3) described at the start of §2. Apply Huebschmann’s construction to these,
obtaining an extension E2 as in ( 5). Then,

ψ♯(c(E)) = −c(E2).

We prove Theorem 2.1 in the next section. We close this section by using it to prove Theorem 1.1
in case B is closed, connected of genus 6= 0:

Proof. Let ξ : T 2 i
→ E

p
→ B be a symplectic torus bundle with corresponding group extension

E. As discussed in Appendix C, the classes c(ξ)and c(E) are the same, so we may deal exclusively
with the latter. Suppose it has finite order. Then, by Huebschmann’s theorem and Theorem 2.1,

d0,22 (c(Hf0)) = c(E2) = −ψ♯(c(E)) = 0.

By Corollary 2 of §2.2, this implies that d0,22 = 0, which is condition (2). Therefore, as already
argued, the desired form β exists. The converse follows by reversing the steps. �

3. Proof of Theorem 2.1

The basic idea of the proof of Theorem 2.1 is to produce suitable 2-cocycles f and F for the
extensions E and E2, respectively, and then to show that, if ψ♭ is the chain map induced by ψ, then
ψ♭(f) = −F . To carry this out, we need to be more explicit about ψ and about the groups and
maps occurring in Huebschmann’s construction.
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3.1. The map ψ. We begin with a proof of Lemma 3 of §2.

Proof. That ψ = D−1ℓ is a localization map and injective is obvious. Choose any α ∈ π, and
let a be a symplectomorphism of T 2 representing α. This is a degree-one map. Therefore, the
standard cap product identity yields a∗Da

∗ = D, or a∗D = D(a∗)−1, that is α D = Dα. So, D
is Z[π]-equivariant. That ℓ is also equivariant is immediate from definitions. Hence ψ is a map of
Z[π]-modules.
It remains to show that ψ♯ : H

2(π;Z2) → H2(π;H1(Z2;Q)) is a localization map. By definition,
ψ♯ factors as

H2(π;Z2)
ℓ♯
→ H2(π;Q2)

(D−1)♯
−→
≈

H2(π;H1(Z2;Q)).

So, ψ♯ is equivalent to ℓ♯. But π is finitely-presented, hence of type FP2 ([1, page 197]). It follows
without difficulty that ℓ♯ is equivalent to the standard localization mapH2(π;Z2) → H2(π;Z2)⊗Q.

�

For computations which follow below, it will be useful to obtain an alternative description of
ψ. Accordingly, we let e1 and e2 be the standard generators of H1(Z

2;Z) = Z2; we may write
a1e1 + a2e2 as (a1, a2). Let e∗1, e

∗

2 denote the basis of H1(Z2;Q) dual to ℓ(e1), ℓ(e2), using this to
write elements of H1(Z2;Q) as pairs. Then, one easily computes, ψ(e1) = e∗2 and ψ(e2) = −e∗1, so
that, in pair notation,

(11) ψ(a1, a2) = (−a2, a1).

3.2. E and the 2-cocycle f . Recall that E is the extension

Z2 i∗
֌ G

p∗
։ π.

Choose an an arbitrary function s : π → G splitting p∗ and define the normalized 2-cocycle f by
the usual rule

(12) i∗(f(x, y)) = s(x)s(y)s(xy)−1.

Now f , together with the representation ρ : Z2 → GL(2,Z) induced by E, can be used to form
another extension E′ of π as follows: In the cartesian product Z2 × π define a group multiplication
• by the rule

(13) (u, x) • (v, y) = (u+ ρ(x)(v) + f(x, y), xy).

Define homomorphisms Z2
֌ Z2 × π and Z2 × π ։ π by the rules u 7→ (u, ǫ) and (u, x) 7→ x,

respectively, where ǫ denotes the identity of π. These piece together to give the extension E′. It is
a classical fact that E and E′ are equivalent extensions, and so c(E) = c(E′). Therefore, without
losing generality, we may assume that E = E′.
With this assumption, the map λ : Hf0 = G1 → G defined in (7) can now be expressed as

follows:

λ(a, b, c) = (b, c, ǫ),

where we omit extra parentheses when harmless. We want to get a similar explicit representation
of the map µ used above to define G2, and for this, we need some computational information about
Hf0 and Aut(Hf0).
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3.3. Computational information about Hf0 and Aut(Hf0). We shall always regard H as
embedded in Hf0 via the inclusion Z3 ⊆ Q× Z2.
Given elements x and y in some group, we let xy denote the conjugate xyx−1. The following

lemma may be easily derived by the reader from the definition of the operation (10).

Lemma 4. In Hf0,
(a,b,c)(x, y, z) = (x+ bz − cy, y, z), and [(a, b, c), (x, y, z)] = (bz − yc, 0, 0). �

Corollary 5. The center Z[Hf0] equals Q× 0× 0, setwise and as abelian groups. �

Thus, the surjection Hf0 → Z2 in Hf0 is just the projection Hf0 → Hf0/Z[Hf0]. Recall that we
have denoted this r1 in our description of Huebschmann’s construction (cf. (4)).

Lemma 6. Every endomorphism h of H (resp., Hf0) is uniquely determined by the values h(0, 1, 0)
and h(0, 0, 1).

Proof. The result is obvious for H, since (0, 1, 0) and (0, 0, 1) generate it. So, suppose h is an
endomorphism of Hf0. For the reason just given, h|H is uniquely determined by the given values.
Assume for the moment h takes Z[Hf0] to itself. That is, the restriction of h to the center may
be identified with an endomorphism of Q. But every such endomorphism is uniquely determined
by its value at any single non-zero element. Therefore, h|Z[Hf0] is determined by h(1, 0, 0) =
[h(0, 1, 0), h(0, 0, 1)]. Since Hf0 is generated by H ∪ Z[Hf0], the result holds for Hf0.
It remains to show that h maps Z[Hf0] to itself. By Corollary 5, every element z in the center

is q-divisible for every prime q. Therefore, the same holds for any homomorphic image of z, for
example, for r1(h(z)) ∈ Z2. But the only element of Z2 with this divisibility property is 0. So,
h(z) ∈ ker(r1) = Z[Hf0], as required. �

Lemma 7. For any triples (a, b, c), (d, e, f) ∈ Hf0, there exists an endomorphism h of Hf0 sat-
isfying h(0, 1, 0) = (a, b, c) and h(0, 0, 1) = (d, e, f). h is an automorphism if and only if the
determinant

∣

∣

∣

∣

b c
e f

∣

∣

∣

∣

= ±1

Proof. By Lemma 4 and Corollary 5, the commutator [(a, b, c), (d, e, f)] belongs to Z[Hf0], so by
the argument in the proof of Lemma 1 of §2.2, there is a unique homomorphism k : H → Hf0

satisfying k(0, 1, 0) = (a, b, c) and k(0, 0, 1) = (d, e, f). By Lemma 4, k(1, 0, 0) = (bf −ec, 0, 0), so it
belongs to Z[Hf0], and there is a unique extension of k|Z[H] to an endomorphism of Z[Hf0]. Every
element y of Hf0 can be written as a product zx, with z ∈ Z[Hf0] and x ∈ H, so we attempt to
define h by the rule, h(y) = k(z)k(x). It is an easy exercise to verify that this gives a well-defined
endomorphism. Now suppose that h is an automorphism. Then it induces an automorphism of Z2

given by the matrix
(

b c
e f

)

,

which immediately shows that the stated determinant must equal ±1. Conversely, if the determi-
nant is ±1, then by what was just said, the endomorphism of Z2 induced by h is an automorphism,
and, by the equation h(1, 0, 0) = (bf−ec, 0, 0), so is the endomorphism of Z[Hf0]. The Five-Lemma
then implies that h is an automorphism. �

We now introduce some convenient ‘matrix’ notation for automorphisms h ∈ Aut(Hf0). If
h(0, 1, 0) = (a, b, c) and h(0, 0, 1) = (d, e, f), as above, we associate with h the matrix





a d
b e
c f



 .
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We may occasionally wish to abbreviate this by letting, say, u denote the top row and, say, M the
remaining 2× 2 submatrix and writing the above matrix as

(

u
M

)

.

Of course, the identity automorphism has the obvious matrix representation




0 0
1 0
0 1



 .

Slightly less obvious, but useful, is the matrix representation of the inner automorphism ιx, where
x = (a, b, c). An easy application of Lemma 4 and equation (11) above shows that this is:





−c b
1 0
0 1



 =

(

ψ(b, c)
I

)

,

where I is the 2× 2 identity matrix. It is possible to work out the multiplication, i.e., composition,
in Aut(Hf0) in terms of this notation, but the formula is complicated and not particularly useful
here—in addition to the usual quadratic terms of linear algebra, there are also third and fourth
order terms. We do record one special case, however: namely, the case of elements of the kernel
of the natural projection ρ1 : Aut(Hf0) → GL(2,Z) in (6). In matrix notation, these elements
consist of all matrices of the form,

(

u
I

)

.

In this case, one computes easily that
(

u
I

)

◦

(

v
I

)

=

(

u+ v
I

)

.

Thus, the kernel is isomorphic, as an abelian group, to Q2. Now, in fact, we know this for other
reasons: the kernel is known to be isomorphic to Hom(Z2,Q) ≈ H1(Z2;Q) ≈ Q2. However, it is
convenient for our computations to have an explicit realization as Q2.
The following lemma provides a critical ingredient in the proof of Theorem 2.1 and explains our

use of fibrewise-localization:

Lemma 8. ρ1 : Aut(Hf0) → Aut(Z2) = GL(2,Z) is a split surjection.

Proof. That ρ1 is surjective is an immediate corollary of Lemma 7. To show that it splits, we

consider the extension H1(Z2;Q) ֌ Aut(Hf0)
ρ1
։ GL(2,Z), which represents an element of

H2(GL(2,Z);H1(Z2;Q)). Now, the virtual cohomological dimension of SL(2,Z) is 1, [1, page 229].
That is, it possesses a finite-index subgroup of cohomological dimension 1. Therefore, the same
holds for GL(2,Z). It follows easily that H i(GL(2,Z);V ) = 0 for all i ≥ 2 and all Q[GL(2,Z)]-
modules V . Thus, H2(GL(2,Z);H1(Z2;Q)) = 0, implying that ρ1 splits. �

Choose and fix an arbitrary (homomorphic!) splitting τ : GL(2,Z) → Aut(Hf0).
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3.4. The proof of Theorem 2.1. We begin by rewriting the definition of the map µ : Hf0 →
Π = G ×GL(2,Z) Aut(Hf0) in terms of the notation just introduced. Recall that, for z ∈ Hf0,
µ(z) = (λ(z), ιz), as above in (8) and ff. Setting z = (a, b, c) and using results in §§ 3.2, 3.3, we
have

(14) µ(a, b, c) = ((b, c, ǫ),





−c b
1 0
0 1



).

We now proceed to define a 2-cocycle F for the extension E2 by first defining a function t : π → G2

that splits the surjection r : G2 ։ π . Recall that the standard projection Π → G2 = Π/im(µ) is
denoted λ2. For any w ∈ Π, let us write λ2(w) = [w]. Then, for any x ∈ π, we define t(x) by

(15) t(x) = [(0, 0, x), τ(ρ(x))].

Now we define F by the usual formula:

(16) j(F (x, y)) = t(x)t(y)t(xy)−1,

where j : H1(Z2;Q) → G2 is the inclusion onto ker(r). Let us make j more explicit. Choose any
φ ∈ H1(Z2;Q) = Hom(Z2,Q). Then j(φ) is precisely the image under λ2 of the following pair in
G×GL(2,Z) Aut(Hf0) = Π:

(17) ((0, 0, ǫ),





φ(e1) φ(e2)
1 0
0 1



),

where, as before, e1, e2 are the standard generators of Z2. Now using equation (13), which gives
the multiplication in G, we can compute t(x)t(y):

t(x)t(y) = [(0, 0, x)(0, 0, y), τ(ρ(x))τ(ρ(y))]

= [(f(x, y), xy), τ(ρ(xy))]

= [(f(x, y), ǫ),

(

0
I

)

][(0, 0, xy), τ(ρ(xy))].

Note that the second and third equalities follow from the definition of the multiplication in G, as
given in equation (13), as well as the fact that τ and ρ are homomorphisms! Now, using equation
(15), we get

t(x)t(y) = [(f(x, y), ǫ),

(

0
I

)

]t(xy),

which, when combined with (16), yields

j(F (x, y)) = [(f(x, y), ǫ),

(

0
I

)

].

Setting f(x, y) = (f1, f2) = f1e1 + f2e2 ∈ Z2 and applying equations (14) and (17), this becomes

j(F (x, y)) = [(0, 0, ǫ),





f2 −f1
1 0
0 1



]

= j(−ψ(f(x, y))).

Since j is injective, ψ(f(x, y)) = −F (x, y), or ψ♭(f) = −F . This completes our proof of Theorem
2.1 �
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4. The Main Theorem when B = S2 or RP 2

Let ξ : T 2 i
→ E

p
→ B be a symplectic torus bundle with B a closed genus zero surface. In this

case, Theorem 1.1 reduces to Proposition 1.3, which we prove in this section by methods essentially
unrelated to our earlier arguments.
First we deal with the case B = S2.

Proof of Proposition 1.3(a)
As we explain in Appendix B, the classification of symplectic torus bundles over a simply-

connected space is the same as the classification of principal torus bundles over that space. It
is well-known that when B = S2 these are classified by π1(T

2). Indeed, the homotopy class corre-
sponding to ξ may be described as follows (cf. [9, page 98]). Consider the following portion of the
exact homotopy sequence of ξ:

π2(S
2)

∂
→ π1(T

2) → π1(E) → 0.

Then the required homotopy class is ±∂(ι) ∈ π1(T
2), where ι is the class of the identity map of

S2. Since π1(E) is a homomorphic image of π1(T
2), it is abelian and thus equals H1(E). It follows

that this last has rank one or two according as ξ is non-trivial or trivial, respectively. By Poincaré
duality, which applies because E is closed and orientable, the same is true of the rank of H3(E).
We now turn to the following portion of the Wang sequence for ξ:

H2(E;Q)
i∗
→ H2(T 2;Q)

θ
→ H1(T 2;Q) → H3(E;Q) → 0.

Clearly, i∗ in this sequence is onto when H3(E) has rank two and 0 when H3(E) has rank one.
Since the surjectivity of i∗ with rational coefficients is equivalent to the existence of the desired
form β, this concludes the proof of Proposition 1.3(a). �

We now deal with the case B = RP 2. Let π : S2 → RP 2 be the double cover, and let Ẽ be the
total space of the pullback π∗ξ, a symplectic torus bundle over S2. Then we have the following
lemma.
Lemma 9. The total space E of ξ admits a closed 2-form β satisfying (1) if and only if Ẽ does.

Proof. (a)⇒ Let π̄ : Ẽ → E be the bundle map over π given by the pullback construction. If β is

a closed 2-form on E satisfying (1), then π̄∗(β) is a closed 2-form on Ẽ satisfying (1).

(b)⇐ Let b : Ẽ → Ẽ be the non-trivial deck transformation. It is not hard to check, using the

definition of the pullback construction, that b maps fibres of Ẽ to fibres so as to preserve the
pullback symplectic structures. Now let γ be a closed 2-form on Ẽ satisfying (1), and define

β̃ =
1

2
(γ + b∗γ).

Since β̃ is invariant under deck transformations it descends to a closed 2-form β on E. It clearly
also satisfies (1), which implies the same for β. �

This lemma immediately implies the first statement of Proposition 1.3(b).

Corollary 10. Suppose that the representation ρ : π1(RP
2) → GL(2,Z) is trivial. Then E admits

a closed 2-form β satisfying (1).

Proof. If the module structure on Z2 is trivial, then H2(RP 2;Z2
ρ) ≈ (Z2)

2. Clearly then the map

π∗ : H2(RP 2;Z2
ρ) → H2(S2;Z2) ≈ Z2 is trivial. By the classification theorem, it follows that the

pullback π∗(ξ) is trivial. But Proposition 3(a) then implies that the total space of this pullback
admits the desired 2-form. Therefore, by the lemma, so does E. �
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It remains to deal with the case B = RP 2, ρ non-trivial. Since we are dealing with a symplectic
torus bundle, ρ must take values in SL(2,Z), which easily implies that im(ρ) = {±I}. We now
consider the cohomology Serre spectral sequence of the covering π : S2 → RP 2, which has

Ep,q
2 = Hp(Z2;H

q(S2;Z2
ρ))

and converges to H∗(RP 2;Z2
ρ). Here, the group Hq(S2;Z2

ρ) is the ordinary cohomology of S2 with

Z2 coefficients, but the action of Z2 is a joint action, simultaneous on (the chains of) S2 (via the
antipodal map) and on Z2 via ρ. It is easy to see that H0(S2;Z2

ρ) ≈ Z2
ρ as Z[Z2]-modules, and

H2(S2;Z2
ρ) ≈ Z2, i.e., Z2 with the trivial Z2-action.

A direct computation (e.g., see [1, pages 58-9]) yields the following values for Ep,q
2 :

Ep,q
2 =











Z2 if (p, q) = (0, 2);

(Z2)
2 if q = 0 and p odd, or if q = 2 and p > 0 and even;

0, otherwise.

It follows easily from this that we have an exact sequence

0 → H2(RP 2;Z2
ρ)

π∗

→ H2(S2;Z2
ρ) = Z2 → (Z2)

2 → 0.

Thus, H2(RP 2;Z2
ρ) ≈ Z2, and π∗ is injective. Therefore, in this case Theorem 1.1 reduces to the

following, which is an elaboration of the second statement of Proposition 1.3(b):

Proposition 4.1. The symplectic bundles ξ : T 2 → E → RP 2 inducing a non-trivial Z2-module
structure Z2

ρ on H1(T
2) = Z2 are classified by H2(RP 2;Z2

ρ) ≈ Z2. For such a ξ, E admits a closed
2-form satisfying (1) if and only if c(ξ) = 0.

Proof. The foregoing calculation implies the first statement of the proposition. The second follows
from the injectivity of π∗, Lemma 9, and Proposition 1.3(a). �

This concludes our proof of Theorem 1.1.

5. Proofs of the main corollaries

Proof of Corollary 1.2:
For any connected surface B, H2(B;Z2

ρ) is a finitely-generated abelian group, hence, its torsion
subgroup is finite. The result now follows from Proposition 1.1 and Theorem 1.1. �

Proof of Corollary 1.3:
The group of a principal torus bundle is T 2 acting on itself by translations. If σ denotes the

standard symplectic form on T 2, then the translations clearly preserve σ, i.e., T 2 ⊆ Symp(T 2, σ),
so the bundle has a canonical symplectic structure. The corresponding representation

ρ : π1(B) → π0(Symp(T
2, σ))

factors through π0(T
2) = 0, so it is trivial. Hence, when B is a connected surface, the only cases

in which the characteristic classes c(ξ) ∈ H2(B;Z2) do not have finite order are when B is closed
and orientable and ξ is non-trivial. �

Proof of Corollary 1.4:
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Let i : T 2 → E be the inclusion onto a fixed orbit, and let p : E → E/T 2 be the usual
projection. Then, it is a standard fact that T 2 → E → E/T 2 is a principal torus bundle, say
ξ. By Corollary 1.3, ξ has a canonical structure as a symplectic torus bundle. Let σ be the
standard symplectic form on T 2, and let σb be the corresponding symplectic forms on the fibres
(equiv., orbits). By hypothesis, E admits a symplectic form with respect to which all the fibres are
symplectic submanifolds. Thus, the restriction map i∗ : H2

DR(E) → H2
DR(T

2) is surjective, and,
by Thurston’s result, there is a closed 2-form β on E satisfying condition (1), that is, β|T 2

b = σb, for
all b ∈ E/T 2. Assuming that the closed, connected surface E/T 2 is orientable, we can then apply
the preceding corollary to conclude that ξ is trivial, as a symplectic torus bundle. Thus, it admits
a section. But the existence of a section is independent of the group of the bundle. Therefore, ξ
has a section as a principal T 2 bundle, and, and therefore it is trivial as a principal T 2 bundle,
which implies the stated result. It remains to verify that E/T 2 is orientable. But this follows from
a standard fact about smooth fibre bundles that are orientable, that is, for which the fibres can be
given orientations that are locally coherent over the base. For such a bundle—for example ξ— the
orientability of the base is equivalent to the orientability of the total space. �

APPENDIX

The main arguments of the paper make use of certain known classification results in order to pass
from statements about smooth fibre bundles to statements about group extensions. The following
three appendices briefly explain these results, starting with facts about torus bundles, then passing
to the classification of K(A, 1)-fibrations, and ending with a comparison between that classification
and the classification of corresponding group extensions.

Appendix A. T 2-bundles and T 2-fibrations

Let E(T 2) (resp., E+(T
2)) denote the monoid of self homotopy equivalences (resp., orientation-

preserving self homotopy equivalences) of T 2. These receive the compact-open topology. Let
Diff+(T

2) (resp.,Diff0(T
2)) denote the subgroup of orientation-preserving diffeomorphisms of T 2

(resp., the identity component of Diff(T 2)). Finally, let ω be any symplectic form on T 2, and let
Symp(T 2, ω) be the group of symplectomorphisms of (T 2, ω). These groups of diffeomorphisms are
usually given the Ck topology, for 1 ≤ k ≤ ∞. The choice of k does not make a difference for our
discussion. Regarding T 2 as acting on itself by translation, we have T 2 ⊆ Diff0(T

2).

Proposition A.1. The following inclusions are homotopy equivalences:

(a) T 2 → Diff0(T
2).

(b) Diff(T 2) → E(T 2).
(c) Diff+(T

2) → E+(T
2).

(d) Symp(T 2, ω) → Diff+(T
2)

Proof. (a),(b): These are well-known results, due originally to Earle and Eells (cf., Gramain [3]).
(c) follows immediately from (b). (d): Given any orientation-preserving diffeomorphism h, h∗(ω) is
homologous to ω, since h has degree one. Thus, Moser’s method ([7, pages 93-97]) may be applied
to the family of symplectic forms ωt = (1−t)ω+th∗ω, producing an isotopy ψt between the identity
and a diffeomorphism ψ1 that satisfies ψ

∗

1h
∗ω = ω. Therefore, ht = hψt is an isotopy between h and

a symplectomorphism h1. The isotopy can be constructed so as to be continuous in h and remain
in Symp if h is a symplectomorphism. It follows that the map given by h 7→ h1 is a homotopy
inverse for the inclusion map. �
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Since, as is well known, BE+(T
2) classifies oriented T 2-fibrations, statements (c) and (d) imme-

diately give the following result.

Corollary A.2. Let B be a smooth, connected manifold. Equivalence classes of symplectic torus
bundles over B correspond bijectively to fibre-homotopy equivalence classes of oriented T 2-fibrations
over B. �

Appendix B. K(A,1)-fibrations

Let A be an abelian group. Following C.A. Robinson [8], for any n ≥ 1, we let K(A,n) be a CW
complex which is a topological abelian group on which Aut(A) acts by cellular automorphisms. Let

Q be a CW complex of type K(Aut(A), 1) and Q̃ its universal cover. Thus, there is a free, diagonal

left-action of Aut(A) on the cartesian product K(A, 2) × Q̃, with respect to which the projection

K(A, 2) × Q̃ → Q̃ is equivariant. Therefore, it descends to a fibration p : K̂(A, 2) → Q with fibre
K(A, 2).

Robinson shows that K̂(A, 2) classifies Hurewicz fibrations with fibres of the homotopy type
of K(A, 1) and base spaces of the homotopy type of a CW complex. Thus, over such a base
space B, the fibre-homotopy equivalence classes of K(A, 1)- fibrations correspond bijectively to

homotopy classes of maps B → K̂(A, 2). Throughout this paper, we use the ‘based’ convention
for equivalences, whereby each base space has a basepoint and each fibre has a fixed identification
with a given space. See [8] and [2, 16.7].

Remark. By Proposition A.1, BDiff(T 2) classifies T 2-fibrations, which are the same as K(Z2, 1)-

fibrations. So BDiff(T 2) is homotopy equivalent to K̂(Z2, 2), implying that it too fibres over
over K(GL(2,Z2), 1) with fibre K(Z2, 2). This fact is well known, but we mention it to connect
the two constructions of classifying spaces. It gives one way of seeing why, for a simply-connected
base space, there is a bijective correspondence between equivalence classes of torus bundles and
equivalence classes of principal torus bundles. A similar comment applies to BSymp(T 2, ω), which
fibres over K(SL(2,Z2), 1) with fibre K(Z2, 2)

As usual, each K(A, 1)-fibration admits a representation ρ : π1(B) → Aut(A) = π0(E(K(A, 1))).
We are interested in the finer classification that fixes such a ρ. Robinson derives this from his
construction as follows. The fibration p : K̂(A, 2) → Q admits a canonical section s0 : Q →

K̂(A, 2) defined by the rule s0[q] = [ϑ, q], where here [ ] refers to the Aut(A)-orbit and ϑ denotes
the identity element of the abelian group K(A, 2) Clearly, representations ρ : π1(B) → Aut(A)
correspond to homotopy classes of maps r : B → Q, whereas K(A, 1)-fibrations over B with

associated representation ρ correspond to homotopy classes of maps f : B → K̂(A, 2) for which pf
induces ρ. In fact, as Robinson shows, if we fix ρ ( and r inducing ρ), the foregoing set of homotopy

classes may be described as the set of homotopy classes of lifts f of r to K̂(A, 2). Let f0 denote
the lift s0r.
Given two lifts f and g of r, classical obstruction theory produces a so-called primary obstruction

class d(f, g) ∈ H2(B;π2(K(A, 2))) = H2(B;Aρ) whose vanishing is a necessary condition for the
existence of a homotopy of lifts between f and g. In this context, the condition is also sufficient.
Moreover, given any g and any class d ∈ H2(B;Aρ), there is a unique homotopy class of lifts f
such that d(f, g) = d. We now set d(f, f0) = c(f), where f0 is the lift described above. A standard
additivity formula yields d(f, g) = c(f) − c(g). If f classifies a K(A, 1)-fibration η, we may write
c(f) = c(η). This is the so-called characteristic class of η that we have been using. It follows that
the rule η 7→ c(η) gives a bijection between equivalence classes of fibrations and H2(B,Aρ), as
stated earlier.
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There remains one further observation about the classes c(η) which we have used in an important
way. Start by considering a homotopy ht between the lifts f and f0 of r as above. Then, for any
b ∈ B, ht(b) is a path from f(b) to f0(b) lying completely in a fibre of p : K̂(A, 2) → Q. This
motivates the following construction given by Robinson: Let P denote the space of all paths γ in
K̂(A, 2) that begin in s0(Q) and lie completely in a fibre of p. The rule γ 7→ γ(1) defines a fibration

P → K̂(A, 2) with fibre of type K(A, 1). Clearly the partial homotopies between any lift f of r
and the lift f0 correspond to partial lifts of f to P . It follows easily that we can interpret c(f) as
the primary obstruction to lifting f to P .
Now, Robinson shows that P is, in fact, a universal K(A, 1)-fibration over K̂(A, 2), so that f∗(P )

is equivalent to η. This implies that c(η) may be interpreted directly as the primary obstruction
to a section of η, which is the interpretation we have used.

Appendix C. Extensions by A

Let S : A֌ G։ π be an extension of a group π by the abelian group A. There is a corresponding

K(A, 1)-fibration, which we write as η : K(A, 1)
i
→ K(G, 1)

p
→ K(π, 1). Of course, the homotopy

exact sequence of η collapses to S. We use i∗ and p∗ to denote the corresponding homomorphisms
in S. The representation ρ corresponding to η is the same as that induced by inner automorphisms
of G in S. Let us hold this fixed.
Let f : π × π → A be the normalized 2-cocycle of S. In terms of the bar resolution of π, we

may write f as the (possibly infinite) formal sum Σf(x, y)[x|y], where x, y range over π. In this
appendix we show how this sum can be recognized as the primary obstruction to sectioning η.
This establishes the identification c(S) = c(η), which we have been using throughout the paper.
This fact is certainly part of the classical folklore of the subject, but I have been unable to find an
explicit reference.
The description of the primary obstruction can be conveniently simplified in this case by using

the following observation, which follows almost immediately from definitions.

Lemma 11. Let ζ : F
i
→ E

p
→ B be a fibration, with F connected and B a connected CW complex,

and assume that i∗ : πm−1(F ) → πm−1(E) is injective. Let σ : Bm−1 → E be a section of ζ
over the m − 1-skeleton of B, and let o(σ) denote the obstruction cocycle to extending σ over the
m-skeleton. Finally, suppose that if χ : Dm → B is the characteristic map of an m-cell e of B,
then σχ|∂Dm : ∂Dm → E represents i∗(α) ∈ πm−1(E). Then

o(σ)(e) = α. �

The best framework for recognizing Σf(x, y)[x|y] as the desired obstruction cocycle is that of
semisimplicial topology, as in ([6, Chapters 1–3]). Thus, for example, we can describe K(π, 1)
semisimplicially as consisting of one 0-simplex, denoted [ ], and a k-simplex for each integer
k ≥ 1 and each symbol [x1| . . . |xk], where x1, . . . , xk range over π, with the well-known face and
degeneracy maps. Similarly forK(G, 1). The surjection p∗ : G։ π shows how to mapK(G, 1) onto
K(π, 1). This map is a minimal Kan fibration, say κ [6, page 64]. We shall define an obstruction
to sectioning κ.
Let s : π → G be a function that is a right inverse of p∗ and is related to the 2-cocycle f :

π × π → G by equation (12). Use s to define a (semisimplicial) section σ of κ over the 1-skeleton
of K(π, 1): this is determined by σ[ ] = [ ] and σ[x] = [s(x)]. Note that each 1-simplex [s(x)]
determines a directed loop in K(G, 1), say < s(x) >; these may be concatenated. Now consider any
2-simplex [x|y] of K(π, 1). Its boundary consists of the 1-simplexes ∂0[x|y] = [y], ∂1[x|y] = [xy],
and ∂2[x|y] = [x], with corresponding loops concatenated as < x >< y >< xy >−1. Therefore,
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the loop obtained by applying σ to the boundary is < s(x) >< s(y) >< s(xy) >−1. Using the
semisimplicial homotopy relation in K(G, 1) and the definition of f(x, y), this loop is easily shown
to be homotopic to < i∗(f(x, y)) > in K(G, 1). Thus, it represents i∗(f(x, y)). It now follows
from the semisimplicial analog of the above lemma that the obstruction to extending σ over the
2-skeleton is precisely the cocycle Σf(x, y)[x|y], as desired.
The foregoing can be translated to the more conventional topological obstruction theory by

applying the geometric realization functor. This transforms κ into a topological fibration equivalent
to η and σ into a partial section producing the same obstruction. Thus c(η) = c(S).
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