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Abstract. For a group G with trivial center there is a natural embedding of G into

its automorphism group, so we can look at the latter as an extension of the group.

So an increasing continuous sequence of groups, the automorphism tower, is defined,

the height is the ordinal where this becomes fixed, arriving to a complete group. We

show that for many such κ there is a group of height > 2κ, so proving that the upper

bound essentially cannot be improved.
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2 SAHARON SHELAH

§0 Introduction

For a group G with trivial center there is a natural embedding of G into its
automorphism group Aut(G) where g ∈ G is mapped to the inner automorphism
x 7→ gxg−1 which is defined and is not the identity for g 6= eG as G has a trivial
center, so we can view Aut(G) as a group extending G. Also the extension Aut(G) is
a group with trivial center, so we can continue defining G<α> increasing with α for
every ordinal α; let τG be when we stop, i.e., the first α such that G<α+1> = G<α>

(or α = ∞ but see below) hence β > α ⇒ G<β> = G<α>, (see Definition 0.2).
How large can τG be?

Weilant [Wel39] proves that for finite G, τG is finite. Thomas [Th85] celebrated
work proves for infinite G that τG ≤ (2|G|)+, in fact as noted by Felgner and
Thomas τG < (2|G|)+. Thomas shows also that τκ ≥ κ+. Later he ([Th98]) showed
that if κ = κ<κ, 2κ = κ+ (hence τκ < κ++ in V) and λ ≥ κ++ and we force by
P, the forcing of adding λ Cohen subsets to κ, then in VP we still have τκ < κ++

though 2κ is ≥ λ (and V,VP has the same cardinals).
Just Shelah and Thomas [JShT 654] prove that when κ = κ<κ < λ, in some

forcing extension (by a specially constructed κ-complete κ+-c.c. forcing notion)
we have τκ ≥ λ, so consistently τκ > 2κ > κ+ for some κ. An important lemma
there which we shall use (see 0.6 below) is that if G is the automorphism group of
a structure of cardinality κ,H ⊆ G, |H| ≤ κ then τ ′G,H , the normalizer length of

H in G (see Definition 0.3(2)), is < τκ. Concerning groups with center Hamkins
show that τG < the first strongly inaccessible cardinal > |G|. On the subject see
the forthcoming book of Thomas.

We shall show, e.g.

0.1 Theorem. If κ is strong limit singular of uncountable cofinality then τκ > 2κ.

It would have been nice if the lower bound for τκ, κ
+ would (consistently) be the

correct one, but Theorem 0.1 shows that this is not so. Note that Theorem 0.1
shows that provably in ZFC, in general the upper bound (2κ)+ cannot be improved.
See Conclusion 3.12 for proof of the theorem, quoting results from pcf theory. We
thank Simon Thomas, the referee and Itay Kaplan for many valuable complaints
detecting serious problems in earlier versions.

The program, described in a simplified way, is that for each so called “κ-parameter
p” which includes a partial order I we define a group Gp and a two element sub-
group Hp such that 〈norαGp

(Hp) : α ≤ rk<∞
I 〉 “reflect” rk<∞

I = rkp, the natural

rank on I (see Definition 1.1), so in particular τ ′Gp,Hp
= rk<∞

p . (Actually in the

end we shall get only H of cardinality ≤ κ).
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We use an inverse system s = 〈pu, πu,v : u ≤J v〉 of κ-parameters πu,v maps
Ipv

to Ipu
; however, in general the πu,v’s do not preserve order (but do preserve

in some weak global sense) where J is an ℵ1-directed partial order. Now for each
u ∈ J , we can define the group Gpu

; and we can take inverse limit in two ways.

Way 1: The inverse limit ps (with πu,s for u ∈ J of s) is a κ-parameter and so the
group Gps

is well defined.

Way 2: The inverse system 〈Gpu
, π̂u,v : u ≤J v〉, of groups were π̂u,v is the (partial)

homomorphism from Gpv
to Gpu

induced by πu,v, has an inverse limit Gs.
Now

(A) concerning GIs we normally have good control over rk(ps) hence on the
normalizer length of Hps

inside Gps

(B) Gs is (more exactly can be represented as good enough) inverse limit of
groups of cardinality ≤ κ hence is isomorphic to Aug(A) for some structure
of cardinality ≤ κ

(C) in the good case Gps
= Gs so we are done (by 0.6).

In §3 we work to get the main result.
There are obvious possible improvement of the results here, say trying to prove
δκ ≤ τκ (see Definition 0.5) for every κ. But more importantly, a natural conjecture,
at least for me was τκ = δκ because all the results so far on τκ has parallel for δκ
(though not inversely). In particular it seems reasonable that for κ = ℵ0 the lower
bound was right, i.e., τκ = ω1. [We shall try to return to those problems in a sequel
[Sh:F579].]

0.2 Definition. 1) For a group G with trivial center, define the group G<α> with
trivial center for an ordinal α, increasing continuous with α such that G<0> = G
and G<α+1> is the group of automorphisms of G<α> identifying g ∈ G<α> with
the inner automorphisms it defines. We may stipulate G<−1> = {eG}.
[We know that G<α> is a group with trivial center increasing continuous with α
and for some α < (2|G|+ℵ0)+ we have β > α⇒ G<β> = G<α>.]
2) The automorphism tower height of the group G is τG = τatwG = Min{α : G<α> =
G<α+1>}; clearly β ≥ α ≥ τG ⇒ G<β> = G<α>, atw stands for automorphism
tower.
3) Let τκ = τatwκ be the least ordinal τ such that τ(G) < τ for every group G of
cardinality ≤ κ; we call it the group tower ordinal of κ.

Now we define normalizer (group theorist write NG(H), but probably for others
norG(H) will be clearer, at least this is so for the author).
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0.3 Definition. 1) Let H be a subgroup of G.
We define norαG(H), a subgroup of G, by induction on the ordinal α, increasing

continuous with α. We may add nor−1
G (H) = {eG}.

Case 1: α = 0.
nor0G(H) = H.

Case 2: α = β + 1.

norαG(H) = norG(nor
β
G(H)), see below.

Case 3: α a limit ordinal

norαG(H) = ∪{norβG(H) : β < α}

where

norG(H) = {g ∈ G :g normalize H, i.e. gNg−1 = N, equivalently

(∀x ∈ H)[gxg−1 ∈ H & g−1xg ∈ H]}.

2) Let τ ′G,H = τnlgG,H , the normalizer length of H in G, be Min{α : norαG(H) =

norα+1
G (H)}; so β ≥ α ≥ τ ′G,H = norβG(H) = norαG(H); nlg stands for normalizer

length.
3) Let τ ′κ = τnlgκ be the least ordinal τ such that τ > τ ′G,H whenever G = Aut(A)

for some structure A on κ and H ⊆ G is a subgroup satisfying |H| ≤ κ.
4) τ ′′κ = τnlfκ is the least ordinal τ such that τ > τnlfG,H wherever G = Aut(A),A a

structure of cardinality ≤ κ,H a subgroup of G of cardinality ≤ κ and nor∞G (H) =
∪{norαG(H) : α an ordinal} = G.

0.4 Definition. We say that G is a κ-automorphism group if G is the automor-
phism group of some structure of cardinality ≤ κ.

0.5 Definition. Let δκ = δ(κ) be the first ordinal α such that there is no sentence
ψ ∈ Lκ+,ω satisfying:

(a) ψ ⊢ “< is a linear order”

(b) for every β < α there is a model M of ψ such that (|M |, <M) has order
type ≥ β

(c) for every model M of ψ, (|M |, <M) is a well ordering.

See on this, e.g. [Sh:c, VII,§5].

Our proof of better lower bounds rely on the following result from [JShT 654].
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0.6 Lemma. τ ′κ ≤ τκ.

0.7 Question: 1) Is it consistent that for some κ, τ ′κ < τκ? Is this provable in ZFC?
Is the negation consistent?
2) Similarly for the inequalities δκ < τ ′κ, (and δκ < τ ′κ < τκ).
See on those in [Sh:F579].

0.8 Observation. For every κ ≥ ℵ0 we have τatwκ ≥ τnlgκ ≥ τnlfκ .

Proof. By 0.6 and checking the definitions of τnlgκ , τnlfκ . In fact we mostly work on
proving that in 0.2, τnlfκ > 2κ.

Notation: For a group G and A ⊆ G let 〈A〉G be the subgroup of G generated by
A.

∗ ∗ ∗

Explanation of the proof:
We would like to derive the desired group from a partial order I representing the

ordinal desired as τG,H in some way and the tower of normalizers of an appropriate
subgroup will reflect. It seems natural to say that if t ∈ I represent the ordinal α
then the s <I t will represent ordinals < α so we use the depth in I

dpI(t) = ∪{dpI(s) + 1 : s <I t}.

For each t ∈ I we will like to have a generator gt of the group (really denoted by
g(<t>,<>)) take care of the normalizer tower not sloping at α = dpI(t) say gt will
be in the (α + 1)-th normalizer but not in the α-th normalizer. But we need a
witness for gt not being in earlier normalizer (β + 1)-th normalizer β < α.

Now β is represented by some s <I t, so we have witness g(<(t,x),(<>)>), g<(t,x),(1)>,
the first in the beginning, the second in the (β + 1)-th normalizer not in the β-th
normalizer. So we have a long normalizer tower of the subgroup G<0

I , the one
generated by {g(t̄,η) : η(ℓ) = 0 for some ℓ < ℓg(η)}.

However G<0
I is too big. So we use a semi-direct product KI = GI ∗LI , where LI

is an abelian group with every element of order two, generated by {hgG<0
I

: g ∈ G<0
I }

with g1hgG<0
I

= h(g1g)G
<0
I

and show that the normalizer wins of the subgroup

HI = {e,hG<0
I
} of KI has the same height.

But we have to make KI a κ-automorphism group. We only almost have it: (and
has too) we will represent it as aut(M)/N for some structure M of cardinality ≤ κ
and normal subgroup N of it of cardinality ≤ κ; this suffices.
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From where will M come from? We will represent I as a universe limit of some
kind of t = 〈Iu, πu,v : u ≤J v〉 where Iu is a partial order of cardinality ≤ κ, πu,v
a mapping from Iv to Iu (commuting). It seemed a priori natural to have πu,v is
order preserving but it seemingly does not work out. It seemed a priori natural to
prove that whenever t is as above there is a universe limit, etc. We find it more
transparent to treat axiomatically: the limit is given inside, i.e. as s which is t+ a
limit v∗; and J t = Js\{v∗} is directed.

Also we demand that J t is ℵ1-directed (otherwise in the limit we have words
come.
We shall derive the structure M from t so its automorphism comes from members
of KIu(u ∈ J t). Well, not exactly but for formal terms for it, to enable us to project
to u′ ≤J [t] u; as recall that πu,v does not necessarily preserve order. To make things

smooth we demand that if J t is a linear order (say cf(κ)) when as in the main case,
κ is singular strong limit of uncountable cofinality.

More specifically, if s, t ∈ I then for every large enough u ∈ J t, s <Iv∗ t ⇔
πu,v∗(s) <Iu πu,v(t); note the order of the quantifiers. Then we define a structure
M derived from t. So the automorphism group of M is the inverse limit of groups
which comes from the formal definitions of elements of KIu ’s. Each depend on
finitely many generators, which in different u’s give different reduced forms.

Now they are defined from some t̄ ∈ k(Iu) using “Iv∗ is the inverse limit...” the
“important” tu’s, those which really affect, well form an inverse system (without loss of generality the
length k is constant on an end segment here we use “J t is ℵ1-directed) so for those
ℓ’s 〈tu,ℓ : u ∈ J t〉 has limit tv∗,ℓ say for ℓ < k∗.

So 〈tu∗,ℓ : ℓ < k∗〉 has the same quantifier type in Iu whenever u∗ ≤ u ≤ v∗ for
some u∗ < v∗. The other t’s still has influence, so it is enough to find for them a
pseudo limit: tv∗,ℓ such that they will have the same affect on how the “important”
tu,ℓ are used (this is the essential limit).

All this gives an approximation to aut(M) ∼= KIv∗ . They almost mean that we
divide by the subgroup of the automorphism of M which are idKu

after u ∈ J t

large enough. This is a normal subgroup of cardinality ≤ κ so we are done except
constructing such systems.
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§1 The groups

Discussion: Our aim is for a partial order I to define a group G = GI and a
subgroup H = HI such that the normalizer length of H inside G reflects the depth
of the well founded part of I. Eventually we would like to use I of large depth such
that |HI | ≤ κ and the normalizer length of H inside GI is > κ, even equal to the
depth of I.

For clarity we first define an approximation, in particular, H appears only in
§2. How do we define the group G = GI from the partial order I? For each
t ∈ I we would like to have an element associated with it (it is g(<t>,<>)) such
that it will “enter” norαG(H) exactly for α = rkI(t) + 1. We intend that among
the generators of the group commuting is the normal case, and we need witnesses

that g(<t>,<>) /∈ norβ+1
G (H) wherever β < α = rkI(t), β > 0. It is natural that

if rkI(t1) = β and t1 <I t0 =: t then we use t1 to represent β, as witness; more
specifically, we construct the group such that conjugation by g(<t>,<>) interchange
g(<t0,t1>,<0>) and g(<t0,s0>,<1>) and one of them, say g(<t0,t1>,<0>) belongs to

norβ+1
G (H)\ norβG(H) whereas the other one, g(<t0,0>,<1>), belongs to nor1G(H).

Iterating we get the elements x ∈ XI defined below.
In an earlier version, to “start the induction”, some additional generators g(α,ℓ)(α ∈

ZI , ℓ < 2) were used to generate H and not using all of them had helped to make
nor1GI

(HI) having the desired value. However, we have to decide for each g(t̄,ν) for

(t̄, ν) as above, for which g(α,ℓ)(α ∈ ZI , ℓ < 2) does conjugation by g(t̄,ν) maps g(α,ℓ)
to itself and for which it does not. For this we chose subsets A(t̄,ν) ⊆ ZI to code
our decisions when (t̄, ν) is as above and well defined, and make the conjugation
with the generators intended to generate nor1G(H) appropriately.

Now we do it by adding to G an element g∗ of order 2 getting KI , commuting
with g ∈ G iff g is intended to be in the low level (e.g. g(t̄,η), tn ∈ I is minimal, see
notation below).

We could have in this section considered only a partial order I, and the groups
GI (and later KI) derived from it. But as anyhow we shall use it in the context of
κ-p.o.w.i.s., we do it in this frame (of course if Js = {u}, then s is essentially just
Iu).

Note that for our main result it suffices to deal with the case rk(I) <∞.

1.1 Definition. Let I be a partial order (so 6= ∅).
1) rkI : I → Ord∪ {∞} is defined by rkI(t) ≥ α iff (∀β < α)(∃s <I t)[rkI(s) ≥ β].
2) rk<∞

I (t) is defined as rkI(t) if rkI(t) < ∞ and is defined as ∪{rkI(s) + 1 : s
satisfies s <I t and rkI(s) <∞} in general.
3) Let rk(I) = ∪{rkI(t) + 1 : t ∈ I} stipulating α <∞ = ∞+ 1.
4) rk<∞

I = rk<∞(I) = ∪{rk<∞
I (t) + 1 : t ∈ I}.
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5) Let I[α] = {t ∈ I : rk(t) = α}.
6) I is non-trivial when {s : s ≤I t and rkI(s) ≥ β} is infinite for every t ∈ I
satisfying rk<∞

I (t) > β (used in the proof of 1.9(1); it is equivalent to demand
“rkI(s) = β”).
7) I is explicitly non-trivial if each EI -equivalence class is infinite where EI =
{(t1, t2) : t2 ∈ I, t2 ∈ I and (∀s ∈ I)(s <I t1 ≡ s <I t2)}.

1.2 Definition. 1) s is a κ-p.o.w.i.s. (partial order weak inverse system) when:

(a) s = (J, Ī, π̄) so J = Js = J [s], Ī = Īs, π̄ = π̄s

(b) J is a directed partial order of cardinality ≤ κ

(c) Ī = 〈Iu : u ∈ J〉 = 〈Isu : u ∈ J〉 and we may write I[u] or Is[u]

(d) Iu = Isu is a partial order of cardinality ≤ κ

(e) π̄ = 〈πu,v : u ≤J v〉

(f) πu,v is a partial mapping from Iv into Iu (no preservation of order is re-
quired!)

(g) if u ≤J v ≤J w then πu,w = πu,v ◦ πv,w.

2) s is a p.o.w.i.s. mean κ-p.o.w.i.s. for some κ.
3) For u ∈ J let Xu = Xs

u be the set of x such that for some n < ω:

(a) x = (t̄, η) = (t̄x, ηx)

(b) ηx is a function from {0, . . . , n− 1} to {0, 1}

(c) t̄ = 〈tℓ : ℓ ≤ n〉 = 〈txℓ : ℓ ≤ n〉 where tℓ ∈ Isu is <Is
u
-decreasing, i.e.,

tn <Is
u
tn−1 <Is

u
. . . <Is

u
t0.

3A) In fact for every partial order I we define XI similarly, so Xs

u = XIs[u].
4) In part (3) for x ∈ Xs

u let n(x) = ℓg(t̄x)− 1 and tx = t(x) := txn(x).

5) For x ∈ Xs

u and n ≤ n(x) let y = x ↿ n ∈ Xs

u be defined by:

t̄y := t̄x ↾ (n+ 1) = 〈tx0 , . . . , t
x
n〉

ηy = ηx ↾ n(y) =: ηx ↾ {0, . . . , n− 1}.

6) We define rk1u = rk1,su and rk2u = rk2,su as follows:

(a) let rk1u : Xu → Ord ∪ {∞} be defined by x ∈ Xu ⇒ rk1,su (x) = rk1u(x) =
rkI[u](t

x)
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(b) let rk2u : Xu → {−1} ∪ Ord ∪ {∞}

(α) if x ∈ Xu and {ηx(ℓ) : ℓ < n(x)} ⊆ {1} (e.g., n(x) = 0) then let
rk2u(x) = rk2,su (x) = rkI[u](t(x))

(β) if x ∈ Xu and {ηx(ℓ) : ℓ < n(x)} * {1} then let rk2,su (x) = −1 (yes,
-1).

7) We say that s is nice when every Isu is non-trivial and πu,w is a function from Iv
into Iu, i.e., the domain of πs

u,v is Iv.

8) X<α
u := {x ∈ Xs

u : rk2u(x) < α} and X≤α
u := {x ∈ Xs

u : rk2u(x) ≤ α}. Note that
X≤α

u = X<α+1
u when α <∞. Of course, we may write X<α,s

u , X≤α,s
u and note that

X<0
u = {x ∈ Xs

u : 0 ∈ Rang(ηx)}.

1.3 Definition. Assume s is a κ-p.o.w.i.s. and u ∈ Js.
1) Let Gu = Gs

u = Gu[s] be the group generated by {gx : x ∈ Xs

u} freely except the
equations in Γu = Γs

u where Γu consists of

(a) g−1
x = gx, that is gx has order 2, for each x ∈ Xu

(b) gy1
gy2

= gy2
gy1

when y1, y2 ∈ Xu and n(y1) = n(y2)

(c) gxgy1
g−1
x = gy2

when ⊛u,s
x,y1,y2

, see below.

1A) Let ⊛x,y = ⊛u
x,y = ⊛u,s

x,y means that ⊛x,y1,y2
for some y1, y2 such that y ∈

{y1, y2}, see below.
1B) Let ⊛x,y1,y2

= ⊛u
x,y1,y2

= ⊛u,s
x,y1,y2

means that:

(a) x, y1, y2 ∈ Xu

(b) n(x) < n(y1) = n(y2)

(c) y1 ↿ n(x) = y2 ↿ n(x)

(d) t̄y1 = t̄y2

(e) for ℓ < n(y1) we have: ηy1(ℓ) 6= ηy2(ℓ) iff ℓ = n(x) ∧ x = y1 ↿ n(x).

2) Let G<α
u = G<α,s

u be defined similarly to Gs

u except that it is generated only by
{gx : x ∈ X<α

u }, freely except the equations from Γ<α
u = Γ<α,s

u , where Γ<α
u is the

set of equations from Γu among {gx : x ∈ X<α
u }.

Similarly G≤α
u ,Γ≤α

u ; note that G≤α
u = G<α+1

u ,Γ≤α
u = Γ<α+1

u if α <∞.
3) For X ⊆ Xu let Gu,X = Gs

u,X be the group generated by {gy : y ∈ X} freely ex-
cept the equations in Γu,X = Γs

u,X which is the set of equations from Γu mentioning

only generators among {gy : y ∈ X}.
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1.4 Observation. 1) The sequence 〈X<α
u : α ≤ rk(Isu)〉 is ⊆-increasing continuous.

2) If ℓ ∈ {1, 2} and x, y ∈ Xu are such that x 6= y = x ↿ n and ℓ ∈ {1, 2} then
rkℓp(y) ≥ rkℓp(x) and if equality holds then rk1u(x) = ∞ = rk1u(y) or both are −1
and ℓ = 2.
3) If a partial order I is explicitly non-trivial then I is non-trivial.

Proof. Check.

1.5 Observation. For a κ-p.o.w.i.s. s.
1) ⊛u,s

x,y holds iff:

(α) x, y ∈ Xu and

(β) n(y) ≥ n(x) + 1.

2) If x ∈ Xs

u then {(y1, y2) : ⊛u,s
x,y1,y2

holds} is a permutation of order two of
Y>n(x) =: {y ∈ Xs

n : n(y) > n(x)}.
3) Moreover, the permutation in part (2) maps each Yn+1\Yn onto itself when
n ∈ [n(x), ω) and so it maps ΓY>n

onto itself when n(∗) ≤ n < ω.
4) If ⊛u,s

x,y1,y2
then y1 ↿ n(x) = y2 ↿ n(x) and n(x) < n(y1) = n(y2).

5) ⊛u,s
x,y1,y2

iff ⊛u,s
x,y2,y1

.
6) For x, y ∈ Xs

u, in the group Gs

u the elements gx, gy commute except when x 6=
y ∧ (x = y ↿ n(x) ∨ y = x ↿ n(y)). In this case, if n(x) < n(y) there is y′ 6= y such
that

⊛x,y,y′ so n(y′) = n(y) and ηy(ℓ) = ηy
′

(ℓ) ⇔ ℓ ∈ n(x).

Proof. Straight (details on (2),(3) see the proof of 1.9). �1.5

We first sort out how elements in Gs

u and various subgroups can be (uniquely)
represented as products of the generators.

1.6 Claim. Assume that s is a κ-p.o.w.i.s., u ∈ J∗ and <∗ is any linear order of
Xu such that

⊡ if x ∈ Xu, y ∈ Xu and n(x) > n(y) then x <∗ y.

1) Any member of Gu is equal to a product of the form gx1
. . . gxm

where xℓ <
∗ xℓ+1

for ℓ = 1, . . . , m− 1. Moreover, this representation is unique.
2) Similarly for G≤α

u , G<α
u (using X≤α

u , X<α
u respectively insteadXu) hence G

≤α
u , G<α

u

are subgroups of Gu.
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3) In part (1) we can replace Gu and Xu by G = Gu,X and X respectively when
X ⊆ Xu is such that [{x, y1, y2} ⊆ Xu ∧ ⊛u,s

x,y1,y2
∧ {x, y1} ⊆ X ⇒ y2 ∈ X ]. Hence

Gu,X is equal to 〈{gx : x ∈ X}〉Gu
.

4) If g = gy1
. . . gym

where y1, . . . , ym ∈ Xu and g = gx1
. . . gxn

∈ Gu and x1 <
∗

. . . <∗ xn then n ≤ m.
5) 〈G<α

u : α ≤ rk(Isu), α an ordinal〉 is an increasing continuous sequence of groups
with last element G<∞

u .
6) {gG<0

u : g ∈ Gu} is a partition of Gu (to left cosets of Gu over G<0
u ).

7) If <1, <2 are two linear orders of Xu as in ⊡ above and Gu |= “gx1
. . . gxk

=
gy1

. . . gym
” and x1 <

1 . . . <1 xk and y1 <
2 . . . <2 ym (or just x1 < ˆ . . .ˆxk, n(y1) ≥

n(y2) ≥ . . . n(yn) and 〈yℓ : ℓ = 1, m〉 is with no repetitions), then:

(α) k = m

(β) for every i we have {ℓ : n(xℓ) = i} = {ℓ : n(yℓ) = i} and this set is a convex
subset of {1, . . . , m}.

(So the only difference is permuting gxℓ(2)
, gxℓ(1)

when n(xℓ(1)) = n(xℓ(2)).

8) If I ⊆ Iu and X = XI then Gu,X ∩ G<0
u is the subgroup of Gu,X generated by

{gx : x ∈ X,Rang(ηx) * 1}, i.e., the (naturally defined) G<0
I .

9) If Iℓ ⊆ Isu for ℓ = 1, 2, 3 (so ≤Iℓ=≤I↾ Iℓ) and I1 ∩ I2 = I3 then GI1 ∩GI2 = GI3

and G<0
I1

∩G<0
I2

= G<0
I3

.

Proof. 1),2),3) Recall that each generator has order two. We can use standard
combinatorial group theory (the rewriting process but below we do not assume
knowledge of it); the point is that in the rewriting the number of generators in the
word do not increase (so no need of <∗ being a well ordering).
We now give a full self-contained proof, for part of (2) we consider G = G<α

u , X =
X<α

u ⊆ Xu,Γ = Γ<α
u for α an ordinal or infinity and for part (1) and the rest of

part (2) consider G = G≤β
u , X = X≤β

u ⊆ Xu,Γ = Γ≤β
u for β an ordinal or infinity

(recall that Gu, Xu is the case β = ∞). Now in parts (1),(2) for the set X , the
condition from part (3) holds by 1.4(2).
[Why? So assume ⊛u

x,y1,y2
and e.g. x, y1 ∈ X≤α

u and we should prove that y2 ∈

X≤α
u . If y1 = y2 this is trivial so assume y1 6= y2, hence necessarily y1 ↿ n(x) = x =

y2 ↿ n(x) and n(x) < n(y1) = n(y2) and t̄
y1 = t̄y2 and ηy1(ℓ) = ηy2(ℓ) ⇔ ℓ 6= n(x).

If ηx is not constantly one then also ηy1 is not constantly one hence y2 ∈ X<0
u so

fine. If ηx is constantly one then α ≥ rk1u(t
x) > rk1u(t

y1) = rk1u(t
y2) ≥ rk2u(t

y2)
hence y2 ∈ X≤α

u so fine.]
So it is enough to prove part (3). Now recall that G = Gu,X and

⊛1 every member of G can be written as a product gx1
. . . gxn

for some n <
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ω, xℓ ∈ X
[Why? As the set {gx : x ∈ X} generates G.]

⊛2 if in g = gx1
. . . gxn

we have xℓ = xℓ+1 then we can omit both
[Why? As gxgx = eG for every x ∈ X by clause (a) of Definition 1.3(1)]

⊛3 if 1 ≤ ℓ < n and g = gx1
. . . gxn

and we have xℓ+1 <∗ xℓ and m ∈
{1, . . . , n}\{ℓ, ℓ+ 1} ⇒ ym = xm then we can find yℓ, yℓ+1 ∈ X such that
g = gy1

. . . gyn
and yℓ <

∗ yℓ+1 and, in fact, yℓ+1 = xℓ.

[Why does ⊛3 hold? By Definition 1.3(1) and Observation 1.5(6) one of the follow-
ing cases occurs.

Case 1: gxℓ
, gxℓ+1

commutes.

Let yℓ = xℓ+1, yℓ+1 = xℓ.

Case 2: Not Case 1 but ⊛u,s
xℓ+1,xℓ

, see Definition 1.3(1A).

By clause (b) of Definition 1.3(1) we have n(xℓ+1) < n(xℓ). So by ⊡ of the
assumption of the present claim we have xℓ <

∗ xℓ+1, contradiction.

Case 3: Not case 1 but ⊛u,s
xℓ,xℓ+1

, see Definition 1.3(1B).

By 1.5(6) there is yℓ ∈ X such that n(yℓ) = n(xℓ+1) > n(xℓ), t̄
yℓ = t̄xℓ+1 and

i < n(xℓ+1) ⇒ (ηyℓ(i) = ηxℓ+1(i)) ≡ (i 6= n(xℓ)).

Let yℓ+1 = xℓ, clearly yℓ+1, yℓ ∈ X . By Definition 1.3(1), we have gxℓ
gxℓ+1

g−1
xℓ

=
gyℓ

hence gxℓ
gxℓ+1

= gyℓ
gxℓ

= gyℓ
gyℓ+1

and clearly n(yℓ+1) = n(xℓ) < n(yℓ) hence
yℓ <

∗ xℓ = yℓ+1, so we are done.
The three cases exhaust all possibilities hence ⊛3 is proved.]

⊛4 every g ∈ G can be represented as gx1
. . . gxn

with x1 <
∗ x2 <

∗ . . . <∗ xn.

[Why? Without loss of generality g is not the unit of G. By ⊛1 we can find
x1, . . . , xn ∈ X1 such that g = gx1

. . . gxn
and n ≥ 1. Choose such a representation

satisfying

⊗ (a) with minimal n and

(b) for this n, with minimal m ∈ {1, . . . , n+1} such that xm <∗ . . . <∗ xn

and 1 ≤ ℓ < m ≤ n⇒
m−1
∧

ℓ=1

xℓ <
∗ xm, and

(c) for this pair (n,m) if m > 2 then with maximal ℓ where ℓ ∈
{1, . . . , m− 1} satisfies xℓ is <∗-maximal among {x1, . . . , xm−1}
that is k ∈ {1, . . . , m− 1} ⇒ xk ≤∗ xℓ.
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Easily there is such a sequence (x1, . . . , xn), noting that m = n+ 1 is O.K. for (b)
and there is ℓ as in ⊗(c).

By ⊛2 and clause (a) of ⊗ we have xℓ 6= xℓ+1 when ℓ from ⊗(c) is well defined,
i.e., if m > 2).
Now m = 2 is impossible (as then m = 1 can serve), if m = 1 we are done, and
if m > 2 then ℓ is well defined and ℓ = m − 1 is impossible (as then m − 1 can
serve instead m). Lastly by ⊛3 applied to this ℓ, we could have improved ℓ to ℓ+1,
contradiction.]

⊛5 the representation in ⊛4 is unique.

[Why does ⊛5 hold? Assume toward contradiction that gx′
1
. . . gx′

n1
= gy′

1
. . . gy′

n2

where x′1 <
∗ . . . <∗ x′n1

and y′1 <
∗ . . . <∗ y′n2

and (x′1, . . . , x
′
n1
) 6= (y′1, . . . , y

′
n2
).

Without loss of generality among all such examples, (n1+n2+1)2+n1 is minimal.
Recall Yn =: {x ∈ X : n(x) = n}.
So 〈Yn : n < ω〉 is a partition of X .
For k ≤ m < ω let X<k,m> =

⋃

{Yℓ : k ≤ ℓ < m} and let G<k,m> be the
group generated by {gx : x ∈ X<k,m>} freely except the equations in Γ<k,n>, i.e.,
the equations from Γu,X<k,m> , i.e., the equations from Definition 1.3(4) mentioning

only its generators, {yx : x ∈ X<k,m>}. Now clearly if ⊛u,s
x,y1,y2

, see Definition

1.3(1B) then n < ω ⇒ [y2 ∈ Yn ≡ y2 ∈ Yn] so the set X<k,m> ⊆ X satisfies
the requirement in part (3) of 1.6 which we are proving; so what we have proved
for X holds for X<k,m>. In particular ⊛1 − ⊛4 above gives that for every g ∈
G<k,m> there are n and x1 <∗ . . . <∗ xn from X<k,m> such that G<n,m> |=
“g = gx1

. . . gxn
”. Also it is enough to prove the uniqueness for G<k,m> (for every

k ≤ m < ω), i.e., we can assume x′1, . . . , x
′
n1
, y′1, . . . , y

′
n2

∈ X<k,m> as if the equality
holds (though 〈x′1, . . . , x

′
n1
〉 6= 〈y′1, . . . , y

′
n2
〉), finitely many equations of Γu,X implies

the undesirable equation and for some k ≤ m < ω they are all from Γ<k,m> and
{x′1, . . . , x

′
n1
, y′1, . . . , y

′
n2
} ⊆ X , hence already in G〈k,m〉 we get this undesirable

equation.
Now for k < m < ω and x ∈ Yk let πk,m

x be the following permutation of
X〈k+1,m〉: it maps y1 ∈ X〈k+1,m〉 to y2 if ⊛u,s

x,y1,y2
.

It is easy to check that

⊡1 For k,m, x as above,

(i) πk,m
x is a permutation of X〈k+1,m〉 which maps Γ〈k+1,m〉 onto itself

(ii) πk,m
x induce an automorphism π̂k,m

x of G〈k,m〉: the one mapping gy1

to gy2
when πk,m

x (y1) = y2

(iii) the automorphisms π̂k,m
x of G〈k,m〉 for x ∈ Yk pairwise commute

(iv) the automorphism π̂k,m
x of G〈k,m〉 is of order two.



14 SAHARON SHELAH

We prove this revised formulation of the uniqueness by induction on m− k.
Note that

(∗) if x ∈ Yk, y ∈ Yℓ and x <∗ y then ℓ ≤ k.

If m− k = 0, then G<k,m> is the trivial group so the uniqueness is trivial.
Also the case k = m− 1 is trivial too as in this case G〈k,m〉 is actually a vector

space over Z/2Z with basis {gx : x ∈ Yk}, well in additive notation so the uniqueness
is clear.

So assume that m− k ≥ 2, now we need

⊡2
k,m if x′1, . . . , x

′
n1
, y′1, . . . , y

′
n2

fromX〈k,m〉 are as above inG<k,m> then 〈x′1, . . . , x
′
n1
〉 =

〈y′1, . . . , y
′
n2
〉.

We can prove the induction step by 1.7 below.
So 1),2),3) holds.
4) Included in the proof of ⊛4 inside the proof of parts (1),(2),(3).
5) For α < β ≤ ∞, clearly X<α

u ⊆ X<β
u and Γ<α

u ⊆ Γ<β
u hence there is a ho-

momorphism from G<α
u into G<β

u . This homomorphism is one-to-one (because of
the uniqueness clause in part (2)) hence the homomorphism is the identity. So
the sequence is ⊆-increasing, the ⊂ follows by part (1), the uniqueness we have
rkI(t) = α <∞ ⇒ g(〈t〉,<>) ∈ G<α+1

u \G<α
u .

6),7),8),9) Easy. �1.6

1.7 Observation. Assume that

(a) G is a group

(b) ft is an automorphism of G for t ∈ J

(c) ft, fs ∈ Aut(G) commute for any s, t ∈ J .

Then there are K and 〈gt : t ∈ J〉 such that

(α) K is a group

(β) G is a normal subgroup of K

(γ) H is generated by G ∪ {gt : t ∈ J}

(δ) if a ∈ G and t ∈ G then gtag
−1
t = ft(a)

(ε) if <∗ is a linear order of J then every member of K has a one and only one

representation as xgb1t1 g
b2
t2
. . . gbntn where x ∈ G, n < ω, t1 <∗ . . . <∗ tn are

from J and b1, . . . , bn ∈ Z\{0}.
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Proof. A case of semi-direct product, see below. (It is also a case of repeated HNN
extensions). �1.7

1.8 Definition/Claim. 1) Assume G1, G2 are groups and π is a homomorphism
from G1 into Aut(G2), we define the sem-direct product G = G1 ∗π G2 as follows:

(a) the set of elements is G1 ×G2 = {(g1, g2) : g1 ∈ G1, g2 ∈ G2}

(b) the product operation is (g1, g2) ∗ (h1, h2) = (g1h1, g
π(h1)
2 h2) where

(α) g
π(h1)
2 is the image of g2 by the automorphism π(h1) of G2

(β) g1h1 is a G1-product

(γ) g
π(h1)
2 h2 is a G2-product.

2)

(a) such group G exists

(b) in G every member has one and only one representation as g′1g
′
2 where

g′1 ∈ G1 × {eG2
}, g′2 ∈ {eG1

} ×G2

(c) the mapping g1 7→ (g1, e) embeds G1 into G

(d) the mapping g2 7→ (e, g2) embeds G2 into G

(e) so up to renaming, for each h1 ∈ G1 conjugating by it (i.e. g 7→ h−1
1 gh1)

inside G acts on G2 as the automorphism π(h1) of G1.

3) If H1, H2 is a subgroup of G1, G2 respectively, and g1 ∈ H1 ⇒ π(g1) maps H2

onto itself and π′ : H1 → Aut(H2) is π′(x) = π(x) ↾ H2 then {(h1, h2) : h1 ∈
H1, h2 ∈ H2} is a subgroup of G1 ∗π G2 and is in fact H1 ∗π′ H2; we denote π′ by
π[H1/H2].

4) If the pairs (Ha
1 , H

a
2 ) and (Hb

1 , H
b
2) are as in part (3) and Hc

1 := Ha
1 ∩Hb

1 , H
c
2 :=

Ha
2 ∩H

b
2 then the pair (Hc

1 , H
c
2) is as in part (3) and (Ha

1 ∗π[Ha
1 ,H

a
2 ]
Ha

2 )∩(H
b
1 ∗[Hb

1 ,H
b
2 ]

Hb
2) = (Hc

1 ∗π[Hc
1 ,H

c
2 ]
Hc

2).

Proof. Known and straight. �1.8

1.9 Claim. Let s be a κ-p.o.w.i.s., u ∈ Js and Iu = Isu be non-trivial.
1) If 0 ≤ α <∞ then the normalizer of G<α

u in Gu is G<α+1
u .

2) If α = rk(Iu) then the normalizer of G<α
u in Gu is G<∞

u = G<α
u .

Proof. 1) First
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(∗)1 if x ∈ Xu and rk2u(x) = α then conjugation by gx in Gu maps {gy : y ∈
X<α

u } = {gy : y ∈ Xu and rk2u(y) < α} onto itself.

[Why? As gx = g−1
x it is enough to prove for every y ∈ X<α

u that: gxgyg
−1
x ∈ X<α

u .
Now for each such y, one of the following cases occurs.

Case (i): gx, gy commutes so gxgyg
−1
x = gy ∈ X<α

u .
In this case the desired conclusion holds trivially.

Case (ii): n(y) ≤ n(x) and not case (i).
As case (i) does not occur, necessarily n(y) < n(x) and y = x ↿ n(y) by 1.5(6).

Also it follows that txn(x) <Iu[s] t
y
n(y), i.e., t(x) <Iu[s] t(y) but rk2u(x) = α hence

rk2(y) ∈ {−1} ∪ [α + 1,∞]. However we are assuming y ∈ X<α
u hence necessarily

y ∈ X<0
u , so 〈ηy(ℓ) : ℓ < n(y)〉 is not constantly 1 hence 〈ηx(ℓ) : ℓ < n(x)〉 is not

constantly 1 hence rk2u(x) = 0, contradiction.

Case (iii): n(y) > n(x) and not case (i).
As in case (ii) by 1.5(6) we have x = y ↿ n(x).
Clearly t(y) = tyn(y) <Iu[s] t

y
n(x) = txn(x) = t(x) so as rk2u(x) ≥ 0 necessarily

rk1u(x) = rk2u(t(x)) = α ∈ [0,∞) hence rkIu(t
y) < rkIu(t

x) = α and so rk2u(y) ≤
rk1u(t

y) < α.
Let y1 = y and by 1.5(1),(6) and Definition 1.3(1A) there is y2 such that ⊛u,s

x,y1,y2

hence Gu |= gxgyg
−1
x = gy2

and t̄y = t̄y1 = t̄y2 , so rk2u(y2) ≤ rk1u(y2) = rk1u(t
y2) =

rk1u(t
y1) < α hence y2 ∈ X<α

u and so gy2
∈ G<α

u so we are done.
So (∗)1 holds.]

Now by (∗)1 it follows that gx normalize G<α
u for every member gx of {gx : rk2u(x) =

α}, hence clearly norGu
(G<α

u ) ⊇ (G<α
u ) ∪ {gx : rk2u(x) = α and x ∈ Xu} but the

latter generates G<α+1
u hence

(∗)2 norGu
(G<α

u ) ⊇ G<α+1
u .

Second assume g ∈ Gu\G
<α+1
u , let <∗ be a linear ordering of Xu as in ⊡ of 1.6; so

we can find k < ω and x1 <
∗ . . . <∗ xk from Xu such that g = gx1

gx2
. . . gxk

and
so it suffices to prove by induction on k that if g = gx1

. . . gxk
∈ Gu\G

<α+1
u then

g /∈ norGu
(G<α). By 1.6(2),(4) without loss of generalityx1 <∗ . . . <∗ xk. As

g /∈ G<α+1
u necessarily not all the xm’s are from X<α+1

u hence for some m, gxm
/∈

G<α+1
u .

(∗)3 without loss of generalityx1, xk /∈ G<α+1
u .

[Why? So assume xk ∈ G<α+1
u hence

(a) xk ∈ norGu
(G<α

u ) (as we have already proved G
<(α+1)
u ⊆ norGu

(G<α
u ))

(b) norGu
(G<α

u ) is a subgroup of Gu hence

(c) g = gx1
. . . gxk−1

gxk
∈ norGu

(G<α
u ) iff gx1

. . . gxk−1
∈ norGu

(G<α
u ).
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By the induction hypothesis on k we get are done. Similarly if gx1
∈ G<α+1

u

then derive g ∈ norGu
(G<α

u ) iff gx2
. . . gxk

∈ norGu
(G<α

u ) to finish.]

Now we can find t∗ ∈ Iu such that

(∗)4 (a) t∗ <Iu t(x1)

(b) rkIu(t
∗) ≥ α

(c) t∗ /∈ {tℓ(x) : x ∈ {x1, . . . , xk} and ℓ ∈ {0, . . . , n(x)}}.

[Why? As we assume that s is nice which implies that each Iu is non-trivial, see
Definition 1.1(6) and Definition 1.2(7).]

Let m(∗) be maximal such that 1 ≤ m(∗) ≤ k and (∃i)(xm(∗) = x1 ↿ i).
Now we choose y ∈ Xs

u as follows:

(∗)5 (a) t̄y = t̄xm(∗)ˆ〈t∗〉

(b) ηy ↾ n(xm(∗)) = ηxm(∗)

(c) ηy(n(xm(∗))) = 0.

Note that

(∗)6 y ∈ X<0
u and n(y) = n(xm(∗)) + 1 and

(∗)7 n(x1) ≥ . . . ≥ n(xm(∗)) ≥ n(xm(∗)+1) ≥ . . . ≥ n(xk).

We now try to define 〈yℓ : ℓ = 1, . . . , k + 1〉 by induction on ℓ as follows :

(∗)8 y1 = y and Gu |= g−1
xℓ
gyℓ
gxℓ

= gyℓ+1
if well defined.

So

(∗)9 yℓ = y for ℓ = 1, . . . , m(∗) and is well defined.
[Why? We prove it by induction on ℓ. For ℓ = 1 this is given. So assume
that this holds for ℓ and we shall prove it for ℓ+1 when ℓ+1 ≤ m(∗). Now
¬(t̄y ⊳ t̄xℓ) by the choice of t∗ (and y) and hence ¬(y = xℓ ↿ n(y) ∧ n(y) <
n(xℓ)) and we also have ¬(xℓ = y ↿ n(xℓ) ∧ n(xℓ) < n(y)) as otherwise
xℓ = xm(∗) ↿ n(xℓ) but n(xℓ) ≥ n(xm(∗)) as xℓ <

∗ xm(∗) hence xℓ = xm(∗),
but ℓ 6= m hence xℓ 6= xm(∗), contradiction. Together by 1.5(6) the elements
gy, gxℓ

commute so as by the induction hypothesis yℓ = y it follows that
yℓ+1 = y so we are done.]

Now:

(∗)10 ym(∗)+1 is well defined and satisfies (∗)5(a), (b) and (∗)5(c) when we replace
0 by 1.
[Why? By the definition of Gu in 1.3(1),(1B).]
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(∗)11 ym(∗)+1 /∈ G<α
u .

[Why? By (∗)3, x1 /∈ G<α+1
u hence ηx1 is constantly 1; but xm(∗) = x1 ↿

n(xm(∗)) hence ηxm(∗) is constantly one. Now ηym(∗)+1 = ηxm(∗)ˆ〈1〉 by

(∗)10 hence ηym(∗)+1 is constantly one. So rk2u(ym(∗)+1) = rkI[u](t
ym(∗)+1) =

rku(t
∗) ≥ α so we are done.]

(∗)12 if ℓ ∈ {m(∗) + 1, . . . , k + 1} then yℓ = ym(∗)+1 and yℓ is well defined.
[Why? We prove this by induction on ℓ. For ℓ = m(∗) + 1 this is trivial by
(∗)10. For ℓ+1 ∈ {m(∗)+2, . . . , k+1}, it is enough to prove that ym(∗)+1, xℓ
commute. Now ¬(t̄ym(∗)+1 ⊳ t̄xℓ) because ℓg(t̄ym(∗)+1) = ℓg(t̄y) = ℓg(t̄xm(∗))+
1 ≥ ℓg(txℓ)+1 > ℓg(t̄xℓ) hence ¬

(

ym(∗)+1 = xℓ ↿ n(ym(∗)+1)∧n(ym(∗)+1) <

n(xℓ)
)

; also ¬
(

xℓ = ym(∗)+1 ↿ n(xℓ)∧n(xℓ) < n(ym(∗)+1)
)

as otherwise this
contradicts the choice of m(∗). So by 1.5(6) they commute indeed.]

(∗)13 g−1gyg = gyk+1
.

[Why? We can prove by induction on ℓ = 1, . . . , k + 1 that
(g1 . . . gℓ−1)

−1gy(g1 . . . gℓ−1) = gyℓ
, by the definition of the yℓ’s, i.e., by (∗)8

and they are well defined by (∗)9 + (∗)10 + (∗)12.]

(∗)14 g−1gyg = gm(∗)+1.
[Why? By (∗)12 and (∗)13.]

(∗)15 g−1gyg /∈ G<α
u .

[Why? By (∗)14 + (∗)11.]

So by (∗)6 we have gy ∈ G<0
u ⊆ G<α

u and by (∗)15 we have g−1gyg /∈ G<α
u hence

g does not normalize G<α
u , so we have carried the induction on k. As g was any

member of Gu\G
<(α+1)
u we get norGu

(G<α
u ) ⊆ G

<(α+1)
u .

Together with (∗)2 we are done.
2) Follows. �1.9
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§2 Easier group

The Gs

u’s from §1 has long towers of normalizers but the “base”, G<0,s
u is in

general of large cardinality. Hence we replace below Gs

u by Ks

u and G<0,s
u by Hs

u.

2.1 Definition. Let s be a κ-p.o.w.i.s.
1) For u ∈ Js:

(a) recall 1.6(6): Au = A s

u = {gG<0
u : g ∈ Gu} is a partition of G (to left cosets

of G<0
u inside Gu);

(b) we define for every f ∈ Gu a permutation ∂f of Au defined by ∂f (g1G
<0
u ) =

(fg1)G
<0
u , we may write it also as f(g1G)

(c) let Lu = Ls

u be the group generated by {ha : a ∈ Au} freely except hahb =
hbha and h−1

a = ha for a,b ∈ Au; for g ∈ Gu let hg = hgG<0
u

(d) let hu = hs

u be the homomorphism from Gu into the automorphism group
of Lu such that f ∈ Gu ∧ a ∈ Au ⇒ (hu(f))(ha) = hfa

(e) let Ku = Ks

u be Gu ∗hu
Lu, the twisted product of Gu, Lu with respect to

the homomorphism hu, see 1.8, and we identify Gu with Gu × {eLu
} and

Lu with {eGu
} × Lu

(f) let Hu = {(eGu
, h

eG≤0
u
), (eGu

, eLu
)}, a subgroup of Ku and let h∗ := heGu

=

h
eGuG

≤0
u

∈ Lu, i.e. the pair (eGu
, g

eG
≤0
u
), this is the unique member of Hu

which is not the unit.

2) For α ≤ ∞ let K<α
u = K<α,s

u be the subgroup {(g, h) : g ∈ G<α
u and h ∈ Lu} of

Ku. Similarly K≤α
u = K≤α,s

u .
3) For u ∈ Js let

(a) Du = Ds

u = {(v, g) : v ≤J [s] u and g ∈ Ks

v}

(b) Z0
u = {(t̄, η) : t̄ = 〈tℓ : ℓ ≤ n〉, n < ω, tℓ ∈ I for each ℓ < n and η ∈ n2}

and let z = (t̄z, ηz) = (〈tzℓ : ℓ ≤ n〉, ηz) and n(z) = n for z ∈ Z0
u; this

is compatible with Definition 1.2(4); note that here t̄ is not necessarily
decreasing

(c) Z1
u := {〈xℓ : ℓ < k〉 : k < ω, each xℓ is from Z0

u} and let z = (〈xzℓ : ℓ < k(z)〉)
if z ∈ Z1

u

(d) Zu := Z0
u ∪ Z1

u

(e) for z ∈ Zu we define his(z), a finite subset of Iu by

(α) if z = (〈tℓ : ℓ ≤ n〉, η) ∈ Z0
u then his(z) = {tℓ : ℓ ≤ n}

(β) if z ∈ Z1
u say z = 〈(〈tkℓ : ℓ ≤ ℓk〉, η

k) : k < k∗〉 ∈ Z1
u then his(z) = {tkℓ :

k < k∗ and ℓ ≤ ℓk}
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(f) for z = Zu let n(z) = Σ{ℓk : k < k∗} if z = 〈(〈tkℓ : ℓ ≤ ℓk〉, η
k) : k < k∗〉 ∈

Z1
u and n(z) is already defined if z ∈ Z0

u in clause (b).

2.2 Observation. In Definition 2.1.
1) For u ∈ Js, Ku is well defined and Gu, Lu are subgroups of Ku (after the
identification).
2) For I ⊆ Isu let Ls

u,I be the subgroup of Ls

u be generated by {hgG<0
u

: g ∈ Gs

u,XI
}.

If I1, I2 ⊆ Isu then Ls

u,I1
∩ Ls

u,I2
= Ls

u,I1∩I2
.

3) For I ⊆ Isu let Ks

u,I be the subgroup of Ks

u generated by Gs

u,XI
∪ Ls

u,I . Then

(a) Gs

u,XI
normalized Ls

u,I inside Ks

u

(b) Ks

u,I is Gs

u,XI
∗π L

s

u,I for the natual π.

Also

(c) if I1, I2 ⊆ Isu then Ks

u,I1
∩Ks

u,I2
= Ks

u,I1∩I2
.

Proof. Easy (recall 1.6(8),(9), 1.8(2),(3)).

2.3 Definition. 1) If I is a partial order then kI is the set of t̄ = 〈tℓ : ℓ < k〉 where
tℓ ∈ I.
2) If t̄ ∈ kI then tpqf(t̄, ∅, I) = {(ι, ℓ1, ℓ2) : ι = 0 and I |= tℓ1 < tℓ2 or ι = 1 and
tℓ1 = tℓ2 or ι = 2 and I |= tℓ1 > tℓ2 and ι = 3 if none of the previous cases}.
2A) Let S k = {tpqf(t̄, ∅, I) : t̄ ∈

kI and I is a partial order}.
3) We say t̄ ∈ kI realizes p ∈ S k when p = tpqf(t̄, ∅, I).
4) If k1 < k2 and p2 ∈ S k2 then p1 := p2 ↾ k1 is the unique p1 ∈ S k1 such that if
p2 = tpqf(t̄, ∅, I) then p1 = tpqf(t̄ ↾ k1, ∅, I).

Remark. Below each member of Λ0
k,Λ

1
k,Λ

2
k will be a description of an element of

Gs

u,A
s

u , K
s

u respectively from a k-tuple of members of Isu. Of course, a member of
Zs

u is a description of a generator of Ks

u.

2.4 Definition. 1) For k < ω let Λ0
k = ∪{Λ0

k,p : p ∈ S k} where for p ∈ S k we let

Λ0
k,p be the set of sequences of the form 〈(ℓ̄j, ηj) : j < j(∗)〉 such that:

(a) for each j for some n = n(ℓ̄j, ηj) we have ℓ̄j = 〈ℓj,i : i ≤ n(ℓ̄j, ηj)〉 is a
sequence of numbers < k of length n + 1 such that p = tpqf(t̄, ∅, I) ⇒
〈tℓj,i : i ≤ n(ℓj, ηj)〉 is decreasing

(b) for each j, ηj ∈
n2 where n = n(ℓ̄j, ηj).
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2) For any p.o.w.i.s. s, u ∈ Js, t̄ ∈ k(Iu) and ρ = 〈(ℓ̄j, ηj) : j < j(∗)〉 ∈ Λ0
k, let

gut̄,ρ = gu,s
t̄,ρ

= (. . . g(t̄j ,ηj) . . . )j<j(∗), the product in Gu ⊆ Ku (so if j(∗) = 0 it is

eGu
= eKu

) where

(a) t̄j = seqρ,j(t̄) := 〈tℓj,i : i ≤ n(ℓj, ηj)〉

(b) if t̄j is decreasing (in Iu) then g(t̄j ,ηj) ∈ Gu ⊆ Ku is already well defined, if
not then g(t̄j ,ηj) = eKu

.

2A) For a p.o.w.i.s. s, u ∈ Js, t ∈ k(Isu) and ρ = 〈(ℓ̄j, ηj) : j < j(∗)〉 ∈ Λ0
k

let zut̄,ρ = zu,st̄,ρ be the following member of Z1,s
u : it is 〈xt̄,ρ,j : j < j(∗)〉 where

xt̄,ρ,j = xt̄,(ℓ̄j ,ηj) = (〈tℓj,i : i ≤ n(ℓ̄j , ηj)〉, ηj). For p ∈ S k and ρ = 〈(ℓ̄j, ηj) :

j < j(∗)〉 ∈ Λ0
k,p let supp(ρ) = ∪{Rang(ℓ̄j) : j < j(∗)} and if t̄ ∈ k(Isu) let

sup(t̄, ρ) = {tℓ : ℓ ∈ supp(ρ)}.
2C) We say ρ ∈ Λ0

k is p-reduced when: p ∈ S k and for every p.o.w.i.s. s, u ∈ Js

and t ∈ k(Isu) realizing p (in Isu), for no ρ′ ∈ Λ0
k do we have supp(ρ′) ⊂ supp(ρ)

and gu,s
t̄,ρ′ = gu,s

t̄,ρ′ .

2D) We say that ρ ∈ Λ0
k is explicitly p-reduced when the sequence is with no

repetitions and 〈n(ℓ̄j, ηj) : j < j(∗)〉 is non-increasing (the length can be zero).
3) For k < ω let Λ1

k = ∪{Λ1
k,p : p ∈ S k} where for p ∈ S k we let Λ1

k,p be

the set of ρ = 〈(ℓ̄j, ηj) : j < j(∗)〉 ∈ Λ0
k,p such that: for every s and u ∈ Js

if t̄ ∈ k(Isu) realizes p then there is no ρ′ ∈ Λ0
k,p with supp(ρ′) ⊂ supp(ρ) and

satisfying gu,s
t̄,ρ
G<0

u = gt̄,ρ′G<0
u .

4) For k < ω and p ∈ S k let Λ2
k,p be the set of finite sequences ̺ of length ≥ 1

such that ̺(0) ∈ Λ0
k,p and 0 < i < ℓg(̺) ⇒ ℓg(̺(i)) > 0 ∧ ̺(i) ∈ Λ1

k,p. Let

Λ2
k = ∪{Λ2

k,p : p ∈ S k}.

5) For any s, if u ∈ Js, t̄ ∈ k(Iu) and ̺ = 〈ρi : i < i(∗)〉 ∈ Λ2
k then gt̄,̺ ∈ Ku

(recalling i(∗) ≥ 1) is gt̄,ρ0
hgt̄,ρ1hgt̄,ρ2 , . . . , hgt̄,ρi(∗)−1

(product in Ku) where gt̄,ρℓ
is

from Part (2), recalling that hg = hgG<0
u

is from clause (c) of Definition 2.1(2).

5A) For any p.o.w.i.s. s, u ∈ Js, t̄ ∈ k(Isu) and ̺ = 〈ρi : u < i(∗)〉 ∈ Λ2
k, let

zut̄,̺ = zu,st̄,̺ ∈ Z2,s
u be 〈zut̄,ρi

: i < i(∗)〉.

5B) For p ∈ S k and ̺ ∈ Λ2
k,p let supp(̺) = ∪{supp(̺(i) : i < ℓg(̺)}.

5C) We say ̺ ∈ Λ2
k,p is p-reduced when for every p.o.w.i.s. s, u ∈ Js and t̄ ∈ k(Isu)

realizing p, for no ̺′ ∈ Λ2
k,p do we have (inKs

u) g
u,s
t̄,̺′ = gu,s

t̄,̺
and supp(̺′) ⊂ supp(̺).

2.5 Definition. 1) For ρ1, ρ2 ∈ Λ0
k,p we say ρ1E

0
k,pρ2 or ρ1, ρ2 are 0-p-equivalent

when: for every p.o.w.i.s. s and u ∈ Js and t̄ ∈ k(Isu) realizing p the elements
gu,st̄,ρ1

, gu,st̄,ρ2
of Gs

u are equal.

2) For ρ1, ρ2 ∈ Λ1
k,p we say ρ1E

2
k,pρ2 or ρ1, ρ2 are 1-p-equivalent when: for every



22 SAHARON SHELAH

p.o.w.i.s. s and u ∈ Js and t̄ ∈ k(Iu) realizing p we have gu,st̄,ρ1
G<0

u = gu,st̄,ρ2
G<0

u .

3) For ̺1, ̺2 ∈ Λ2
k,p we say that ̺1E2,p̺2 or ̺1, ̺2 are 2-p-equivalent, when: for

every p.o.w.i.s. s and u ∈ Js and t̄ ∈ k(Iu) realizing p the element gu,s
t̄,ρ1

and gu,s
t̄,ρ2

of

Ks

u are equal.

2.6 Claim. 1) In Definition 2.4 parts (2C),(3),(5B) saying “for every p.o.w.i.s.
s, u ∈ Js and t̄ ∈ k(Iu) realizing p” it is equivalent to saying “for some ...”.
2) In Definition 2.4, Eι

k,p is an equivalence relation on Λι
k,p for ι = 0, 1, 2. Every

Eι
k,p-equivalence class contains a reduced member and for ι = 0 even an explicitly

reduced one. Explicitly reduced implies reduced.
3) For every p.o.w.i.s. s, if u ∈ Js and t̄ ∈ k(Isu) realizes p ∈ S k then

(a) for ρ1, ρ2 ∈ Λ0
k,p we have

(α) gu,st̄,ρ1
= gu,st̄,ρ2

iff ρ1E
0
k,pρ2

(β) {ℓρ1

j,i : j < ℓg(ρ1), i ≤ n(ℓ̄ρ1

j , η
ρ1

j )} = {ℓρ2

j,i : j < ℓg(ρ1), i ≤ n(ℓ̄ρ1

j , η
ρ2

j )}

(γ) if ρ1, ρ2 are explicitly p-reduced, then they are ρ1E
0
k,pρ2 iff letting ρi =

〈(ℓ̄ij, η
i
j) : j < ji〉 for i = 1, 2 we have

(a) j1 = j2

(b) for some permutation π of {0, . . . , j1 − 1} we have
(ℓ̄2j , η

2
j ) = (ℓ̄1π(j), η

2
π(j)) (so actually only the domain of E0,p

depends on p).

(b) for ρ1, ρ2 ∈ Λ1
k,p we have

(α) gu,s
t̄,ρ1

G<0
u = gu,s

t̄,ρ2
G<0

u iff ρ1E
1
k,pρ2

4) For every p.o.w.i.s. s if u ∈ Js and ℓ̄ ∈ k̄(Isu) realizes p ∈ S k then

(c) for ̺1, ̺2 ∈ Λ2
k,p we have

(α) gu,s
t̄,̺1

= gu,s
t̄,̺2

iff ̺1E
2
k,p̺2

(β) if ̺1E
2
k,p̺2 and ̺1, ̺2 are p-reduced then supp(̺1) = supp(̺2).

Proof. Straight, (recalling 1.6(7) and note that (3) elaborate (1)). �2.6
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2.7 Claim. Assume k < ω, p ∈ S k, s is a p.o.w.i.s., u ∈ J t and t̄1, t̄2 ∈ kI satisfies
p = tp(t̄ℓ, ∅, I

s

u) for ℓ = 1, 2.
1) If ρ ∈ Λ0

k,p and ρ is p-reduced and gt̄1,ρ = gt̄2,ρ ∈ Gs

u, then t̄2 ↾ supp(ρ) is a

permutation of t̄1 ↾ supp(ρ).
2) If ρ ∈ Λ1

k,p is p-reduced and gu,s
t̄1,ρ

G<0
u = gu,s

t̄2,ρ
G<0

u then t̄1 ↾ supp(ρ) is a permu-

tation of t̄2 ↾ supp(ρ).
3) If ̺ ∈ Λ2

k,p is p-reduced and gu,st̄1,̺
= gu,st̄2,̺

so both are well defined then similarly

t̄1 ↾ supp(̺) is a permutation of t̄2 ↾ supp(̺) and both are with no repetition.
4) For every ̺1 ∈ Λ2

k,p there is a p-reduced ̺2 such that for every p.o.w.i.s., u ∈ Js

and t̄ ∈ k(Isu) realizing p we have gu,st̄,̺1
= gu,st̄,̺2

. (Similarly for Λ0
k,p,Λ

1
k,p).

Proof. Straight.

2.8 Definition. Let s be a κ-p.o.w.i.s.
1) For u ≤J [s] v let π̂

0
u,v be the following partial mapping from Z0,s

v to Z0,s
u , recalling

Definition 2.1(3)(b):
x ∈ Dom(π̂0

u,v) iff x ∈ Z0,s
v and πu,v(t

x
ℓ ) is well defined for ℓ ≤ n(x) and then

π̂u,v(x) = (〈πu,v(t
x
ℓ ) : ℓ ≤ n(x)〉, ηx).

2) For u ≤J [s] v let π̂
1
u,v = π̂1,s

u,v be the following partial mapping Z1
v to Z1

u: if z ∈ Z1
u

so z = 〈(t̄k, ηk) : k < k∗〉 and t̄k = 〈tkℓ : ℓ ≤ ℓk〉, t
k
ℓ ∈ Iv for k < k∗, ℓ ≤ ℓk then

π̂1
u,v(z) = 〈(〈πu,v(t

k
ℓ ) : ℓ < ℓk〉, η

k) : k < k∗〉 when each πu,v(t
k
ℓ ) is well defined.

3) Let u ≤J [s] v let π̂u,v be π̂0
u,v ∪ π̂

1
u,v.

4) For u ∈ Js and z ∈ Zu let ∂u,z be the following permutation of Du = Ds

u where
Du is from Definition 2.1(3)(a).

For each (v, g) ∈ Du we define ∂u,z((v, g)) as follows:

Case 1: z ∈ Dom(π̂0
v,u) ⊆ Z0

u and π̂v,u(z) ∈ Xs

v , i.e., 〈π̂v,u(t
z
ℓ ) : ℓ ≤ n(∗)〉 is

≤Iu -decreasing.
Then let ∂u,z((v, g)) = (v, gπ̂v,u(z)g) noting gπv,u(z) ∈ Gv ⊆ Kv.

Case 2: z ∈ Dom(π̂1
v,u) ⊆ Z1

u so z = 〈xℓ : ℓ < k〉 and xℓ ∈ Dom(π̂0
v,u) for ℓ < k

and let x′ℓ := π̂0
v,u(xℓ) ∈ Xs

v for ℓ < k.

Then let ∂u,z((v, g)) = (v, g′) when g′ ∈ Kv is defined by as hgx′
0
...gx′

k−1

g, product

in Ku noting gx′
ℓ
∈ Gv ⊆ Kv for ℓ < k.

Case 3: Neither case 1 nor case 2.
Then let ∂u,x((v, g)) = (v, g).
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2.9 Observation. In Definitions 2.1, 2.8:
1) If u ≤J [s] v then π̂u,v is a partial mapping from Zv to Zu.

2) In part (1), π̂u,v maps Z0
v , Z

1
v to Z0

u, Z
1
u respectively, that is it maps Zℓ

v ∩
Dom(π̂u,v) into Z

ℓ
u for ℓ = 0, 1.

3) If u ≤J [s] v and s is nice or just Dom(πu,v) = Iv then Dom(π̂u,v) = Zv.

4) norKu
(Hu) is K

<0
u where Hu is from Definition 2.1(1)(f).

5) nor1+α
Ku

(Hu) is K
<α
u for α ≥ 0 if s is non-trivial.

Proof. 1),2),3) Check.
4) As Hu has two elements eKu

and h∗ clearly an element of Ku normalize Hu

iff it commutes with g∗. Now when does (g, h) ∈ Gu ∗hu
Lu commute with g∗ =

(eGu
, heGu

G<0
u )? Note that

(g, h)(eGu
, h

eGuG
≤0
u
) = (g, h+ heGuG<0

u
)

(eGu
, heGuG<0

u
)(g, h) = (g, ((hu(g))(heGuG<0

u
) + h).

As Lu is commutative, “(g, h) commute in Ku” iff in Lu

(hu(g))(heGuG<0
u
) = heGuG<0

n
.

By the definition of hu ∈ Hom(Gu,Aut(Lu)) in 2.1(1)(d),(e) this means

(geGu
)G<0

u = eGu
G<0

u .

i.e.

g ∈ G<0
u .

We can sum that: (g, h) ∈ Gu ∗hu
Lu belongs to norKu

(Hu) iff (g, h) commutes
with h∗ iff g ∈ G<0

u iff (g, h) ∈ K<0
u , as required.

5) Let fu : Ku → Gu be defined by fu((g, h)) = g. Clearly

(∗)1 fu is a homomorphism from Ku onto Gu and for every ordinal α ≥ 0, it
maps K<α

u onto G<α
u so fu(K

<α
u ) = G<α

u and moreover f−1(G<α
u ) = K<α

u

(see the definition of K<α
u in 2.1(2)).

Also

(∗)2 Ker(fu) = {eGu
} × Lu ⊆ K<0

u .
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Now we prove by induction on the ordinal α ≥ 0 that nor1+α
Ku

(Hu) = K<α
u . For

α = 0 this holds by part (4). For α limit this holds as both 〈norβKu
(Hu) : β ≤ α〉

and 〈K<β
u : β ≤ α〉 are increasing continuous.

Lastly, for α = β + 1 > 0 we have for any f ∈ Ku

f ∈ nor1+α
Ku

(Hβ) ⇔ f ∈ norKu
(nor1+β

Ku
(Hβ))

⇔ f ∈ norKu
(f−1

u (G<β
u ))

⇔ f(f−1
u (G<β

u ))f−1 = f−1
u (G<β

u )

⇔ fu(f)G
<β
u fu(f)

−1 = G<β
u

⇔ fu(f) ∈ norGu
(G<β

u )

⇔ fu(f) ∈ G<α
u ⇔ f ∈ K<α

u .

[Why? The first ⇔ by the definition of norβ+1
Ku

(−), the second ⇔ by the induction
hypothesis, the third ⇔ by the definition of norKu

(−), the fourth ⇔ by (∗)1, the
fifth ⇔ by the definition of norGu

(−), the sixth ⇔ by 1.9(1), the seventh ⇔ by
(∗)1.] �2.9

2.10 Observation. Let s be a p.o.w.i.s.
1) For u ∈ Js and x ∈ Zs

u we have: ∂u,x is a well defined function and is a
permutation of Ds

u.
2) If u ≤J [s] v then Ds

u ⊆ Ds

v.
3) If u ≤J [s] v and y ∈ Zs

v and x = π̂u,v(y) then ∂u,x = ∂v,y ↾ Du.
4) If s is nice and u ∈ Js and z ∈ Zs

u then in the definition 2.8(4) of ∂u,z Case 3
never occurs.

Proof. Straight.

2.11 Definition. Let s be κ-p.o.w.i.s.
1) Let Sk = {q : q is a function with domain S k and for q ∈ S k,q(p) ∈ Λ2

k,p}, on

Λ2
k,p, see Definition 2.4(4) above.

2) We say that q ∈ Sk is disjoint when 〈supp(q(p)) : p ∈ S k〉 is a sequence of
pairwise disjoint sets. We say that q is reduced when q(p) is p-reduced for every
p ∈ S k.
3) Let Z2

u = Z2,s
u be ∪{Z2,k

u : k < ω}, where Z2,k
u = Z2,k,s

u is the set of pairs (t̄,q)
where for some k < ω, t̄ ∈ k(Isu) and q ∈ Sk.
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4) For z = (t̄,q) ∈ Z2
u let ∂u,z = ∂su,z be the following permutation of Du: if

v ≤J [t] u and (v, g) ∈ {v} ×Kv then ∂su,z((v, g)) = (v, g′g) where g′ = gv,s
πv,u(t̄),q(p)

where p = tpqf(πv,u(t̄), ∅, I
s

v), and, of course, πv,u(〈tℓ : ℓ < k〉) = 〈πv,u(tℓ) : ℓ < k〉.
5) For (t̄,q) ∈ Z2

u let gt̄,q = gut̄,q = gu,st̄,q = gt̄,q(p) when p = tpqf(t̄, ∅, Iu). Let

gv,st̄,q = gv,st̄,q = gvπv,u(t̄),q
when v ≤J [s] u.

2.12 Remark. We can add {∂su,z : z ∈ Z2,s
u } to the generators of F s

u defined in 2.14
below.

2.13 Observation. In Definition 2.11(2), ∂su,z is a well defined permutation of Ds

u.

Proof. Easy.

2.14 Definition. Let s be a p.o.w.i.s.
1) Let Fu = F s

u be the subgroup of the group of permutations of Ds

u generated by
{∂u,z : z ∈ Zs

u}.
2) For a p.o.w.i.s. s let Ms be the following model:

set of elements: {(u, g) : u ∈ Js and g ∈ Ks

u} ∪ {(1, u, f) : u ∈ Js and f ∈ F s

u}.

relations: PMs

1,u , a unary relation, is {(u, g) : g ∈ Ku} for u ∈ Js,

PMs

2,u , a unary relation is {(1, u, f) : f ∈ Fu} for u ∈ Js

RMs

u,v,h, a binary relation, is {((v, g), (1, u, f)) : f ∈ Fu, g ∈ Kv and f((v, h)) =

(v, g)} for u ∈ Js and v ≤J [s] u and h ∈ Kv.

2.15 Observation. If s is a κ-p.o.w.i.s. and v ≤J [s] u and f ∈ Fu then f maps

{ν} ×Kv = PMs

1,v onto itself.

Remark. If π ∈ F s

u and v ≤Is
u[s]

u then π ↾ ({v}×Kv) comes directly from Ks

v , but
the relation between the 〈π ↾ ({v} ×Kv) : v ≤Iu[s] u〉 are less clear.

2.16 Claim. Let s is a p.o.w.i.s.
1) κ is an automorphism of Ms iff:

⊛ (a) κ is a function with domain Ms

(b) for every u ∈ Js we have:

(α) κ ↾ Du ∈ F s

u for every u ∈ Js

(β) letting fu = κ ↾ Du we have (1, u, f) ∈ PMs

2,u ⇒ κ((1, u, f))
= (1, u, fuf) where fuf is the product in Fu.
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2) If fu ∈ Fu for u ∈ Js and fu ⊆ fv for u ≤J [s] v then there is one and only one
automorphism κ of Ms such that u ∈ Js ⇒ fu ⊆ κ.

Proof. First assume that f̄ = 〈fu : u ∈ Js〉 is as in part (2). We define κf̄ , a
function with domain Ms by:

⊛1 (a) if a = (u, g) ∈ PMs

1,u and u ∈ Js then κf̄ (a) = fu(a)

(b) if a = (1, u, f) ∈ PMs

2,u then κf̄ (a) = (1, u, fuf).

So

⊛2 (a) κf̄ is a well defined function

(b) κf̄ is one to one

(c) κf̄ is onto Ms

(d) κf̄ maps PMs

1,u onto PMs

1,u and PMs

2,u onto PMs

2,u for u ∈ Js

(e) also f̄ ′ = 〈f−1
u : u ∈ Js〉 satisfies the condition of part (2) and

κf̄ ′ is the inverse of κf̄

(f) κf̄ maps RMs

u,v,h onto itself.

[Why? The only non-trivial one is clause (f) and in it by clause (e) it is enough

to prove that κf̄ maps RMs

u,v,h into RMs

u,v,h. So assume v ≤J [s] u, h ∈ Kv and

((v, g), (1, u, f)) ∈ RMs

u,v,h hence f ∈ Fu, g ∈ Kv and f((v, h)) = (v, g). So κf̄ ((v, g)) =

fv((v, g)) and κf̄ (1, u, f) = (1, u, fuf) and we would like to show that (fv((v, g)), (1, u, fuf)) ∈

RMs

u,v,h.

This means that (fuf)((v, h)) = fv((v, g)). We know that f((v, h)) = (v, g) hence
(fuf)((v, h)) = fu(f((v, h))) = fu((v, g)) so we have to show that fu((v, g)) =
fv((v, g)). But v ≤J [s] u hence (by the assumption on f̄) we have fu ⊆ fv hence
fu((v, g)) = fv((v, g)) so we are done.]

So we have shown that

⊛3 if f̄ = 〈fu : u ∈ Js〉 is as in part (2) then κf̄ is an automorphism of Ms.

Next

⊛4 if κ ∈ Aut(Ms) and κ ↾ PMs

1,u is the identity for each u ∈ Js then κ = idMs
.
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[Why? By the RMs

u,v,h’s and F
s

u being a group of permutations of Du.]

⊛5 the mapping κ 7→ 〈κ ↾ PMs

1,u : u ∈ Js〉 is a homomorphism from Aut(Ms)

into {κf̄ : f̄ as above} with coordinatewise product, with kernel {κ ∈

Aut(Ms) : κ ↾ PMs

1,u = idPMs

1,u
for every u ∈ Js}.

[Why? Easy.]

⊛6 the mapping above is onto.

[Why? Given κ ∈ Aut(Ms), let fu = κ ↾ PMs

1,u . Clearly fu ∈ Fu and u ≤J [s] v ⇒

fu ⊆ fv so f̄ = 〈fu : u ∈ Js〉 is as above so by ⊛3 we know κf̄ is an automorphism

of Ms and κf̄κ
−1 is an automorphism of Ms which is the identity on each PMs

1,u

hence by ⊛4 is idMs
. So κ = κf̄ , is as required.]

⊛7 the mapping above is one to one.

[Why? Easy by ⊛4.]
Together both parts should be clear. �2.16

2.17 Definition. 1) We say that q1,q2 ∈ Sk are S -equivalence where S ⊆ S k

when p ∈ S ⇒ q1(p)E2,pq2(p).
2) Omitting S means S = S k.

2.18 Claim. 1) If u ∈ Js and f ∈ F s

u then for some k and t̄ = 〈t̄ℓ : ℓ < k〉 ∈ k(Isu)
and q ∈ Sk we have:

(∗) f = ∂u,(t̄,q) (so if v ≤J [s] u then f ↾ ({v}×Ks

v) is moving by multiplication
by g(πv,u(t̄),q, e.g. g ∈ Kv ⇒ f((v, g)) = (v, gπv,u(t̄),q).

2) {∂u,(t̄,q) : t̄ ∈ k(Isu) and q ∈ Sk for some k} is a group of permutations of Ds

u

which include F s

u.
3) For every q ∈ Sk there is a reduced q′ ∈ Sk which is Sk-equivalent to it (see
Definition 2.11(2).

2.19 Remark. 1) We can be somewhat more restrictive.

Proof. We use freely Definition 2.11. Recall that F s

u is the group of permutations of
Ds

u generated by {∂u,z : z ∈ Zs

u}. Hence it is enough to prove that f ∈ F s

u satisfies
the conclusion of the claim in the following cases.
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Case 0: f is the identity.
It is enough to let k = 0 so S k is a singleton {p} and q(p) is the sequence

<<>>, i.e. we use in Definition 2.4(1) the case j(∗) = 0, i.e. 2.1(3) for k = 0.

Case 1: f = ∂u,z where z ∈ Z0
u.

So z = XIu let k = n(z) + 1, t̄ = t̄z. We define q as follows:

(a) if q ∈ S k “says” that t̄ = 〈tℓ : ℓ ≤ n(z)〉 is decreasing then gt̄,q is gz

(b) if not then gt̄z,q = eKu
.

Case 2: f = ∂u,z where z ∈ Z1
u.

Also clear.

Case 3: f = f1f2 (product in F s

u) where f1, f2 ∈ F s

u satisfies the conclusion of the
claim.

Just combine the definitions.

Case 4: f = f−1 where f ∈ F s

u satisfies the conclusion of the claim.
Easy, too. �2.18

2.20 Remark. If q ∈ S k and q1,q2 ∈ Sk and v ≤J [s] u, t̄ = k(Iu) and q =
tpqf(π

s

v,u(t̄), ∅, Iv) and q1(q),q2(q) are not E2,q-equivalent, then gt̄,q1
6= gt̄,q2

.

Proof. This is by 2.4(4).
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§3 The main result

We can prove that every κ-parameter has a limit, but for our application it is more
transparent to consider κ-parameber s which is the κ-parameter t + its limit.

3.1 Definition. We say that s is the limit of t as witnessed by v∗ when (both are
p.o.w.i.s. and)

(a) J t ⊆ Js and Js = J t ∪ {v∗}, v∗ /∈ J t and u ∈ Js ⇒ u ≤J [s] v∗

(b) Isu = Itu and πs

u,v = πt

u,v when u ≤J [s] v <J [s] v∗

(c) if t ∈ Isv∗
then for some u = ut ∈ Js we have t ∈ Dom(πs

ut,v∗
), moreover (if

s is nice this follows) Js |= “ut ≤ v < v∗” ⇒ t ∈ Dom(πs

v,v∗
)

(d) if s, t ∈ Isv∗ then for some u = us,t ∈ J t for every v satisfying u ≤J [s] v <J [s]

v∗ we have Isv∗
|= “s < t” ⇔ πs

v,v∗
(s) <Is

v
πs

v,v∗
(t)

(e) if 〈tu : u ∈ J t

≥w〉 is a sequence satisfying w ∈ J, J≥w = {u : w ≤ u ∈ J}; tu ∈

Isu and w ≤ u1 ≤ u2 ∈ J t ⇒ πu1,u2
(tu2

) = tu1
, then there is a unique t ∈ Isv∗

such that u ∈ J t

≥w ⇒ πu,v∗
(t) = tu.

3.2 Definition. We say that s is an existential limit of t when: clauses (a)-(e) of
Definition 3.1 holds and

(f) assume that

(α) u∗ ∈ J t

(β) k1, k2 < ω and k = k1 + k2

(γ) E is an equivalence relation on S k

(δ) ē = 〈eu : u ∈ J t

≥u∗
〉, where eu is an E-equivalence class

(ε) t̄ ∈ k1(Isv∗
)

(ζ) for every v ∈ J t

≥u∗
there is s̄v ∈ k2(Itw(v)) such that:

if u∗ ≤J [t] u ≤J [t] v then eu is the E-equivalence class of

tpqf(t̄
uˆs̄u,v, ∅, Itu) where t̄

u = πs

u,v∗
(t̄) and s̄u,v = πt

u,v(s̄v).

Then there is s̄ ∈ k∗

(Isv∗
) such that for every u ∈ J t large enough tp(πs

u,v∗
(t̄ˆs̄), ∅, Itu)

belongs to eu (and is constantly p∗ for some p∗ ∈ S k).

3.3 Remark. We may say “s is semi-limit of t” when in clause (d) we replace ⇔ by
⇒. We may consider using this weaker version and/or omit linearity in our main
theorem, but the present version suffices.
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3.4 Main Claim. Ks

v∗
is an almost κ-automorphism group (see below) when:

⊠ (a) s, t are both p.o.w.i.s

(b) s is an existential limit of t as witnessed by v∗

(c) J t is ℵ1-directed and is linear (i.e., for every u, v ∈ J t we have
u ≤J [t] v or v ≤J [t] v)

(d) t is a κ-p.o.w.i.s (so κ ≥ |J t| and κ ≥ |Itu| for u ∈ J t)

(e) t is non-trivial (see Definition 1.1(6).

Remark. Not much harm in adding t is nice (see Definition 1.2(7)) so for u ≤J [t] v

the functions πt

u,v, π̂
t

u,v has full domain, see Definition 2.8(1),(2),(3) and Claim
2.9(3)).

3.5 Definition. G is an almost κ-automorphism group when: there is a κ-automorphism
group G+ and a normal subgroup G− of G+ of cardinality ≤ κ such that G is iso-
morphic to G+/G−, i.e., there is a homomorphism from G+ onto G with kernel
G−.

Before proving 3.4 we explain: why being almost κ-automorphism group help us in
proving our intended result?
Recalling 0.7:

3.6 Claim. For any ordinal α, if there is an almost κ-automorphism group G with
a subgroup H of cardinality ≤ κ such that τ ′G,H = α [such that norαG(H) = G ∧

(∀β < α)(norβG(H) 6= G)] then there is a κ-automorphism group G′ with a subgroup
H ′ of cardinality ≤ κ such that τ ′G′,H′ = α [such that norαG(H

′) = G ∧ (∀β <

α)(norβG(H) 6= G)].

Proof. Easy.
Let G+, G− be as in Definition 3.5 and h be a homomorphism from G+ onto G

with kernel G− and let H+ = {x ∈ G+ : h(x) ∈ H}.
So it is easy to check each of the following statements (similar to 2.9(5)):

⊛ (a) H+ is a subgroup of G+

(b) |H+| ≤ |H| × |G−| ≤ κκ = κ

(c) G+ is a κ-automorphism group

(d) norβ
G+(H

+) = {x ∈ G+ : h(x) ∈ norβG(H)} for every β ≤ ∞

(e) τG,H = τG+,H+

(f) norβG(H) = G then norβ
G+(H

+) = G+ for every β ≤ ∞.
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Together (G+, H+) exemplifies the desired conclusion. �3.6

Proof of 3.4. Let G+ be the automorphism group ofMt and let G− be the following
subgroup of G+

{κ ∈ G+ : for some u ∈ J t we have

u ≤J v ∧ g ∈ Kv ⇒ κ((v, g)) = (v, g)}.

Easily

⊛1 G− is a subgroup of G+

[Why? As J t is directed]

⊛2 for every κ ∈ G+ we can find f̄κ = 〈fκ

u : u ∈ J t〉 such that

(a) fκ

u ∈ F t

u

(b) κ ↾ Dt

u = fu

(c) κ ↾ PMt

2,u is (1, u, f) 7→ (1, u, fuf).
[Why? By Claim 2.16.]

⊛3 G− has cardinality ≤ κ.
[Why? As |J t| ≤ κ, it suffices to prove that for each u ∈ J t, the subgroup

G−
u := {κ ∈ G+ : κ ↾ PMt

1,v is the identity when u ≤J [s] v} has cardinality
≤ κ, but this has the same number of elements as F s

u because κ 7→ κ ↾ Du is
a one-to-one function from G−

u onto F s

u and t is linear. As |F s

u | ≤ ℵ0+|Zu| =
ℵ0 + |Iu| ≤ κ we are done.]

⊛4 G− is a normal subgroup of G+.
[Why? By its definition, more elaborately

(a) each G−
u is a normal subgroup of G+.

[Why? As all members of Aut(Ms) maps each {v}×Kv onto itself so
G−

u is even an definable subgroup]

(b) u ≤J [t] v ⇒ G−
u ⊆ G−

v .
[Why? Check the definitions.]

(c) G− = ∪{G−
u : u ∈ J}.

[Why? Trivially.]
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Together we are done proving ⊛4.]

⊛5 For x ∈ Zs

v∗ let κx be the following automorphism of Mt, it is defined as in
⊛2 by 〈fx

u : u ∈ J t〉 where fu = ∂tu,π̂u,v∗ (x)
is from Definition 2.8(4)

⊛6 for every x ∈ Zs

v∗ ,κx is a well defined automorphism of Mt.
[Why? Look at the definitions and 2.16.]

The main point is

⊛7 G+ is generated by {κx : x ∈ Zs

v∗} ∪G−.

Why? Clearly the set is a set of elements of G+. So assume κ ∈ G+ and let
f̄κ = 〈fκ

u : u ∈ J t〉 be as in ⊛2, they are fixed for awhile.
By 2.18 for each u ∈ J t there are k = ku and t̄ = t̄u ∈ ku

(Isu) and q = qu ∈ Sku

such that (the “disjoint” as we can replace t̄ by t̄ˆt̄ or even t̄ˆt̄ˆ . . . ˆt̄ with |Sku

|
copies note that we can demand that q is reduced by 2.18(3)):

⊡1 fκ

u = ∂u,(t̄u,q), i.e., if v ≤J [t] u then f ↾ ({v} ∩Kt

v) is a multiplication from

the left (of the Kt

v-coordinate) by gπt
v,u(t̄),q

u and qu is reduced and disjoint,

see Definition 2.11(2),(5).

The choices are not necessarily unique, in particular

⊡2 if u1 ≤J [t] u
2 then (ku

2

, πu1,u2(t̄u
2

),qu2

) can serve as (ku
1

, t̄u
1

,qu1

).

Also

⊡3 the set of possible (ku,qu) is countable.

As J t is ℵ1-directed

⊡4 for some pair (k∗,q∗) the set {u ∈ J t : ku = k∗ and qu = q∗} is cofinal in
J t.

Together, without loss of generality for some k∗,q

⊡5 ku = k∗ and qu = q for every u ∈ J t.

Let E be an ultrafilter on J t such that u ∈ J t ⇒ {v : u ≤J [t] u} ∈ E, exists as J t

is directed. For each u ∈ J t there are Au, pu, w(u) such that

⊡6 (a) Au ∈ E and

(b) pu ∈ S k∗

(c) if v ∈ Au then u ≤J [t] v and pu = tp(πu,v(t̄
v), ∅, Iu)

(d) w(u) ∈ Au.
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For p ∈ S k∗

let

⊡7 (a) Yp = {u ∈ J t : pu = p}

(b) s̄u,v = πt

u,v(t̄
v) ↾ supp(q(pu)) for u ∈ J t, v ∈ Au

(c) s̄u = s̄u,w(u).

So

⊡8 〈Yp : p ∈ Sk∗

〉 is a partition of J t.

Fix p ∈ S k for awhile so for each u ∈ Yp and v ∈ Au by ⊡1, κ ↾ ({u} × Ku) is
multiplication from the left by gu,sπt

u,v(t̄
v),q (it was qv but we have already agreed

that qv = q). But p = tpqf(π
t

u,v(t̄
v), ∅, Ju) as u ∈ Yp, v ∈ Au and so by Definition

2.11(4) we know that gu,sπt
u,v(t̄

v),q is gu,sπt
u,v(t̄

v),q(p).

Now q(p) ∈ Λ2
k∗ so q(p) = 〈ρp0, ρ

p
1, . . . , ρ

p
i(p)−1〉 and recall

gπt
u,v(t̄

v),q(p) is gt̄,ρp
0
hg

t̄,ρ
p
1
G<0

u
. . . ;

so it depends only on t̄ ↾ supp(q(p)) only.
Now consider any two members v1, v2 of Au (so they are above u) comparing

the two expressions for κ ↾ ({u} ×Ku) one coming from v1 the second from v2 we
conclude that g

πt

u,vs
2
(t̄

v∗
1 ),q(p)

= gπt
u,v2

(t̄v2 ),q(p). As q is reduced also q(p) is p-reduced

hence by 2.7(3) we conclude that

⊡9 if (p ∈ S k∗

, u ∈ Yp ⊆ J t and) v1, v2 ∈ Au then πt

u,v2
(t̄v1) ↾ supp(q(p)) is a

permutation of πt

u,v2
(t̄v2) ↾ supp(q(p))

this means

⊡10 if p ∈ S k∗

, u ∈ J t and v1, v2 ∈ Au then s̄u,v1 is a permutation of s̄u,v2 .

Hence for each u ∈ J t

⊡11 if v ∈ Au then s̄u,v is a permutation of s̄u = s̄u,w(u).

As there are only finitely many permuations of s̄u,vu , there are s̄u, A′
u such that

⊡12 for u ∈ J t:

(a) A′
u ∈ E

(b) A′
u ⊆ Au

(c) s̄u = s̄u,v for every v ∈ A′
u.
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Now

⊡13 if p ∈ S k and u1 ≤J [t] u2 are from Yp then πt

u1,u2
(s̄u2) = s̄u2 .

[Why? As E is an ultrafilter on J t and A′
u1
, A′

u2
∈ E we can find v ∈ A′

u1
∩ A′

u2
.

So for ℓ = 1, 2 we have s̄uℓ = πt

uℓ,v
(tv) ↾ supp(q(p)) = πt

uℓ,v
(t̄v ↾ supp(q(p)).

As πt

u1,v
= πt

u1,u0
◦ πt

u2,v
we conclude s̄u1 = πt

u1,u2
(s̄u2) is as required.]

Let S ′ = {p ∈ S k∗

: Yp is an unbound subset of J t}, so for some u∗ ∈ J t we
have

⊡14 J t

≥u∗
⊆ ∪{Yp : p ∈ S ′}.

Also without loss of generality

⊡15 k∗ = k∗1 + k∗2 and {0, . . . , k∗1 − 1} = ∪{supp(q(p) : p ∈ S ′}

⊡16 for p ∈ S ′ and ℓ ∈ supp(q(p)), so suℓ is well defined for u ∈ Yp, there is a
unique t ∈ Js such that:

u ∈ Yp ⇒ πs

u,v∗
(t) = suℓ .

[Why? By clause (d) of Definition 2.1.]
Next we can find t̄ such that

⊡17 (a) t̄ = 〈tℓ : ℓ < k∗1〉

(b) if p ∈ S ′ and ℓ ∈ supp(q(p)) then tℓ ∈ Isv∗ is as in ⊡16.

[Why? For i ∈ ∪{supp(q(p)) : p ∈ S ′} use ⊡16, as q is disjoint (see Definition
2.11(2)) there is no case of “double definition”.]

By clause (d) of Definition 3.1, possibly increasing u∗

⊡18 p∗ = tp(πs

u,v∗
(t̄), ∅, Isu) for every u ∈ J t

≥u∗

⊡19 let E be the following equivalence relation on S k∗

, p1E p2 ⇔ q(p1)E
1
k∗
1 ,p↾k

∗
1
q(p2);

note they are actually from S k∗
1 and so “E 1

k∗
1 ,p↾k

∗
1
-equivalent” is meaningful,

see Definition 2.3(4)

⊡20 let ē = 〈eu : u ∈ J t

≥u∗
〉 be defined by eu = pu/E

⊡21 E, t̄, ē, 〈πt

u,w(u)(t̄
w(u)) : u ∈ J t

≥u∗
〉 satisfies the demands (f)(α) − (ζ) from

Definition 3.2.

[Why? Check.]

Recall p∗ = tp(t̄, ∅, Isv∗
) here so let s̄ ∈ (k∗

2 )(Isv∗
) be as guaranteed to exist by

Definition 3.2. Let t̄v
∗

:= t̄ˆs̄. So possibly increasing u∗ ∈ J t for some p∗ we have

⊡22 if u ∈ J t

≥u∗
then p∗ = tp(πs

u,v∗
(t̄ˆs̄), ∅, Isu) = tp(t̄ˆs̄, ∅, Isv∗

).
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Let

⊡23 (a) ̺∗ = q(p∗) so ̺∗ ∈ Λ2
k∗
1 ,p

∗ and let ̺∗ = 〈ρℓ : ℓ < ℓ(∗)〉

(b) t̄u = πs

u,v∗
(t̄) for u ∈ J t

(c) let zu = zu,st̄u,̺
∈ Z1,s

u (see Definition 2.4(5A))

(d) let fu = ∂su,zu ∈ F s

u ; (this is not the same as fκ

u !).

Now

⊡24 for u1 ≤J [t] u2 we have fu1
⊆ fu2

.

[Why? Check.]

⊡25 κf̄ is a finite product of members of {κx : x ∈ Zs

v∗
}.

[Why? Recall κx for x ∈ Zs

v∗ is from ⊛5. Now use ⊡23.]

Lastly

⊡26 (κ−1
f̄

)κ ∈ G+ = Aut(Mt) is the identity on PMt

u whenever u ∈ J t

≥u∗
.

[Why? By ⊡24 and our choices.]

⊡25 (κf̄ ) ∈ (G−
u∗

⊆)G−.

[Why? By ⊡25 and the definition of (Gu∗ and) G−.]

⊡28 κ is the product (in G+) of κf̄ ∈ G− and (κ−1
f )κ ∈ 〈{κx : x ∈ Zs

v∗
}〉.

[Why? ⊡25 +⊡27 this is clear.]
As κ was any a member of G+ we are done proving ⊛7.

⊛8 there is a homomorphism h from Ks

v∗
onto G+/G− which maps gx to κxG

−

for x ∈ Zs

v∗
.

[Why? By ⊛7 there is at most one such homomorphism and if it exists it is onto.
So it is enough to show that for any group term, σ if Ks

v∗
satisfies Kv∗

|=
“σ(gx1

, . . . , gxk−1
) = e” then σ(κx0

, . . . ,κxk−1
) ∈ G−. Let 〈tℓ : ℓ < ℓ∗〉 list

∪{his(xℓ) : ℓ < k} ⊆ Isv∗
and let u∗ ∈ J t be such that: if u∗ ≤J [t] u and

ℓ(1), ℓ(2) < ℓ∗ we have Isv∗
|= tℓ(1) <I tℓ(2) iff Itu |= πu,v∗

(tℓ(1)) < πu,v∗(tℓ(2))
and similarly for equality, see clause (d) of Definition 3.1.

Let tu,ℓ = πu,v∗
(tℓ), xu,ℓ = π̂u,v∗

(xℓ). By the definition of G− it is enough to
show that: if u∗ ≤J [t] u then Ku |= “σ(gxu,0

, . . . , gxu,k1
) = eKu

”. By the analysis

in 1.6 and §2 (i.e., twisted product) this should be clear.]

⊛9 κ∗ is one to one.
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[Why? By part of the analysis as for ⊛7.]
By ⊛8 +⊛9 we are done. �3.6

3.7 Theorem. Assume

(a) ℵ0 < cf(θ) ≤ θ ≤ κ

(b) Fα ⊆ ακ for α < θ has cardinality ≤ κ (also Fα ⊆ αβ for some β < κ+ is
O.K.)

(c) F = {f ∈ θκ : f ↾ α ∈ Fα for every α < θ}

(d) γ = rk(F , <Jbd
θ
), necessarily <∞ so < (κθ)+

(e) for f1, f2 ∈ F , then f1 <Jbd
θ
f2 or f2 <Jbd

θ
f1 or f2 =Jbd

θ
f1; follows from

(f)

(f) for stationarily many δ < θ we have: if f1, f2 ∈ Fδ, then for some α < δ
we have β ∈ (α, δ) ⇒ (f1(β) < f2(β) ≡ f1(α) < f2(α)).

Then τatwκ ≥ τnlgκ ≥ τnlfκ > γ (on τnlfκ see Definition 0.3(4)).

3.8 Theorem. We can in Theorem 3.7 weaken clause (f) to

(f)′ (α) S ⊆ θ is a stationary set consisting of limit ordinals

(β) D is a normal filter on θ

(γ) S ∈ D

(δ) J̄ = 〈Jδ : δ ∈ S〉

(ε) Jδ is an ideal on δ extending Jbd
δ for δ ∈ S

(ζ) if S′ ⊆ S, S′ ∈ D+ and wδ ∈ Jδ for δ ∈ S′ then
∪{δ\wδ : δ ∈ S′} contains an end segment of θ

(η) if δ ∈ S and f1, f2 ∈ F then f1 ↾ δ <Jδ
f2 ↾ δ or

f2 ↾ δ <Jδ
f1 ↾ δ or f1 ↾ δ =Jδ

f2 ↾ δ

Remark. 1) We can justify (f)′ by pcf theory quotation, see below.
2) We should prove that the p.o.w.i.s. being existential holds.

Note that in proving 3.7, 3.8 the main point is the “existential limit”. This proof
has affinity to the first step in the elimination of quantifiers in the theory of (ω,<).
For this it is better if Iθ = (F , <Jbd

θ
) has many cases of existence. Toward this we

“padded it” in (∗)0 of the proof - take care of successor (f ∈ F ⇒ f + 1 ∈ F ),
have zero (0θ ∈ F ) without losing the properties we have.
2) The demand of 3.7 may seem very strong, but by pcf theory it is q natural.
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3.9 Observation. 1) Theorem 3.8 implies Theorem 3.7.
2) If (a)-(d) of 3.7 holds, then (f) ⇒ (f)′.
3) If (a)-(d) of 3.7 holds then (f) ⇒ (e).

Proof. 1) By 2).
2) Let

S =: {δ < θ :δ is a limit ordinal and if f1, f2 ∈ Fδ

then for some α < δ we have β ∈ (α, δ) ⇒

(f1(β) < f2(β) ≡ f1(α) < f2(α))}.

By (f) we know that S is a stationary subset of θ. Let Dθ be the club filter on θ
and D =: Dθ + S, it is a normal filter on θ and S ∈ D. So sub-clauses (α), (β), (γ)
of (f)′ holds.

Let Jδ = Jbd
δ for δ ∈ S so J̄ = 〈Jδ : δ ∈ S〉 satisfies sub-clauses (δ), (ε) of (f)′.

To prove (ζ) assume S′ ⊆ S, S′ ∈ D+ and wδ ∈ Jδ for δ ∈ S′. Then sup(wδ) < δ
and S′ is a stationary subset of δ hence by Fodor lemma for some β(∗) < θ the
set S′′ = {δ ∈ S′ : sup(wδ) = β(∗)} is a stationary subset of θ and so [β(∗), θ)
is an end segment of θ and is equal to ∪{[β(∗), δ) : δ ∈ S′′} which is included in
∪{δ\wδ : δ ∈ S′}, as required in (ζ) from (f)′, so sub-clause (ζ) really holds.

To prove sub-clause (η) of clause (f)′ note that what it says is what is said in
(f).
3) Should be clear. Given f1, f2 ∈ F ; by sub-clause (η) of (f)′ for each δ ∈ S
there are wδ ∈ Jδ and ℓα < 3 such that ℓ0 = 0 ∧ α ∈ δ\wδ ⇒ f1(α) < f2(α) and
ℓδ = 1 ∧ α ∈ δ\wδ ⇒ f1(α) = f2(α) and ℓδ = 2 ∧ α ∈ δ\wδ ⇒ f1(α) > f2(α). So
for some ℓ < 2 the set S′ := {δ ∈ S : ℓδ = ℓ} is stationary, hence ∪{δ\wδ : δ ∈ S′}
include an end segment of θ and we are easily done. �3.9

Proof of 3.8. Without loss of generality

(∗)0 (a) (∀f ∈ F )(∃∞g ∈ F )
(

f ↾ [1, θ) = g ↾ [1, θ)
)

;
moreover for f ∈ F we have
ω = {g(0) : g ∈ F and g ↾ [1, θ)− f ↾ [1, θ)}

(b) α < β < θ ⇒ Fα = {f ↾ α : f ∈ Fβ}; moreover α < θ ⇒ Fα =
{f ↾ α : f ∈ F}

(c) if f ∈ F , then f + 1 ∈ F

(d) the f ∈ θ{0}, the constantly zero function, belongs to F .
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[Why? Let F ′ = {f ∈ θκ: for some n, (∀α < θ)(f(1 + α) = n) ∧ f(0) < ω or for
some f ′ ∈ F and n < ω we have (∀α < θ)(f(1+α) = ω(1+f ′(α))+n)∧f(0) < ω}
and for α < θ, replace Fα by F ′

α = {f ↾ α : f ∈ F ′}. Now check that (a)−(e), (f)′

of the assumption still holds.]
We define s = (J, Ī, π̄) as follows:

(∗)1 (a) J = (θ + 1;<)

(b)(α) let Iθ = (F , <Jbd
θ
) and

(β) Iα = (F1+α+1, <α+1) for α < θ where

f1 <α+1 f2 ⇔ f1(1 + α) < f2(1 + α)

(c) for α < β < θ + 1 let πα,β : Iβ → Iα be

πα,β(f) = f ↾ (1 + α + 1).

Note that

(∗)2 Iα is a non-trivial (see Definition 1.1(6)).

[Why? By (∗)0(a) and the choice of <Iα in (∗)1(b)(β).]

(∗)3 s = (J, I, π̄) is a p.o.w.i.s. even nice
[Note clause (d) of Definition 3.1 holds by clause (e) of Theorem 3.7.]

(∗)4 s is a limit of t =: s ↾ θ = ((θ, <), Ī ↾ θ, π̄ ↾ θ).
[Why? Note that clause (d) of Definition 3.1 holds by clause (f) here and
Fodor lemma. Easy to check the other clauses.]

(∗)5 t is a κ-p.o.w.i.s.
[Why? Check, as α < θ ⇒ |Fα| ≤ κ.]

Now Gs

θ is an almost κ-automorphism group by Claim 3.4, the “existential limit”
holds by (∗)6 below (note: J is linear). Now rk(Isθ ) = γ and Hs

θ is a subgroup of
Gs

θ of cardinality 2 ≤ κ.
By 1.8

τnlg
Gs

θ
,G<1,s

θ

= rk(Isθ ) = γ

and nor<∞
Gs

θ
(Hs

θ ) = Gs

θ and by 2.10(4), τnlfGs

θ
,Hs

θ
= γ.

We still have to check

(∗)6 “s is an existential limit of t”, see Definition 3.2.
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That is we have to prove clause (f) of 3.2, so we should prove its conclusion, as-
suming its assumption which means in our case

⊛1 (a) k = k1 + k2, E is an equivalence relation on S k

(b) f̄ ∈ k1(Fθ) and α(∗) < δ

(c) ē = 〈eα ∈ [α(∗), θ)〉 is such that eα ∈ S k/E

(d) 〈ḡα : α ∈ [α(∗), θ)〉 is such that ḡα ∈ (k2)(Fα)

(e) if α(∗) ≤ α < β then:

eα is the E -equivalence class of tpqf(〈fℓ(1 + α) : ℓ < k1〉ˆ〈g
β
ℓ (1 + α) : ℓ < k2〉, ∅, κ).

Without loss of generality [recalling clause (e) of the assumption and (∗)0(c)]

⊛2 (f) 〈fℓ : ℓ < k1〉 is ≤Jbd
θ
-increasing

(g) f0 is constantly zero

(h) for each ℓ < k1 − 1 we have: fℓ+1 = fℓ mod Jbd
θ or fℓ+1 = fℓ + 1

mod Jbd
θ or fℓ + ω ≤ fℓ+1 mod Jbd

ω

(i) 〈fℓ : ℓ < k1〉 is without repetition

(j) 〈fℓ(0) : ℓ < k1〉 is without repetition.

Possibly increasing α(∗) < θ without loss of generality

⊛3 if α ∈ [α(∗), θ) and ℓ1, ℓ2 < k1 then fℓ1(α) < fℓ2(α) ⇔ fℓ1(α(∗)) <
fℓ2(α(∗)).

Hence by clause (f) of ⊛2

⊛4 〈fℓ(α(∗)) : ℓ < k1〉 is non-decreasing.

For notational simplicity

⊛5 (a) 〈fe ↾ δ : ℓ < k1〉 = 〈gδℓ : ℓ < k1〉 so k1 < k2

(b) if ℓ1 < k2, ℓ2 ∈ [k1, k2) then g
δ
ℓ1

= gδℓ2 ≡ gδℓ1(0) = gδℓ2(0).

Next for some p∗

⊛6 p∗ ∈ S k and for some S′ ⊆ S from D+, for every δ ∈ S′ for the Jδ-majority
of α < δ, say α ∈ δ\wα, wα ∈ Jδ, we have p∗ = tpqf(〈g

δ
ℓ ↾ (1 + α+ 1) : ℓ <

k2〉, ∅, Iα).
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[Why? By sub-clause (η) of clause (f)′, as Jδ is an ideal (applied to (gδℓ1 , g
δ
ℓ2
) for

every ℓ1, ℓ2 < k2) for each δ ∈ S we can choose wδ ∈ Jδ and qδ ∈ S k such that for
every α ∈ (δ\w) we have tpqf(〈g

δ
ℓ (1 + α) : ℓ < k2〉, ∅, Iα) is equal to qδ. For each

p ∈ S k let Sp = {δ ∈ S : qδ = p}. So S = ∪{Sp : p ∈ S k}, hence for some p we
have Sp ∈ D+. So let S′ = Sp, p

∗ = p.]
So without loss of generality considering the way Iα was defined by ⊛5

⊛7 there are E∗
1 , E

∗
2 , <∗ such that

(a) E∗
1 is an equivalence relation on k2 = {0, . . . , k2 − 1}

(b) E∗
2 is an equivalence relation on k2 refining E∗

1

(c) <∗ linearly order k2

(d) if δ ∈ S′, α ∈ δ\wδ so p∗ = tpqf(〈g
δ
ℓ (α) : ℓ < k2〉 then:

(α) ℓ1E
∗
2ℓ2 iff gδℓ1(1 + α) = gδℓ2(1 + α)

(β) ℓ1E
∗
2ℓ2 iff gδℓ1 ↾ (1 + α+ 1) = gδℓ2 ↾ (1 + α + 1)

(γ) (ℓ1/E
∗
1) <∗ (ℓ2/E

∗
1) iff g

δ
ℓ1
(1 + α) < gδℓ2(1 + α).

Let 〈u0, . . . , um−1〉 list the E
∗
1 -equivalence classes in <∗-increasing order. Necessary

0 ∈ u0.
Let α∗ = min(δ∗\wδ∗) where δ∗ = min(S′). We now define gℓ ∈

θκ for ℓ < k2
as follows. So necessarily for a unique i = i(ℓ), ℓ ∈ ui and let i1 = i1(ℓ) ≤ i be
maximal such that ui1 ∩{0, . . . , k1−1} 6= ∅, j2 = j2(ℓ) = min({u1∩{0, . . . , k1−1}).
It is well defined as necessary 0 ∈ u0 because f0 is constantly zero. Now we let

⊡0 gℓ = (gα∗

ℓ ↾ {0}) ∪ ((fj2 + (i− i1)) ↾ [1, θ)).

Now

⊡1 if ℓ < k1 then gℓ = fℓ
[Why? Check the definition gα∗

ℓ (0) = fℓ(0) as g
α∗

ℓ = fℓ.]

⊡2 gℓ ∈ F for ℓ < k2
[Why? As fj2 ∈ F and clauses (a)+(c) of (∗)0.]

⊡3 if ℓ1E
∗
2ℓ2 then gℓ1 = gi2

[Why? First, as ℓ1E
∗
2ℓ2 we have gℓ(0) = gα∗

ℓ1
(0) = gα∗

ℓ2
(0) = gℓ(0). Second,

clearly i(ℓ1) = i(ℓ2), i1(ℓ1) = i1(ℓ2) and j2(ℓ1) = j2(ℓ2) hence for α ∈ [1, θ)
we have

gℓ1(α) = (fj2(ℓ1)(α) + (i(ℓ1)− i1(ℓ1)) =

fj2(ℓ1)(α) + (i(ℓ2)− i1(ℓ2)) = gℓ2(α).
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So we are done.]

⊡4 if ℓ1, ℓ2 < k2 but ¬(ℓ1E
∗
2ℓ2) then gℓ1 6= gℓ2

[Why? If ℓ1, ℓ2 < k1 then gℓ1 = fℓ1 6= fℓ2 = gℓ2 . If ℓ1 < k2, ℓ2 ∈ [k1, k2)
as ¬(ℓ1E

∗
1ℓ2) by (∗)5(b) we have gα∗

ℓ1
(0) 6= gα∗

ℓ2
(0), hence gℓ1(0) = gα∗

ℓ1
(0) 6=

gα∗

ℓ2
(0) = gℓ(0) hence gℓ1 6= gℓ2 . Lastly, if ℓ1 ∈ [k1, k2), ℓ2 < k2 the proof is

similar.]

⊡5 if ℓ1, ℓ2 < k2, ℓ1E
∗
1ℓ2 then ¬(gℓ1 <Iθ gℓ2)

[Why? As gℓ1 ↾ [1, θ) = gℓ2 ↾ [1, θ), so gℓ1 = gℓ2 mod Jbd
θ , so Iθ |= ¬(gℓ1 <

gℓ2).]

⊡6 if ℓ1, ℓ2 < k2 and (ℓ1/E
∗
1) <∗ (ℓ2/E

∗
2) then gℓ1 <Iθ gℓ2

[Why? If fj2(ℓ1)+ω ≤ fj2(ℓ2) mod Jbd
θ then easily gℓ1 <Jbd

θ
fj2(ℓ1)+w ≤Jbd

θ

fj2(ℓ) ≤Jbd
θ
gℓ2 so we are done. If j2(ℓ1) = j2(ℓ2) then as still i(ℓ1) < i(ℓ2) we

have gℓ1 =Jbd
θ
fj2(ℓ1)+(i(ℓ1)− j2(ℓ1) < fj2(ℓ1)+(i(ℓ2) = g2(ℓ2)) =Jbd

θ
gℓ2 as

required. If j2(ℓ1) 6= j2(ℓ2) then necessarily j2(ℓ1) < j2(ℓ2), i1(ℓ1) < i1(ℓ2)
moreover i1(ℓ1) ≤ i(ℓ1) < j2(ℓ2) ≤ i(ℓ2) but by ⊛(h) we have fj1(ℓ1) +
(j2(ℓ1)− i1(ℓ1)) ≤Jbd

θ
fj2(ℓ2) so we are easily done.]

Together 〈gℓ : ℓ < k2〉 is as required for proving (f)′ of 3.2, the definition of
existential limit, i.e. (∗)6. �3.7 �3.8

We quote

3.10 Claim. Assume cf(κ) = θ > ℵ0, α < κ⇒ (α)θ < κ and λ = κθ. Then we can
find 〈Fi : i ≤ θ〉, S,D satisfying the conditions from 3.8 with γ = λ (and more).

Proof. By 3.11 and [Sh:g]. �3.10

3.11 Claim. Assume

⊛ (a) λ̄ = 〈λi : i < θ〉 is an increasing sequence of regular cardinals with
limit κ

(b) λ = tcf(
∏

i<θ

λi, <Jbd
θ
)

(c) max pcf{λi : i < j∗} < κ for every j < θ.

1) Then there are D,S∗, u such that

(α) u ∈ [θ]θ, S∗ ⊆ θ is stationary
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(β) there are no ζ < θ, uε ∈ [u]θ for ε < θ such that for a club of δ < θ if δ ∈ S∗

then for at least one ε < δ we have max pcf{λi : i ∈ δ ∩ uε} < max pcf{λi :
i ∈ δ} hence

(γ) D is a normal filter on θ where: D is {S ⊆ θ: for some sequence 〈uε : ε < θ〉
of subsets of θ each of cardinality θ and for some club E of θ, if δ ∈ E∩S∩S∗

then for every ε < δ we have max pcf{λi : i ∈ δ ∩ uε} = max pcf{λi : i ∈
δ ∩ u}}

(δ) by renaming u = θ and for δ ∈ S∗ let Jδ = {u ⊆ δ : max pcf{λi : i ∈
δ\u} < max pcf{λi : i < δ}.

2) We can choose Fi ⊆
∏

j<i

λi for i ≤ θ such that all the conditions in 3.8 holds.

Proof. By [Sh:g, II,3.5], see on this [Sh:E12, §18].

3.12 Conclusion. If κ is strong limit singular of uncountable cofinality then τatwκ ≥
τnlgκ ≥ τnlfκ > 2κ.

Proof. By 3.8 and 3.11. �3.12

3.13 Remark. 1) If κ = κℵ0 do we have τatwκ ≥ τnlgκ ≥ τnlfκ > κ+? But if κ = κ<κ >
ℵ0 then quite easily yes.
2) In 3.12 we can weaken “κ is strong limit”. E.g. if κ has uncountable cofinality
and α < κ⇒ |α|cf(κ) < κ, then τnlfκ > κcf(κ); see more in [Sh:E12, §18].
3) We elsewhere will weaken the assumption in 3.7, 3.8 but deduce only that τnlgκ

is large.
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