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From 3-moves to Lagrangian tangles and cubic skein modules
Józef H. Przytycki

Abstract
We present an expanded version of four talks describing recent developments in Knot The-

ory to which the author contributed1. We discuss several open problems in classical Knot

Theory and we develop techniques that allow us to study them: Lagrangian tangles, skein

modules and Burnside groups. The method of Burnside groups of links was discovered

and developed only half a year after the last talk was delivered in Kananaskis2 .

1 Open problems in Knot Theory that every-

one can try to solve

When did Knot Theory start? Was it in 1794 when C. F. Gauss3 (1777-1855)
copied figures of knots from a book written in English (Fig.1.1)?

Fig. 1.1; Gauss’ meshing knot from 1794

1Containing several results that are not yet published elsewhere.
2The first three talks were delivered at International Workshop on Graphs – Operads –

Logic; Cuautitlán, Mexico, March 12-16, 2001 and the fourth talk “Symplectic Structures
on Colored Tangles” at the workshop New Techniques in Topological Quantum Field
Theory; Calgary/Kananaskis, August 22-27, 2001.

3Gauss’ notebooks contain several drawings related to knots, for example a braid with
complex coordinate description (see [Ep-1, P-14]) or the mysterious “framed tangle” which
is published here for the first time, see Fig.1.2. [Ga].
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Fig. 1.2; Framed tangle from Gauss’notebook [Ga]

Or was it before that, in 1771, when A-T. Vandermonde (1735-1796)
considered knots and braids as a part of Leibniz’s analysis situs?

Fig. 1.3; Vandermonde drawings of 1771
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Perhaps engravings by Leonardo da Vinci4 (1452-1519) [Mac] and wood-
cuts by Albrecht Dürer5 (1471-1528) [Dur-1, Ha] should also be taken into
account, Fig.1.4.

Fig. 1.4; A knot by Dürer [Ku]; c. 1505-1507
One can go back in time even further to ancient Greece where surgeons

4Giorgio Vasari writes in [Va]: “[Leonardo da Vinci] spent much time in making a
regular design of a series of knots so that the cord may be traced from one end to the
other, the whole filling a round space. There is a fine engraving of this most difficult
design, and in the middle are the words: Leonardus Vinci Academia.”

5“Another great artist with whose works Dürer now became acquainted was Leonardo
da Vinci. It does not seem likely that the two artists ever met, but he may have been
brought into relation with him through Luca Pacioli, the author of the book De Divina Pro-
portione, which appeared at Venice in 1509, and an intimate friend of the great Leonardo.
Dürer would naturally be deeply interested in the proportion theories of Leonardo and Pa-
cioli. He was certainly acquainted with some engravings of Leonardo’s school, representing
a curious circle of concentric scrollwork on a black ground, one of them entitled Accademia
Leonardi Vinci; for he himself executed six woodcuts in imitation, the Six Knots, as he
calls them himself. Dürer was amused by and interested in all scientific or mathematical
problems...” From: http://www.cwru.edu/edocs/7/258.pdf, compare [Dur-2].
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considered sling knots, Fig.1.5 [Da, P-14].

Fig. 1.5; A sling knot of Heraclas
Moreover, we can appreciate ancient stamps and seals with knots and

links as their motifs. The oldest examples that I am aware of are from
the pre-Hellenic Greece. Excavations at Lerna by the American School of
Classical Studies under the direction of Professor J. L. Caskey (1952-1958)
discovered two rich deposits of clay seal-impressions. The second deposit
dated from about 2200 BC contains several impressions of knots and links6

[Hig, Hea, Wie] (see Fig.1.6).

6The early Bronze Age in Greece is divided, as in Crete and the Cyclades, into three
phases. The second phase lasted from 2500 to 2200 BC, and was marked by a considerable
increase in prosperity. There were palaces at Lerna, and Tiryns, and probably elsewhere,
in contact with the Second City of Troy. The end of this phase (in the Peloponnese) was
brought about by invasion and mass burnings. The invaders are thought to be the first
speakers of the Greek language to arrive in Greece.
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Fig. 1.6; A seal-impression from the House of the Tiles in Lerna [Hig].

As we see Knot Theory has a long history but despite this, or maybe
because of this, one still can find inspiring elementary open problems. These
problems are not just interesting puzzles but they lead to an interesting
theory.

In this section our presentation is absolutely elementary. Links are circles
embedded in our space, R3, up to topological deformation, that is, two links
are equivalent if one can be deformed into the other in space without cutting
and pasting. We represent links using their plane diagrams.

First we introduce the concept of an n move on a link.

Definition 1.1 An n-move on a link is a local transformation of the link
illustrated in Figure 1.7.
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n-move
...

n right handed half twists

Fig. 1.7; n-move

In our convention, the part of the link outside of the disk in which the
move takes place, remains unchanged. One should stress that an n-move can
change the topology of the link. For example illustrates a
3-move.

Definition 1.2 We say that two links, L1 and L2, are n-move equivalent if
one can obtain L2 from L1 by a finite number of n-moves and (−n)-moves
(inverses of n-moves).

If we work with diagrams of links then the topological deformation of
links is captured by Reidemeister moves, that is, two diagrams represent the
same link in space if and only if one can obtain one of them from the other
by a sequence of Reidemeister moves:

or

Fig. 1.8; Reidemeister moves

Thus, we say that two diagrams, D1 and D2, are n-move equivalent if one
can be obtained from the other by a sequence of n-moves, their inverses and
Reidemeister moves. To illustrate this, we show that the move
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is the result of an application of a 3-move followed by the second Reidemeis-
ter move (Fig.1.9).

3-move Reidemeister

move

Fig. 1.9

Conjecture 1.3 (Montesinos-Nakanishi)
Every link is 3-move equivalent to a trivial link.

Yasutaka Nakanishi proposed this conjecture in 1981. José Montesinos
analyzed 3-moves before, in connection with 3-fold dihedral branch coverings,
and asked a related but different question7 [Mo-2].

Examples 1.4 (i) Trefoil knots (left- and right-handed) are 3-move equiv-
alent to the trivial link of two components:

3-move 3-move

Fig. 1.10

(ii) The figure eight knot (41) and the knot 52 are 3-move equivalent to the
trivial knot:

-3-move isotopy −3−moveisotopy

Fig. 1.11

(iii) The knot 51 and the Hopf link are 3-move equivalent to the trivial knot8:

7“Is there a set of moves which do not change the covering manifold and such that if
two colored links have the same covering they are related by a finite sequence of those
moves?”

8One can show that the knot 51 cannot be reduced to the trivial knot by one ±3-move.
To see this one can use the Goeritz matrix approach to the classical signature (|σ(51)| = 4),
see [Go, G-L].
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3−move 3−move isotopy

Fig. 1.12

We will show later, in this section, that different trivial links are not
3-move equivalent. However, in order to achieve this conclusion we need
an invariant of links preserved by 3-moves and differentiating trivial links.
Fox 3-coloring is such an invariant. We will introduce it later (today in its
simplest form and, in the second lecture, in a more general context of Fox
n-colorings and Alexander-Burau-Fox colorings).

Now let us present some other related conjectures.

Conjecture 1.5
Any 2-tangle is 3-move equivalent to one of the four 2-tangles shown in
Fig.1.13 with possible additional trivial components.

+L -L S 0 S 8SS

Fig. 1.13

The Montesinos-Nakanishi conjecture follows from Conjecture 1.5. More
generally if Conjecture 1.5 holds for some class of 2-tangles, then Conjecture
1.3 holds for any link obtained by closing elements of this class, without
introducing any new crossing. The simplest interesting class of tangles for
which Conjecture 1.5 holds are algebraic tangles in the sense of Conway (I call
them 2-algebraic tangles and in the next section present a generalization).
Conjecture 1.5 can be proved by induction for 2-algebraic tangles. I will
leave the proof to you as a pleasant exercise (compare Proposition 1.9). The
definition you need is as follows

Definition 1.6 ([Co, B-S]) The family of 2-algebraic tangles is the small-
est family of 2-tangles satisfying

8



(i) Any 2-tangle with 0 or 1 crossing is 2-algebraic.
(ii) If A and B are 2-algebraic tangles then the 2-tangle ri(A) ∗ rj(B) is also
2-algebraic, where r denotes the counterclockwise rotation of a tangle by 90o

along the z-axis, and ∗ denotes the horizontal composition of tangles (see the
figure below).

  =r

A link is called 2-algebraic if it can be obtained from a 2-algebraic tangle
by closing its ends without introducing crossings9.

The Montesinos-Nakanishi 3-move conjecture has been proved by my stu-
dents Qi Chen and Tatsuya Tsukamoto for many special families of links
[Che, Tsu, P-Ts]. In particular, Chen proved that the conjecture holds for
all 5-braid links except possibly one family, containing the square of the cen-
ter of the 5-braid group, ∆4

5 = (σ1σ2σ3σ4)
10. He also found a reduction

by ±3-moves of ∆4
5 to the 5-braid link, (σ−1

1 σ2σ3σ
−1
4 σ3)

4, with 20 cross-
ings10, Fig.1.14. It is now the smallest known possible counterexample to
the Montesinos-Nakanishi 3-move conjecture11.

9By joining the top ends and then bottom ends of a tangle T one obtains the link N(T ),
the numerator of T , Fig.1.22, 1.23. Joining the left-hand ends and then right-hand ends
produces the denominator closure D(T ).

10In the group B5/(σ
3
i ) the calculation is as follows: (σ1σ2σ3σ4)

10 =

(σ1σ2σ3σ
2
4σ3σ2σ1)

2(σ2σ3σ
2
4σ3σ2)

2(σ3σ
2
4σ3)

2 3
= (σ1σ2σ3σ

2
4σ3σ2σ1)

2(σ2σ3σ
2
4σ3σ2)

2 3
=

(σ1σ2σ3σ
2
4σ3σ2σ1)

2(σ−1
2 σ3σ

−1
4 σ3)

2 3
= (σ1σ2σ3σ

−1
4 σ3σ2σ1σ

−1
2 σ3σ

−1
4 σ3)

2 =

σ1σ2σ3σ
−1
4 σ3σ

−1
1 σ2σ3σ

−1
4 σ3σ1)

2 3
= (σ−1

1 σ2σ3σ
−1
4 σ3)

4.
11We proved in [D-P-1] that Chen’s link is in fact the counterexample to the Montesinos-

Nakanishi 3-move conjecture; see Section 4. We think that it is the smallest such coun-
terexample. We also demonstrated that the 2-parallel of the Borromean rings is not 3-move
equivalent to a trivial link. It is still possible that Chen’s link with an additional trivial
component is 3-move equivalent to the 2-parallel of the Borromean rings.

9



Fig. 1.14

Previously Nakanishi suggested in 1994 (see [Kir]), the 2-parallel of the Bor-
romean rings (a 6-braid with 24 crossings) as a possible counterexample
(Fig.1.15).

Fig. 1.15

We will return to the discussion of theories motivated by 3-moves to-
morrow. Now we will state some conjectures that employs other elementary
moves.

Conjecture 1.7 (Nakanishi, 1979)
Every knot is 4-move equivalent to the trivial knot.

10



Examples 1.8 Reduction of the trefoil and the figure eight knots is illus-
trated in Fig.1.16.

4-move isotopy4-move isotopy
Reidemeister
      move

Fig. 1.16

Proposition 1.9 ([P-12]) (i) Every 2-algebraic tangle without a closed
component can be reduced by ±4-moves to one of the six basic 2-tangles
shown in Fig.1.17.

(ii) Every 2-algebraic knot can be reduced by ±4-moves to the trivial knot.

e1 e2 e3 e4 e5 e6
Fig. 1.17

Proof: To prove (i) it suffices to show that every composition (with pos-
sible rotation) of tangles presented in Fig.1.17 can be reduced by ±4-moves
back to one of the tangles in Fig.1.17 or it has a closed component. These
can be easily verified by inspection. Fig.1.18 is the multiplication table for
basic tangles. We have chosen our basic tangles to be invariant under the
rotation r, so it suffices to be able to reduce every tangle of the table to a
basic tangle. One example of such a reduction is shown in Fig.1.19. Part
(ii) follows from (i). �
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*

Fig. 1.18

* = isotopy

4-move

isotopy4-move

Fig. 1.19

In 1994, Nakanishi began to suspect that a 2-cable of the trefoil knot
cannot be simplified by 4-moves [Kir]. However, Nikolaos Askitas was able
to simplify this knot [Ask]. Askitas, in turn, suspects that the (2, 1)-cable of
the figure eight knot (with 17 crossings) to be the simplest counterexample
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to the Nakanishi 4-move conjecture.
Not every link can be reduced to a trivial link by 4-moves. In particular,

the linking matrix modulo 2 is preserved by 4-moves. Furthermore, Nakanishi
and Suzuki demonstrated that the Borromean rings cannot be reduced to the
trivial link of three components [Na-Su].

In 1985, after the seminar talk given by Nakanishi in Osaka, there was
discussion about possible generalization of the Nakanishi 4-move conjecture
for links. Akio Kawauchi formulated the following question for links

Problem 1.10 ([Kir])

(i) Is it true that if two links are link-homotopic12 then they are 4-move
equivalent?

(ii) In particular, is it true that every two component link is 4-move equiv-
alent to the trivial link of two components or to the Hopf link?

We can extend the argument used in Proposition 1.9 to show:

Theorem 1.11 Any two component 2-algebraic link is 4-move equivalent to
the trivial link of two components or to the Hopf link.

Proof: Let L be a 2-algebraic link of two components. Therefore, L is built
inductively as in Definition 1.6. Consider the first tangle, T , in the construc-
tion, which has a closed component (if it happens). The complement T ′ of
T in the link L is also a 2-algebraic tangle but without a closed component.
Therefore it can be reduced to one of the 6 basic tangles shown in Fig.1.17,
say ei. Consider the product T ∗ ei. The only nontrivial tangle T to be con-
sidered is e6 ∗ e6 (the last tangle in Fig.1.18). The compositions (e6 ∗ e6) ∗ ei
are illustrated in Fig.1.20. The closure of each of these product tangles (the
numerator or the denominator) has two components because it is 4-move
equivalent to L. We can easily check that it reduces to the trivial link of two
components. �

12Two links L1 and L2 are link-homotopic if one can obtain L2 from L1 by a finite
number of crossing changes involving only self-crossings of the components.

13



Fig. 1.20

Problem 1.12 (i) Find a (reasonably small) family of 2-tangles with one
closed component so that every 2-tangle with one closed component is
4-move equivalent to one of its elements.

(ii) Solve the above problem for 2-algebraic tangles with one closed compo-
nent.

Nakanishi [Nak-2] pointed out that the “half” 2-cabling of the Whitehead
link, W, Fig.1.21, was the simplest link which he could not reduce to a trivial
link by ±4-moves but which was link-homotopic to a trivial link13.

Fig. 1.21

It is shown in Fig.1.22 that the link W is 2-algebraic. Similarly, the Bor-
romean rings, BR, are 2-algebraic, Fig.1.23 (compare Fig.1.30).

13In fact, in June of 2002 we showed that this example cannot be reduced by ±4-moves
[D-P-2].
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Fig. 1.22; W = N(r(r(e3 ∗ e3) ∗ r(e4 ∗ e4)) ∗ r(r(e3 ∗ e3) ∗ r(e4 ∗ e4)) ∗ r(e3 ∗ e3))

Fig. 1.23; BR = N(r(r(e3 ∗ e3) ∗ r(e4 ∗ e4)) ∗ r(e3 ∗ e3) ∗ r(e4 ∗ e4))

Problem 1.13 Is the link W the only 2-algebraic link of three components
(up to 4-move equivalence) which is homotopically trivial but which is not
4-move equivalent to the trivial link of three components?

We can also prove that the answer to Kawauchi’s question is affirmative
for closed 3-braids.

Theorem 1.14 (i) Every knot which is a closed 3-braid is 4-move equiv-
alent to the trivial knot.

(ii) Every link of two components which is a closed 3-braid is 4-move equiv-
alent to the trivial link of two components or to the Hopf link.

(iii) Every link of three components which is a closed 3-braid is 4-move
equivalent either to the trivial link of three components, or to the Hopf

15



link with the additional trivial component, or to the connected sum of
two Hopf links, or to the (3, 3)-torus link, 6̄3

1, represented by (σ1σ2)
3 (all

linking numbers are equal to 1), or to the Borromean rings (represented
by (σ1σ

−1
2 )3).

Proof: Our proof is based on the Coxeter theorem that the quotient group
B3/(σ

4
i ) is finite with 96 elements, [Cox]. Furthermore, B3/(σ

4
i ) has 16 conju-

gacy classes14: 9 of them can be easily identified as representing trivial links
(up to 4-move equivalence), and 2 of them represent the Hopf link (σ2

1σ2 and
σ2
1σ

−1
2 ), and σ2

1 represents the Hopf link with an additional trivial compo-
nent. We also have the connected sums of Hopf links (σ2

1σ
2
2). Finally, we are

left with two representatives of the link 6̄3
1 (σ1σ

2
2σ1σ

2
2 and σ−1

1 σ2
2σ

−1
1 σ2

2) and
the Borromean rings. �

Proposition 1.9 and Theorems 1.11, and 1.14 can be used to analyze 4-
move equivalence classes of links with small number of crossings.

Theorem 1.15 (i) Every knot of no more than 9 crossings is 4 move
equivalent to the trivial knot.

(ii) Every two component link of no more than 9 crossings is 4-move equiv-
alent to the trivial link of two components or to the Hopf link.

Proof: Part (ii) follows immediately as the only 2-component links with up to
9 crossings which are not 2-algebraic are 92

40, 9
2
41, 9

2
42 and 92

61 and all these links
are closed 3-braids. There are at most 6 knots with up to 9 crossings which are
neither 2-algebraic nor 3-braid knots. They are: 934, 939, 940, 941, 947 and 949.
We reduced three of them, 939, 941 and 949 at my Fall 2003 Dean’s Seminar.
The knot 940 was reduced in December of 2003 by Slavik Jablan and Radmila
Sazdanovic. Soon after, my student Maciej Niebrzydowski simplified the
remaining pair 934 and 947, Fig.1.24. �

14Id, σ1, σ
−1
1 , σ2

1 , σ1σ2, σ
−1
1 σ2, σ

−1
1 σ−1

2 , σ2
1σ2, σ

2
1σ

−1
2 , σ2

1σ
2
2 , σ1σ

−1
2 σ1σ

−1
2 , σ1σ

2
2σ1σ

−1
2 , σ1σ

−1
2 σ2

1σ
−1
2 ,

σ1σ
2
2σ1σ

2
2 , σ

−1
1 σ2

2σ
−1
1 σ2

2 , (σ1σ
−1
2 )3 (checked by M. Da̧bkowski using the GAP program).
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isotopy

isotopy

4−move

4−move

isotopy

4−move

isotopy

isotopy

4−moves

two

isotopy

9
47

4−move

9
34

8
16

Fig. 1.24
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A weaker version of the Kawauchi question has been answered by Nakan-
ishi in 1989, [Nak-1]. If γ ∈ Bn then the γ-move is the n-tangle move in
which the trivial n-braid is replaced by the braid γ.

Theorem 1.16 (Nakanishi) If two links L1 and L2 have the same linking
matrix modulo 2, then L2 can be obtained from L1 by a finite number of
±4-moves and ∆4

3-moves.

Proof: The square of the center, ∆4
3 = (σ1σ2)

6, of the 3-braid group B3 and
the Borromean braid, (σ1σ

−1
2 )3, are equal15 in B3/(σ

4
i ). From this it also

follows that ∆4
3 and ∆−4

3 are equal in B3/(σ
4
i ). Furthermore, the (σ1σ

−1
2 )3-

move is equivalent to ∆-move of Nakanishi in which σ1σ
−1
2 σ1 is replaced by

σ2σ
−1
1 σ2 (we can think of this move as a “false” braid relation or a “false”

third Reidemeister move). Nakanishi proved that two oriented links are ∆-
move equivalent if and only if their linking matrices are equivalent [Nak-1].
Theorem 1.16 follows. �

Selman Akbulut used Nakanishi’s theorem to prove John Nash’s conjec-
ture for 3-dimensional manifolds [A-K]16.

It is not true that every link is 5-move equivalent to a trivial link. One can
show, using the Jones polynomial, that the figure eight knot is not 5-move
equivalent to any trivial link17. One can, however, introduce a more delicate

15We have in B3/(σ
4
i ): (σ1σ2)

6 = (σ2
1σ2σ

2
1σ2)(σ1σ

2
2σ1σ

2
2) = σ2

1σ2σ
2
1(σ1σ

2
2σ1σ

2
2)σ2

4
=

σ2
1σ2σ

−1
1 σ2

2σ1σ
−1
2 = σ1σ

−1
2 σ1σ2σ

2
2σ1σ

−1
2

4
= (σ1σ

−1
2 )3. This calculation can be interpreted

as an illustration of Fig.28 in [A-K].
16The conjecture that “any two closed smooth connected manifolds of the same di-

mension can be made diffeomorphic after blowing them up along submanifolds” is an
interpretation of the Nash question “Is there an algebraic structure on a any given smooth
manifold which is birational to RPn?” [Nash, A-K]. The conjecture is only loosely related
to the question mentioned in the book “A beautiful mind” were in Chapter “The ‘Blow-
ing Up’ Problem”, it is written: “Nash seemed, as the Fall [1963] unfolded, to be in far
better shape than he had been during his previous interlude at the Institute [IAS]. As he
said in his Madrid lecture, he “had had an idea which is referred to as Nash Blowing UP
which I discussed with an eminent mathematician named Hironaka.” [Letter from J.Nash
to V.Nash, 1.9.66] (Hironaka eventually wrote a conjecture up.)” [Nas].

17A 5-move preserves the absolute value of the Jones polynomial at t = eπi/5 [P-1].
However, the Jones polynomial V41(e

πi/5) = 0 but for any trivial link, Tn, we have
VTn

(eπi/5) = (−eπi/10 − e−πi/10)n−1 6= 0.

18



move, called (2, 2)-move ( ), such that the 5-move is a combination

of a (2, 2)-move and its mirror image (−2,−2)-move ( ), as it is

illustrated in Fig.1.25 [H-U, P-3].

isotopy

isotopy

(2,2)-move

(-2,-2)-move

Fig. 1.25

Conjecture 1.17 (Harikae, Nakanishi, Uchida, 1992)
Every link is (2, 2)-move equivalent to a trivial link.

As in the case of 3-moves, an elementary induction shows that the con-
jecture holds for 2-algebraic links. It is also known that the conjecture holds
for all links up to 8 crossings. The key element of the argument in the proof
is the observation (going back to Conway [Co]) that any link with up to 8
crossings (different from 818; see footnote 19) is 2-algebraic. The reduction
of the 818 knot to the trivial link of two components by my students, Jarek
Buczyński and Mike Veve, is illustrated in Fig.1.26.

19



b b

b b

818

(2,2) 

2

moves

b

b b b

(-2,-2) 

move

(2,2) 

move

Fig. 1.26; Reduction of the 818 knot

The smallest knots that are not reduced yet are 940 and 949, Fig.1.27.
Possibly you can reduce them!18

18We showed with M. Da̧bkowski that the knots 940 and 949 are not (2, 2)-move equiva-
lent to trivial links [D-P-2]. Possibly you can prove that they are in the same (2, 2)-move
equivalence class! If I had to guess, I would say that it is a likely possibility.

20



940 949

Fig. 1.27

I am much less convinced that the answer to the next open question is
positive, so I will not call it a “conjecture”. First let us define a (p, q)-move
to be a local modification of a link as shown in Fig.1.28. We say that two
links, L1 and L2, are (p, q)-equivalent if one can obtain one from the other
by a finite number of (p, q)-,(q, p)-,(−p,−q)- and (−q,−p)-moves.

... ...

p half twists

q half twists
(p,q)-move

Fig. 1.28

Problem 1.18 ([Kir]; Problem 1.59(7), 1995) Is it true that any link is
(2, 3)-move equivalent to a trivial link?

Example 1.19 Reduction of the trefoil and the figure eight knots is illus-
trated in Fig.1.29. Reduction of the Borromean rings is shown in Fig.1.30.

21



(3,2)-move

isotopy

isotopy

(2,3)-move

Fig. 1.29

isotopy

isotopy

(2,3)

(2,3)

(-2,-3)
(-2,-3)
moves

isotopy

Fig. 1.30

As in the case of Proposition 1.9, simple inductive argument shows that
2-algebraic links are (2, 3)-move equivalent to trivial links. Fig.1.31 illus-
trates why the Borromean rings are 2-algebraic. By a proper filling of black

22



dots one can also show that all links with up to 8 crossings, except 818, are
2-algebraic. Thus, as in the case of (2, 2)-equivalence, the only link with up
to 8 crossings which still should be checked is the 818 knot19. Nobody really
worked on this problem seriously, so maybe somebody in the audience will
try this puzzle.

isotopy

isotopy

If        are 2-algebraic tangles
then the diagram is 2-algebraic

Fig. 1.31

19To prove that the knot 818 is not 2-algebraic one considers the 2-fold branched cover of

S3 branched along the knot, M
(2)
818

. Montesinos proved that algebraic knots are covered by
Waldhausen graph manifolds [Mo-1]. Bonahon and Siebenmann showed ([B-S], Chapter

5) that M
(2)
818

is a hyperbolic 3-manifold so it cannot be a graph manifold. This manifold is
interesting from the point of view of hyperbolic geometry because it is a closed manifold
with its volume equal to the volume of the complement of figure eight knot [M-V-1].
The knot 949 of Fig.1.27 is not 2-algebraic either because its 2-fold branched cover is
a hyperbolic 3-manifold. In fact, it is the manifold I suspected from 1983 to have the
smallest volume among oriented hyperbolic 3-manifolds [I-MPT, Kir, M-V-2]. In February
of 2002 we (my student M.Da̧bkowski and myself) found unexpected connection between
Knot Theory and the theory of Burnside groups. This has allowed us to present simple
combinatorial proof that the knots 940 and 949 are not 2-algebraic. However, our method
does not work for the knot 818 [D-P-1, D-P-2, D-P-3].
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Fox colorings
The 3-coloring invariant which we are going to use to show that different triv-
ial links are not 3-move equivalent, was introduced by R. H. Fox20 around
1956 when he was explaining Knot Theory to undergraduate students at
Haverford College (“in an attempt to make the subject accessible to ev-
eryone” [C-F]). It is a pleasant method of coding representations of the
fundamental group of a link complement into the group of symmetries of an
equilateral triangle, however this interpretation is not needed for the defini-
tion and most of applications of 3-colorings (compare [Cr, C-F, Fo-1, Fo-2]).

Definition 1.20 (Fox 3-coloring of a link diagram).
Consider a coloring of a link diagram using colors r (red), y (yellow), and b
(blue) in such a way that an arc of the diagram (from an undercrossing to an
undercrossing) is colored by one color and at each crossing one uses either
only one or all three colors. Such a coloring is called a Fox 3-coloring. If
the whole diagram is colored by just one color we say that we have a trivial
coloring. The number of different Fox 3-colorings of D is denoted by tri(D).

Example 1.21 (i) tri( ) = 3 as the trivial link diagram has only trivial
colorings.

(ii) tri( ) = 9, and more generally, for the trivial link diagram of n
components, Tn, one has tri(Tn) = 3n.

20Ralph Hartzler Fox was born March 24, 1913. A native of Morrisville, Pa., he attended
Swarthmore College for two years while studying piano at the Leefson Conservatory of
Music in Philadelphia. He was mostly home schooled and later he was a witness in a
court case in Virginia, certifying soundness of home schooling. He received his master’s
degree from the Johns Hopkins University and his Ph.D. from the Princeton University
in 1939 under the supervision of Solomon Lefschetz. Fox was married, when he was still
a student, to Cynthia Atkinson. They had one son, Robin. After receiving his Princeton
doctorate, he spent the following year at Institute for Advanced Study in Princeton. He
taught at the University of Illinois and Syracuse University before returning to join the
Princeton University faculty in 1945 and staying there until his death. He was giving a
series of lectures at the Instituto de Matemáticas de la Universidad Nacional Autónoma
de México in the summer of 1951. He was lecturing to American Mathematical Society
(1949), to the Summer Seminar of the Canadian Mathematical Society (1953), and at the
Universities of Delft and Stockholm, while on a Fulbright grant (1952). He died December
23, 1973 in the University of Pennsylvania Graduate Hospital, where he had undergone
open-heart surgery [P-12].
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(iii) For the standard diagram of the right-handed trefoil knot we have three
trivial colorings and six nontrivial colorings. One of them is presented
in Fig.1.32 (all the others differ from this one by permutations of col-

ors). Thus, tri( ) = 3 + 6 = 9.

Fig. 1.32; Different colors are marked by lines of different thickness.

Fox 3-colorings were defined for link diagrams. They are, however, in-
variants of links. One only needs to show that tri(D) is unchanged by Rei-
demeister moves.

The invariance under R1 and R2 is illustrated in Fig.1.33 and the invari-
ance under R3 is illustrated in Fig.1.34.

Fig. 1.33
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Fig. 1.34

The next property of Fox 3-colorings is the key in proving that different
trivial links are not 3-move equivalent.

Lemma 1.22 ([P-1]) 3-moves do not change tri(D).

The proof of the lemma is illustrated in Figure 1.35.

3-move 3-move
D

(a) (b)
D

+++
D

+++
D

Fig. 1.35

The lemma also explains the fact that the trefoil knot has nontrivial Fox
3-colorings: the trefoil knot is 3-move equivalent to the trivial link of two
components (Example 1.4(i)).

Tomorrow, I will place the theory of Fox colorings in a more general (so-
phisticated) context, and apply it to the analysis of 3-moves (and (2, 2)- and
(2, 3)-moves) on n-tangles. Interpretation of tangle colorings as Lagrangians
in symplectic spaces is our main (and new) tool. In the third section, I
will discuss another motivation for studying 3-moves: understanding skein
modules based on their deformation.
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2 Lagrangian approximation of Fox p-colorings

of tangles

We just had the opportunity to listen to a beautiful and elementary talk by
Lou Kauffman. I hope to follow this example by making my talk elementary
and deep at the same time. I will use several results introduced by Lou, like
classification of rational tangles, and also I am going to build on my yester-
day’s talk. I will culminate today’s talk with introduction of the symplectic
structure on the boundary of a tangle in such a way that tangles will yield
Lagrangians in the associated symplectic space. I could not dream of this
connection a year ago; however, now, 10 months after, I see the symplectic
structure as a natural development.

Let us start our discussion slowly using my personal perspective and
motivation. In the Spring of 1986, I was analyzing behavior of Jones type
invariants of links when modified by k-moves (or tk-, t̄2k-moves in the oriented
case). My interest had its roots in the fundamental paper by Conway [Co]. In
July of 1986, I gave a talk at the “Braids” conference in Santa Cruz. After
my talk, I was told by Kunio Murasugi and Hitoshi Murakami about the
Nakanishi’s 3-move conjecture. It was suggested to me by R. Campbell (Rob
Kirby’s student in 1986) to consider the effect of 3-moves on Fox colorings.
Several years later, when writing [P-3] in 1993, I realized that Fox colorings
can be successfully used to analyze moves on tangles by considering not only
the space of colorings but also the induced colorings of boundary points.
More of this later, but let us now define Fox k-colorings first.

Definition 2.1 (i) We say that a link (or a tangle) diagram is k-colored
if every arc is colored by one of the numbers 0, 1, ..., k− 1 (elements of
the group Zk) in such a way that at each crossing the sum of the colors
of the undercrossings equals twice the color of the overcrossing modulo
k; see Fig.2.1.

(ii) The set of k-colorings forms an abelian group, denoted by Colk(D) (we
can also think of Colk(D) as a module over Zk). The cardinality of
the group will be denoted by colk(D). For an n-tangle T each Fox k-
coloring of T yields a coloring of boundary points of T and we have the
homomorphism ψ : Colk(T ) → Z2n

k
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.

a

b

 c = 2a-b mod(k)

Fig. 2.1

It is a pleasant exercise to show that Colk(D) is unchanged by Reidemeis-
ter moves, so I am going to leave it for you. The invariance under k-moves
is explained in Fig.2.2.

a

b

2a-b

a 2a-b

3a-2b

...
ka - (k-1)b = b mod(k)

(k+1)a -  kb = a mod(k)

Fig. 2.2

Having observed that k-moves preserve the space of Fox k-colorings, let us
take a closer look at the unlinking conjectures described before. We discussed
the 3-move conjecture, the 4-move conjecture for knots, and the Kawauchi’s
question for links. As I mentioned yesterday, not every link can be simplified
using 5-moves, but the 5-move is a combination of ±(2, 2)-moves and these
moves might be sufficient to reduce every link to trivial links. Similarly not
every link can be reduced via 7-moves, but again each 7-move is a com-
bination of (2, 3)-moves21 which still might be sufficient for reduction. We
stopped at this point yesterday, but what could be used instead of general
k-moves? Let us consider the case of p-moves, where p is a prime number. I
suggest (and state publicly for the first time) that possibly one should con-
sider rational moves instead, that is, moves in which a rational p

q
-tangle of

Conway is substituted in place of the identity tangle22. The most important

21To be precise, a 7-move is a combination of (−3,−2)- and (2, 3)-moves; compare
Fig.1.25.

22The move was first considered by J. M. Montesinos [Mo-2]; compare also Y. Uchida
[Uch].
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observation for us is that Colp(D) is preserved by p

q
-moves. Fig.2.3 illus-

trates, for example, the fact that Col13(D) is unchanged by a 13
5

-move.

13/5 - move

a b

5b-4a

2b-a
8b-7a

3b-2a 13b-12a

18b-17a

a a

c c

Fig. 2.3

We also should note that (m, q)-moves are equivalent to mq+1
q

-moves

(Fig.2.4) so the space of Fox (mq + 1)-colorings is preserved by them too.

... ...

.........

...

isotopy

isotopy

(m,q)-move(mq+1)/q -move

m right handed half-twistsm left handed half-twists

    q right handed half-twists 

Fig. 2.4

We have just heard about Conway’s classification of rational tangles in
Lou’s talk23, so I will just briefly sketch necessary definitions and introduce
basic notation. The 2-tangles shown in Fig.2.5 are called rational tangles
– in Conway’s notation, T (a1, a2, ..., an). A rational tangle is p

q
-tangle if

p

q
= an + 1

an−1+...+ 1

a1

.24 Conway proved that two rational tangles are ambient

23L.Kauffman’s talk in Cuautitlan , March, 2001; compare [K-L].
24 p

q is called the slope of the tangle and can be easily identified with the slope of the
meridian disk of the solid torus being the branched double cover of the rational tangle.
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isotopic (with boundary points fixed) if and only if their slopes are equal
(compare [Kaw]).

...

... ... ...
...

...

n is odd

a
a

a n

a n-1

a1

2
3

x

x

x1

2 3
x

4

x
... ...

...

a n

a n-1

x

x

x1

2 3
x

4

n is even

......

...a1
a 2

a 3

x

Fig. 2.5

For a given Fox coloring of the rational p

q
-tangle with boundary colors

x1, x2, x3, x4 (Fig.2.5), one has x4 − x1 = p(x− x1), x2 − x1 = q(x− x1) and
x3 = x2 + x4 − x1. If a coloring is nontrivial (x1 6= x) then x4−x1

x2−x1
= p

q
as it

has been explained by Lou.

Conjecture 2.2
Let p be a fixed prime number, then25

(i) Every link can be reduced to a trivial link by rational p

q
-moves (q any

integer).

(ii) There is a function f(n, p) such that any n-tangle can be reduced to one
of “basic” f(n, p) n-tangles (allowing additional trivial components) by
rational p

q
-moves.

First we observe that it suffices to use p

q
-moves with |q| ≤ p

2
, as they generate

all the other p

q
-moves follow. Namely, we have p

p−q
= 1 + 1

−1+ p

q

and p

−(p+q)
=

−1+ 1
1+ p

q

. Thus p

q
-moves generate p

−q±p
-moves (e.g., p

p−q
tangle is reduced by

an inverse of a p

q
-move to the 0-tangle, 1 + 1

−1+0
= 0). Furthermore, we know

25I decided to keep the word “Conjecture” as it was used in my talk. However, in Spring
of 2002, we disproved it for any p, [D-P-1, D-P-2, D-P-3]. The talks in Mexico and Canada
were essential for clarifying ideas and finally in constructing counterexamples.
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that for odd p the p

1
-move is a combination of p

2
and p

−2
-moves (compare

Fig.1.25). Thus, in fact, 3-move, (2, 2)-move and (2, 3)-move conjectures are
special cases of Conjecture 2.2(i). For p = 11 we have 11

2
= 5 + 1

2
, 11

3
= 4− 1

3
,

11
4

= 3 − 1
4
, 11

5
= 2 + 1

5
. Thus:

Conjecture 2.3
Every link can be reduced to a trivial link (with the same space of 11-colorings)
by (2, 5)- and (4,−3)-moves, their inverses and their mirror images26.

What about the number f(n, p)? We know that because p

q
-moves preserve

p-colorings, therefore f(n, p) is bounded from below by the number of sub-
spaces of p-colorings of the 2n boundary points induced by Fox p-colorings
of n-tangles (that is by the number of subspaces ψ(Colp(T )) in Z2n

p ). I noted
in [P-3] that for 2-tangles this number is equal to p+ 1 (even in this special
case my argument was complicated). For p = 3 and n = 4 the number of
subspaces followed from the work of my student Tatsuya Tsukamoto and is
equal to 40 [P-Ts]. The combined effort of Mietek Da̧bkowski and Tsukamoto
gave the number 1120 for subspaces ψ(Col3(T )) and 4-tangles. That was my
knowledge at the early Spring of 2000. On May 2nd and 3rd I attended talks
on Tits buildings (at the Banach Center in Warsaw) by Janek Dymara and
Tadek Januszkiewicz. I realized that the topic may have some connection
to my work. I asked Januszkiewicz whether he sees relation and I gave him
numbers 4, 40, 1120 for p = 3. He immediately answered that most likely I
was counting the number of Lagrangians in Z

2n−2
3 symplectic space, and that

the number of Lagrangians in Z2n−2
p is known to be equal to

∏n−1
i=1 (pi + 1).

Soon I constructed the appropriate symplectic form (as did Dymara). I will
spend most of this talk on this construction and end with discussion of classes
of tangles for which it has been proved that f(n, p) =

∏n−1
i=1 (pi + 1).

Consider 2n points on a circle (or a square) and a field Zp of p-colorings of
a point. The colorings of 2n points form the linear space Z2n

p . Let e1, . . . , e2n
be the standard basis of Z2n

p ,

26As mentioned in the footnote 25, Conjecture 2.3 does not hold. The closure of the
3-braid ∆4

3 provides the simplest counterexample [D-P-2, D-P-3]. However, it holds for
2-algebraic links; see Proposition 2.7.
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.. ..
..e

e

e2n

en+1n

1
e2

Fig. 2.6

ei = (0, . . . , 1, . . . , 0), where 1 occurs in the i-th position. Let Z2n−1
p ⊂

Z2n
p be the subspace of vectors

∑

aiei satisfying
∑

(−1)iai = 0 (alternating

condition). Consider the basis f1, . . . , f2n−1 of Z2n−1
p where fk = ek + ek+1.

Let

φ =









0 1 . . . . . .
−1 0 1 . . .
. . . . . . . . . . . .
. . . . . . −1 0









be a skew-symmetric form φ on Z2n−1
p of nullity 1, that is,

φ(fi, fj) =























































0 if |j − i| 6= 1

1 if j = i+ 1

−1 if j = i− 1.

Notice that the vector e1 + e2 + . . . + e2n (= f1 + f3 + . . . + f2n−1 =
f2 + f4 + . . . + f2n) is φ-orthogonal to any other vector. If we consider
Z2n−2
p = Z2n−1

p /Zp, where the subspace Zp is generated by e1 + . . .+ e2n, that
is, Zp consists of monochromatic (i.e., trivial) colorings, then φ descends to

the symplectic form φ̂ on Z2n−2
p . Now we can analyze isotropic subspaces of
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(Z2n−2
p , φ̂), that is subspaces on which φ̂ is 0 (W ⊂ Z2n−2

p , where φ̂(w1, w2) = 0
for all w1, w2 ∈ W ). The maximal isotropic subspaces of Z2n−2

p are (n− 1)-
dimensional and they are called Lagrangian subspaces (or maximal totally
degenerated subspaces). There are

∏n−1
i=1 (pi + 1) of them.

Our local condition on Fox colorings (Fig.2.1) guarantees that for any
tangle T , ψ(ColpT ) ⊂ Z2n−1

p . Furthermore, the space of trivial colorings, Zp

is always in ColpT . Thus ψ descends to ψ̂ : ColpT/Zp → Z2n−2
p = Z2n−1

p /Zp.
Now we answer the fundamental question: Which subspaces of Z

2n−2
p are

yielded by n-tangles?

Theorem 2.4
ψ̂(ColpT/Zp) is a Lagrangian subspace of Z2n−2

p with the symplectic form φ̂.

The natural question is whether every Lagrangian subspace can be realized
as a space of induced colorings on the boundary for some tangle. The answer
is negative for p = 2 and positive for p > 2.

Theorem 2.5 ([D-J-P])

(i) For an odd prime number p, every Lagrangian in (Z2n−2
p , φ̂) is realized

as ψ̂(ColpT/Zp) for some n-tangle T . Furthermore, T can be chosen
to be a rational n-tangle27.

(ii) For p = 2, n > 2, not every Lagrangian is realized as ψ̂(Col2T/Z2). We
have f(n, 2) =

∏n−1
i=1 (2i + 1) (a 2-coloring is unchanged by a crossing

change) but the number of Lagrangians is equal to
∏n−1

i=1 (2i + 1).

As a corollary we obtain a fact which was considered to be difficult before,
even for 2-tangles (compare [P-3, J-P].

Corollary 2.6
For any p-coloring x of a tangle boundary points satisfying the alternat-
ing property (i.e., x ∈ Z2n−1

p ) there is an n-tangle and p-coloring of it that
yields x. In other words: Z2n−1

p =
⋃

T ψT (ColpT ). Furthermore, the space
ψT (ColpT ) is n-dimensional for any T .

27An n-tangle is a rational (or n-bridge) tangle if it is homeomorphic to a tangle without
crossing and trivial components (we allow homeomorphism moving the boundary of the
3-ball). Alternatively, we can use an inductive definition modifying Definition 2.9 in such
a way that we start from a tangle without a crossing and a trivial component and we
assume in condition (i)(1) that B has exactly one crossing (which is not nugatory, that is,
it cannot be eliminated by a first Reidemeister move).
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We can say that we understand the lower bound for the function f(n, p), but
when does Conjecture 2.2 holds with f(n, p) =

∏n−1
i=1 (pi + 1)?

In [D-I-P] we discuss Conjecture 2.2 for 2-algebraic tangles. Here we
sketch a proof of a simpler fact.

Proposition 2.7
Let p be a fixed prime number and let be Hp the family of 2-tangles: 1−p

2
,

3−p

2
,..., 0,..., p−3

2
, p−1

2
and ∞ (horizontal family), and let Vp be the vertical

family of 2-tangles, Vp = r(Hp); then

(i) Every 2-algebraic tangle can be reduced to a 2-tangle from the family
Hp (resp. Vp) with possible additional trivial components by ( sp

q
)-moves,

where s and q are any integers such that sp and q are relatively prime.
Furthermore, for p ≤ 13 one can assume that s = 1.

(ii) Every 2-algebraic link can be reduced to a trivial link by ( sp
q

)-moves,
where s and q are any integers such that sp and q are relatively prime.
Furthermore, for p ≤ 13 one can assume that s = 1.

Outline of the proof. We use the structure of 2-algebraic tangles to per-
form an inductive proof similar to that of Proposition 1.9. The main problem
in the proof is to show that the family Vp can be reduced to the family Hp

by our moves. Consider the vertical tangle r(k) where k is relatively prime
to p. There are integers k′ and s such that kk′ + 1 = sp or equivalently
k′ + 1

k
= sp

k
. Therefore the sp

k
-move (equivalently (k, k′)-move) is changing

r(k) to the horizontal tangle k′. In this reasoning we do not have a control
over s. Consider now the case of p = 13 and s = 1. By considering fractions
13
2

= 6 + 1
2
, 13

3
= 4 + 1

3
,13
4

= 3 + 1
4
, 13

6
= 2 + 1

6
, we are able to work with all

r(k) except k = 5. 5 + 1
5

= 26
5

so s = 2 in this case. We can, however, realize
26
5

-move as a combination of 13
3

-move and 13
2

-move as illustrated in Fig.2.7
(we start by presenting 26

5
as 6 + 1

−1− 1

4

).

(4,3)−move (2,6)−move

Fig. 2.7
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Corollary 2.8
Every ( sp

q
)-rational tangle, p odd prime, can be reduced to the 0 2-tangle by

(k, k′)-moves where |k| < p

2
and kk′ + 1 = sp for some s.

In order to be able to use induction for n-tangles with n > 2, we generalize
the notion of the algebraic tangle.

Definition 2.9

(i) The family of n-algebraic tangles is the smallest family of n-tangles
which satisfies:
(0) Any n-tangle with 0 or 1 crossing is n-algebraic.
(1) If A and B are n-algebraic tangles then ri(A)∗rj(B) is n-algebraic,
where r denotes here the rotation of a tangle by 2π

2n
angle, and ∗ denotes

horizontal composition of tangles.

(ii) If in the condition (1), B is restricted to tangles with no more than k
crossings, we obtain the family of (n, k)-algebraic tangles.

(iii) If an m-tangle, T , is obtained from an (n, k)-algebraic tangle (resp. n-
algebraic tangle) by partially closing its endpoints (2n − 2m of them)
without introducing any new crossings, then T is called an (n, k)-algebraic
(resp. n-algebraic) m-tangle. For m = 0 we obtain an (n, k)-algebraic
(resp. n-algebraic) link.

Conjecture 2.2, for p = 3, has been proved for 3-algebraic tangles [P-Ts]
(f(3, 3) = 40) and (4, 5)-algebraic tangles [Tsu] (f(4, 3) = 1120). In partic-
ular the Montesinos-Nakanishi 3-move conjecture holds for 3-algebraic and
(4, 5)-algebraic links. 40 “basic” 3-tangles are shown in Fig. 2.8.
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Noninvertible basic tangles

Invertible (braid type) basic tangles

U U1 2 U2U1U1U2

σ σ σ σ1 1 2 2
-1-1

σ1 2 σ1
-1 UU 2 σ2 1 σ2

-1U 1U

σ1 σ2 -1
1σ σ2 2σ-1

σ

1σ

1
-1σ2

-1 σ2 σ1 σ σ σ2 σ1 σ2 σ1

2σ1
-1

1σ2U UU 1σ2 U1σ2
-1 σ U σ1 σ1U2σ1

-1 σ1
-1U2σ1 σ1

-1U221 σ1
-1

σ  σ  σ σ  σ  σ σ  σ  σ

σ  σ  σ σ  σ  σ σ  σ  σ σ  σ  σ σ  σ  σ σ  σ  σ

1 12 1 2 1
-1-1

1 2

-1 -1
111111111111 2 2 2 2 2 2 2 2

-1 -1 -1 -1-1 -1 -1 -1  σ σ σ σ1 2
-1 -1

-1-1-1-1
12

-1 -1σ  σ σ2
-1

21

1

Fig. 2.8
The simplest 4-tangles which cannot be distinguished by 3-colorings for

which 3-move equivalence is not yet established are illustrated in Fig.2.9. As
for (2, 2)-moves, the equivalence of 2-tangles in Fig.2.10 is an open problem28.

equivalent?

3-move

Fig. 2.9

28The 4-tangles in Fig.2.9 are not 3-move equivalent. This follows from the fact that
the Borromean rings and the Chen’s link are not 3-move equivalent to trivial links [D-P-1,
D-P-3]. Similarly, the fact that 2-tangles of Fig.2.10 are not (2, 2)-move equivalent follows
from the result proven in [D-P-2, D-P-3] that the knot 949 and the link 9240 are not (2, 2)-
move equivalent to the trivial link of three components.
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equivalent?

(2,2)

Fig. 2.10
A weaker version of the Montesinos-Nakanishi 3-move conjecture has been

proved by Bronek Wajnryb in 1985 [Wa-1, Wa-2] (compare Theorem 1.16).

Theorem 2.10 (Wajnryb) Every link can be reduced to a trivial link by a
finite number of ±3-moves and ∆4

5-moves.

Let me complete this talk by mentioning two generalizations of the Fox
k-colorings.

In the first generalization we consider any commutative ring with the
identity, R, instead of Zk. We construct ColRT in the same way as before
with the relation at each crossing, Fig.2.1, having the form c = 2a − b in
R. The skew-symmetric form φ on R2n−1, the symplectic form φ̂ on R2n−2

and the homomorphisms ψ and ψ̂ are defined in the same manner as before.
Theorem 2.4 generalizes as follows ([D-J-P]):

Theorem 2.11 LetR be a Principal Ideal Domain (PID). Then, ψ̂(ColRT/R)
is a virtual Lagrangian submodule of R2n−2 with the symplectic form φ̂. That
is, ψ̂(ColRT/R) is a finite index submodule of a Lagrangian in R2n−2.

This result can be used to analyze embeddability of tangles in links. It gives
an alternative proof of Theorem 2.2 in [P-S-W] in the case of the 2-fold cyclic
cover of B3 branched over a tangle.

Example 2.12 Consider the pretzel tangle T = (p,−p), Fig.2.11, and the
ring R = Z. Then the virtual Lagrangian ψ̂(ColZT/Z) has index p. Namely,
coloring of T , as illustrated in Fig.2.11, forces us to have a = b and modulo
trivial colorings the image ψ̂(ColZT/Z) is generated by the vector (0, p, p, 0) =
p(e2 +e3). The symplectic space (Z4−2, φ̂) has a basis (e1 +e2, e2 +e3). Thus,
ψ̂(ColZT/Z) is a virtual Lagrangian of index p.
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p(x−a)+a

a x b

p(x−a)+x

p(x−b)+x p(x−b)+b

Fig. 2.11; p = 5

Corollary 2.13
If ψ̂(ColZT/Z) is a virtual Lagrangian of index p > 1, then T does not embed
in the trivial knot.

The second generalization leads to racks and quandles [Joy, F-R], but we
restrict our remarks to the abelian case – Alexander-Burau-Fox colorings29.
An ABF-coloring uses colors from a ring R with an invertible element t (e.g.,
R = Z[t±1]). The relation in Fig.2.1 is modified to the relation c = (1−t)a+tb
in R at each crossing of an oriented link diagram; see Fig. 2.12.

a c=(1-t)a+tb

(1-t    )a+t    c=b-1 -1

Fig. 2.12

29The related approach was first outlined in the letter of J. W. Alexander to O. Veblen,
1919 [A-V]. Alexander was probably influenced by Poul Heegaard’s dissertation, 1898,
which he reviewed for the French translation [Heeg]. Burau was considering a braid rep-
resentation, but locally his relation was the same as that of Fox. According to J. Birman,
Burau learned about the representation from Reidemeister or Artin [Ep], p.330.
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The space R2n−2 has a natural Hermitian structure [Sq], but one can
also find a symplectic structure and prove a version of Theorem 2.11 in this
setting [D-J-P].

3 Historical Introduction to Skein Modules

In my last talk of the conference, I will discuss skein modules, or as I prefer to
say more generally, algebraic topology based on knots. It was my mind’s child,
even if the idea was also conceived by other people (most notably Vladimir
Turaev), and was envisioned by John H. Conway (as “linear skein”) a decade
earlier. Skein modules have their origin in the observation made by Alexander
[Al], that his polynomials (Alexander polynomials) of three links, L+, L− and
L0 in R3 are linearly related (Fig.3.2).

For me it started in Norman, Oklahoma in April of 1987, when I was
enlightened to see that the multivariable version of the Jones-Conway (Hom-
flypt) polynomial analyzed by Jim Hoste and Mark Kidwell is really a module
of links in a solid torus (or more generally, in the connected sum of solid tori).

I would like to discuss today, in more detail, skein modules related to the
(deformations) of 3-moves and the Montesinos-Nakanishi 3-move conjecture,
but first I will give the general definition and I will make a short tour of the
world of skein modules.

Skein Module is an algebraic object associated with a manifold, usually
constructed as a formal linear combination of embedded (or immersed) sub-
manifolds, modulo locally defined relations. In a more restricted setting
a skein module is a module associated with a 3-dimensional manifold, by
considering linear combinations of links in the manifold, modulo properly
chosen (skein) relations. It is the main object of the algebraic topology based
on knots. When choosing relations one takes into account several factors:

(i) Is the module we obtain accessible (computable)?

(ii) How precise are our modules in distinguishing 3-manifolds and links in
them?

(iii) Does the module reflect topology/geometry of a 3-manifold (e.g., sur-
faces in a manifold, geometric decomposition of a manifold)?

(iv) Does the module admit some additional structure (e.g., filtration, gra-
dation, multiplication, Hopf algebra structure)? Is it leading to a Topo-
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logical Quantum Field Theory (TQFT) by taking a finite dimensional
quotient?

One of the simplest skein modules is a q-deformation of the first homology
group of a 3-manifold M , denoted by S2(M ; q). It is based on the skein
relation (between oriented framed links in M): L+ = qL0; it also satisfies
the framing relation L(1) − qL, where L(1) denote a link obtained from L by
twisting the framing of L once in the positive direction. This easily defined
skein module “sees” already nonseparating surfaces in M . These surfaces are
responsible for torsion part of our skein module [P-10].

There is a more general pattern: most of the analyzed skein modules
reflect various surfaces embedded in a manifold.

The best studied skein modules use skein relations which worked success-
fully in the classical Knot Theory (when defining polynomial invariants of
links in R3).

(1) The Kauffman bracket skein module, KBSM.
The skein module based on the Kauffman bracket skein relation, L+ =
AL−+A−1L∞, and denoted by S2,∞(M), is the best understood among
the Jones type skein modules. It can be interpreted as a quantization
of the co-ordinate ring of the character variety of SL(2,C) representa-
tions of the fundamental group of the manifold M , [Bu-2, B-F-K, P-S].
For M = F × [0, 1], KBSM is an algebra (usually noncommutative). It
is finitely generated algebra for a compact F [Bu-1], and has no zero
divisors [P-S]. The center of the algebra is generated by boundary com-
ponents of F [B-P, P-S]. Incompressible tori and 2-spheres in M yield
torsion in KBSM; it is the question of fundamental importance whether
other surfaces could yield torsion as well. The Kauffman bracket skein
modules of the exteriors of 2-bridge knots have been recently (April
2004) computed by Thang Le [Le]. For a 2-bridge (rational) knot K p

m

the skein module is the free Z[A±1] module with the basis {xiyj}, 0 ≤ i,
0 ≤ j ≤ p−1

2
, where xiyj denotes the element of the skein module rep-

resented by the link composed of i parallel copies of the meridian curve
x and j parallel copies of the curve y; see Fig.3.1. Le’s theorem gener-
alizes results in [Bu-3] and [B-L].
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x
y

Fig. 3.1

(2) Skein modules based on the Jones-Conway (Homflypt) relation.
v−1L+ − vL− = zL0, where L+, L−, L0 are oriented links (Fig.3.2).
These skein modules are denoted by S3(M) and generalize skein mod-
ules based on Conway relation which were hinted at by Conway. For
M = F × [0, 1], S3(M) is a Hopf algebra (usually neither commutative
nor co-commutative), [Tu-2, P-6]. S3(F × [0, 1]) is a free module and
can be interpreted as a quantization [H-K, Tu-1, P-5, Tu-2]. S3(M) is
related to the algebraic set of SL(n,C) representations of the funda-
mental group of the manifold M , [Si].

+L -L L 0

Fig. 3.2

(3) Skein modules based on the Kauffman polynomial relation.
L+1+L−1 = x(L0+L∞) (see Fig.3.3) and the framing relation L(1)−aL.
This module is denoted by S3,∞ and is known to be free for M =
F × [0, 1].

(4) Homotopy skein modules.
In these skein modules, L+ = L− for self-crossings. The best stud-
ied example is the q-homotopy skein module with the skein relation
q−1L+ − qL− = zL0 for mixed crossings. For M = F × [0, 1] it is a
quantization, [H-P-1, Tu-2, P-11], and as noted by Uwe Kaiser they
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can be almost completely understood using singular tori technique in-
troduced by Xiao-Song Lin.

(5) Skein modules based on Vassiliev-Gusarov filtration.
We extend the family of knots, K, by allowing singular knots, and re-
solve a singular crossing by Kcr = K+−K−. These allow us to define the
Vassiliev-Gusarov filtration: ... ⊂ C3 ⊂ C2 ⊂ C1 ⊂ C0 = RK, where
Ck is generated by knots with k singular crossings. The kth Vassiliev-
Gusarov skein module is defined to be a quotient: Wk(M) = RK/Ck+1.
The completion of the space of knots with respect to the Vassiliev-
Gusarov filtration, R̂K, is a Hopf algebra (for M = S3). Functions
dual to Vassiliev-Gusarov skein modules are called finite type or Vas-
siliev invariants of knots, [P-7].

(6) Skein modules based on relations deforming n-moves.
Sn(M) = RL/(b0L0 + b1L1 + b2L2 + ...+ bn−1Ln−1). In the unoriented
case, we can add to the relation the term b∞L∞ to get Sn,∞(M), and
also, possibly, a framing relation. The case n = 4, on which I am work-
ing with my students will be described, in greater detail in a moment.

Examples (1)-(5) gave a short description of skein modules studied exten-
sively until now. I will now spend more time on two other examples which
only recently have been considered in more detail. The first example is based
on a deformation of the 3-move and the second on the deformation of the
(2, 2)-move. The first one has been studied by my students Tsukamoto and
Veve. I denote the skein module described in this example by S4,∞ since it
involves (in the skein relation) 4 horizontal positions and the vertical (∞)
smoothing.

Definition 3.1 Let M be an oriented 3-manifold and let Lfr be the set of
unoriented framed links in M (including the empty link, ∅), and let R be any
commutative ring with identity. Then we define the (4,∞) skein module as:
S4,∞(M ;R) = RLfr/I(4,∞), where I(4,∞) is the submodule of RLfr generated
by the skein relation:
b0L0 + b1L1 + b2L2 + b3L3 + b∞L∞ = 0 and the framing relation:
L(1) = aL where a, b0, b3 are invertible elements in R and b1, b2, b∞ are any
fixed elements of R (see Fig.3.3).
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Fig. 3.3

The generalization of the Montesinos-Nakanishi 3-move conjecture says
that S4,∞(S3, R) is generated by trivial links30 and that for n-tangles our
skein module is generated by f(n, 3) basic tangles (with possible trivial com-
ponents). This would give a generating set for our skein module of S3 or D3

with 2n boundary points (an n-tangle). In [P-Ts] we analyzed extensively the
possibility that trivial links, Tn, are linearly independent. This may happen
if b∞ = 0 and b0b1 = b2b3. These lead to the following conjecture:

Conjecture 3.2 (1) There is a polynomial invariant of unoriented links
in S3, P1(L) ∈ Z[x, t], which satisfies:

(i) Initial conditions: P1(Tn) = tn, where Tn is a trivial link of n
components.

(ii) Skein relation: P1(L0) + xP1(L1) − xP1(L2) − P1(L3) = 0, where
L0, L1, L2, L3 is a standard, unoriented skein quadruple (Li+1 is
obtained from Li by a right-handed half-twist on two arcs involved
in Li; compare Fig.3.3).

(2) There is a polynomial invariant of unoriented framed links, P2(L) ∈
Z[A±1, t] which satisfies:

(i) Initial conditions: P2(Tn) = tn,

(ii) Framing relation: P2(L
(1)) = −A3P2(L) where L(1) is obtained

from a framed link L by a positive half twist on its framing.

(iii) Skein relation: P2(L0)+A(A2 +A−2)P2(L1)+(A2 +A−2)P2(L2)+
AP2(L3) = 0.

30The counterexamples to the Montesinos-Nakanishi 3-move conjecture, [D-P-1], can be
used to show that trivial links “generically” do not generate S4,∞(S3, R). This happen,
for example, if there is a proper ideal I ∈ R such that b1, b2 and b∞ are in I.
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The above conjectures assume that b∞ = 0 in our skein relation. Let us
consider, for a moment, the possibility that b∞ is invertible in R. Using the
“denominator” of our skein relation (Fig.3.4) we obtain the relation which
allows us to compute the effect of adding a trivial component to a link L (we
write tn for the trivial link Tn):

(∗) (a−3b3 + a−2b2 + a−1b1 + b0 + b∞t)L = 0

When considering the “numerator” of the relation and its mirror image
(Fig.3.4) we obtain formulas for Hopf link summands, and because the un-
oriented Hopf link is amphicheiral we can eliminate it from our equations to
get the following formula (**):

b3(L#H) + (ab2 + b1t + a−1b0 + ab∞)L = 0.

b0(L#H) + (a−1b1 + b2t+ ab3 + a2b∞)L = 0.

(∗∗) ((b0b1−b2b3)t+(a−1b20−ab
2
3)+(ab0b2−a

−1b1b3)+b∞(ab0−a
2b3))L = 0.

a     L
-1

a     L
-1

a     L
-1

a    L2

L#H aL tL

a      L
-2-3
a      L tLL

LaL L#H

aL

Fig. 3.4

It is possible that (∗) and (∗∗) are the only relations in the module. More
precisely, we ask whether S4,∞(S3;R) is the quotient ring R[t]/(I) where ti

represents the trivial link of i components and I is the ideal generated by (∗)
and (∗∗) for L = t. The interesting substitution which satisfies the relations
is b0 = b3 = a = 1, b1 = b2 = x, b∞ = y. This may lead to a new polynomial
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invariant (in Z[x, y]) of unoriented links in S3 satisfying the skein relation
L3 + xL2 + xL1 + L0 + yL∞ = 0.31

What about the relations to the Fox colorings? One such a relation, that
was already mentioned, is the use of 3-colorings to estimate the number of ba-
sic n-tangles (by

∏n−1
i=1 (3i+1)) for the skein module S4,∞. I am also convinced

that S4,∞(S3;R) contains full information about the space of Fox 7-colorings.
It would be a generalization of the fact that the Kauffman bracket polyno-
mial contains information about 3-colorings and the Kauffman polynomial
contains information about 5-colorings. In fact, François Jaeger told me that
he knew how to form a short skein relation (of the type (p+1

2
,∞)) involving

spaces of p-colorings. Unfortunately, François died prematurely in 1997 and
I do not know how to prove his statement32.

Finally, let me shortly describe the skein module related to the defor-
mation of (2, 2)-moves. Because a (2, 2)-move is equivalent to the rational
5
2
-move, I will denote the skein module by S 5

2

(M ;R).

Definition 3.3 Let M be an oriented 3-manifold. Let Lfr be the set of un-
oriented framed links in M (including the empty link, ∅) and let R be any
commutative ring with identity. We define the 5

2
-skein module as S 5

2

(M ;R) =

RLfr/(I 5

2

) where I 5

2

is the submodule of RLfr generated by the skein relation:

(i) b2L2 + b1L1 + b0L0 + b∞L∞ + b−1L−1 + b
−

1

2

L
−

1

2

= 0,
its mirror image:
(̄i) b′2L2 + b′1L1 + b′0L0 + b′

∞
L∞ + b′

−1L−1 + b′
−

1

2

L
−

1

2

= 0

and the framing relation:
L(1) = aL, where a, b2, b

′

2, b− 1

2

, b′
−

1

2

are invertible elements in R and b1, b
′

1, b0, b
′

0,

b−1, b
′

−1, b∞, and b′
∞

are any fixed elements of R. The links L2, L1, L0, L∞, L−1,
L 1

2

and L
−

1

2

are illustrated in Fig.3.5.33

31This speculation should be modified keeping in mind the fact that the Montesinos-
Nakanishi 3-move conjecture does not hold [D-P-1].

32If colp(L) = |Colp(L)| denotes the order of the space of Fox p-colorings of the link L,
then among p + 1 links L0, L1, ..., Lp−1, and L∞, p of them has the same order colp(L)
and one has its order p times larger [P-3]. This leads to the relation of type (p,∞). The
relation between Jones polynomial (or the Kauffman bracket) and col3(L) has the form:
col3(L) = 3|V (eπi/3)|2 and the formula relating the Kauffman polynomial and col5(L) has
the form: col5(L) = 5|F (1, e2πi/5 + e−2πi/5)|2. This seems to suggest that the formula
discovered by Jaeger involved Gaussian sums.

33Our notation is based on Conway’s notation for rational tangles. However, it differs
from it by a sign change. The reason is that the Conway convention for a positive crossing
is generally not used in the setting of skein relations.
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Fig. 3.5

If we rotate the figure from the relation (i) we obtain:
(i’) b

−
1

2

L2 + b−1L1 + b∞L0 + b0L∞ + b1L−1 + b2L−
1

2

= 0

One can use (i) and (i’) to eliminate L
−

1

2

and to get the relation:

(b22− b2
−

1

2

)L2 + (b1b2 − b−1b− 1

2

)L1 + ((b0b2− b∞b− 1

2

)L0 + (b−1b2− b1b− 1

2

)L−1 +

(b∞b2 − b0b− 1

2

)L∞ = 0.

Thus, either we deal with the shorter relation (essentially the one in the
fourth skein module described before) or all coefficients are equal to 0 and
therefore (assuming that there are no zero divisors in R) b2 = εb

−
1

2

, b1 = εb−1,

and b0 = εb∞. Similarly, we would get: b′2 = εb′
−

1

2

, b′1 = εb′
−1, and b′0 = εb′

∞
,

where ε = ±1. Assume, for simplicity, that ε = 1. Further relations among
coefficients follow from the computation of the Hopf link component using the
amphicheirality of the unoriented Hopf link. Namely, by comparing diagrams
in Figure 3.6 and their mirror images we get

L#H = −b−1
2 (b1(a + a−1) + a−2b2 + b0(1 + T1))L

L#H = −b′
−1
2 (b′1(a+ a−1) + a2b′2 + b′0(1 + T1))L.

Possibly, the above equalities give the only other relations among coefficients
(in the case of S3). I would present below the simpler question (assuming
a = 1, bx = b′x and writing tn for Tn).
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Question 3.4 Is there a polynomial invariant of unoriented links in S3,
P 5

2

(L) ∈ Z[b0, b1, t], which satisfies the following conditions?

(i) Initial conditions: P 5

2

(Tn) = tn, where Tn is a trivial link of n compo-
nents.

(ii) Skein relations

P 5

2

(L2)+ b1P 5

2

(L1)+ b0P 5

2

(L0)+ b0P 5

2

(L∞)+ b1P 5

2

(L−1)+P 5

2

(L
−

1

2

) = 0.

P 5

2

(L−2)+ b1P 5

2

(L−1)+ b0P 5

2

(L0)+ b0P 5

2

(L∞)+ b1P 5

2

(L1)+P 5

2

(L 1

2

) = 0.

Notice that by taking the difference of our skein relations one gets the inter-
esting identity:

P 5

2

(L2) − P 5

2

(L−2) = P 5

2

(L 1

2

) − P 5

2

(L
−

1

2

).

Nobody has yet studied the skein module S 5

2

(M ;R) seriously so everything
that you can find will be a new research, even a table of the polynomial
P 5

2

(L) for small links, L.
I wish you luck!
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4 Added in proof – the Montesinos-Nakanishi

3-move conjecture

A preliminary calculation performed by my student Mietek Da̧bkowski (Febru-
ary 21, 2002) shows that the Montesinos-Nakanishi 3-move conjecture does
not hold for the Chen link (Fig.1.14). Below is the text of the abstract we
have sent for the Knots in Montreal conference organized by Steve Boyer and
Adam Sikora in April 2002.

Authors: Mieczys law Da̧bkowski, Józef H. Przytycki (GWU)
Title: Obstructions to the Montesinos-Nakanishi 3-move conjecture.
Yasutaka Nakanishi asked in 1981 whether a 3-move is an unknotting oper-
ation. This question is called, in the Kirby’s problem list, the Montesinos-
Nakanishi Conjecture. Various partial results have been obtained by Q.Chen,
Y.Nakanishi, J.Przytycki and T.Tsukamoto. Nakanishi and Chen presented
examples which they couldn’t reduce (the Borromean rings and the closure
of the square of the center of the fifth braid group, γ̄, respectively). The only
tool, to analyze 3-move equivalence, till 1999, was the Fox 3-coloring (the
number of Fox 3-colorings is unchanged by a 3-move). It allowed to distin-
guish different trivial links but didn’t separate Nakanishi and Chen examples
from trivial links. The group of 3-colorings of a link L corresponds to the
first homology group with Z3 coefficients of the double branched cover of a
link L, M

(2)
L , i.e.

Tri(L) = H1(M
(2)
L , Z3) ⊕ Z3

We find more delicate invariants of 3-moves using homotopy in place homol-
ogy and we consider the fundamental group of M

(2)
L .

We define an nth Burnside group of a link as the quotient of the funda-
mental group of the double branched cover of the link divided by all relations
of the form an = 1. For n = 2, 3, 4, 6 the quotient group is finite34.

34Burnside groups of links are instances of groups of finite exponents. Our method of
analysis of tangle moves rely on the well developed theory of classical Burnside groups
and the associated Lie rings. A group G is of a finite exponent if there is a finite integer
n such that gn = e for all g ∈ G. If, in addition, there is no positive integer m < n
such that gm = e for all g ∈ G, then we say that G has an exponent n. Groups of finite
exponents were considered for the first time by Burnside in 1902 [Bur]. In particular,
Burnside himself was interested in the case when G is a finitely generated group of a fixed
exponent. He asked the question, known as the Burnside Problem, whether there exist
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The third Burnside group of a link is unchanged by 3-moves35.
In the proof we use the ”core” presentation of the group from the diagram;

that is arcs are generators and each crossing gives a relation c = ab−1a where
a corresponds to the overcrossing and b and c to undercrossings.

The Montesinos-Nakanishi 3-move conjecture does not hold for Chen’s
example γ̂.

To show that γ̂ has different third Burnside group than any trivial link
it suffices to show that the following element, P , of the Burnside free group
B(4, 3) = {x, y, z, t : (a)3} is nontrivial: P = uwtu−1w−1t−1 where
u = xy−1zt−1 and w = x−1yz−1t.

With the help of GAP it has been achieved!! (Feb. 21, 2002).
We have confirmed our calculation using also computer algebra system

Magnus.
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