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ATIYAH-PATODI-SINGER BOUNDARY CONDITION AND A
SPLITTING FORMULA OF A SPECTRAL FLOW

KENRO FURUTANI

Abstract. We describe a relation between Atiyah-Patodi-Singer boundary condition
and a global elliptic boundary condition which naturally appears in formulating a split-
ting formula for a spectral flow, when we decompose the manifold into two components.
Then we give a variant of the splitting formula with the Hörmander index as a correction
term.
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1. Introduction

In the paper [FO] we formulated and proved a splitting formula of a spectral flow
for a continuous family of first order selfadjoint elliptic differential operators {At}t∈[0,1]
defined on a closed manifold M . This is an addition formula of a spectral flow when we
decompose a manifold into two components along a hypersurface Σ, M = M− ∪Σ M+,
∂M± = Σ. For such a family {At} considered on the whole closed manifoldM , an integer,
called spectral flow, is well defined, and to “observe” this quantity we cut the manifold
along a hypersurface, then we can “observe” from the hypersurface a quantity “Maslov
index” which is a curve of boundary data of solutions of operators. This quantity can
be understood as the spectral flow. This is just a spectral flow formula([Yo], [Ni]) where
manifolds need not be separated into two components. If the manifold is separated into
two parts by the hypersurface, then we will have two Maslov indexes which together give
the whole information of the spectral flow. For this observation we must make clear
which family we are observing, i.e., to get a family of selfadjoint Fredholm extensions we
must impose a suitable elliptic boundary condition on the family {At} when we restrict
the operators on each component M±. This condition appears in a natural way in our
formulation to write down the splitting formula and reflects the influence from one side
to other side. On the other hand Atiyah-Patodi-Singer boundary condition is described
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based on the boundary data. Nevertheless these two are relating each other in the case
of the operators of the product form near the hypersurface.

The purpose of this paper is to describe a relation between our global elliptic boundary
condition and Atiyah-Patodi-Singer boundary condition. There are several such split-
ting formulas ([CLM2], [DK], [KL],[Ta],[Ni]) and the boundary condition treated there is
mostly Atiyah-Patodi-Singer boundary condition. So the result in this paper will give us
a sight of our global elliptic boundary condition for operators satisfying suitable analytic
assumptions.

We follow the theory of symplectic Hilbert spaces, especially of the Fredholm-Lagrangian-
Grassmannian and the Maslov index in the infinite dimension which were discussed in the
papers [Fu] and [FO] precisely(also see [Go], [CLM1] and [RS]).

In §2 we explain a global elliptic boundary condition appearing in the splitting formula
for a spectral flow and state a relation between it and Atiyah-Patodi-Singer boundary
condition in terms of the Fredholm-Lagrangian-Grassmannian.

In §3, first we recall a L2-reduction theorem [Fu] and by applying this we give a proof
of Theorem (2.7).

In §4 as an application of Theorem (2.7) we give a variant of a splitting formula of a
spectral flow with Hörmander index as a correction term.

2. A global elliptic boundary condition

In this section we explain an elliptic boundary condition we introduced in [FO].
Let A be a first order selfadjoint elliptic differential operator defined on a real vector

bundle E on a closed manifold M . Let Σ be a hypersurface of M along which M is
separated into two components M±, M = M− ∪Σ M+, ∂M± = Σ, and we denote the
first order Sobolev space on M (resp. M±) taking values in the real vector bundle E

by H1(M,E) (resp. H1(M±,E|M±
)). For the subspace in H1(M±,E|M±

) with vanishing
boundary values we denote it by H1

0 (M±,E|M±). These are the domains of the minimal
closed extensions of the operators A considered on C∞

0 (M±\Σ,E|M±\Σ) and we denote
them by D

±
m

= H1
0 (M±,E|M±

). Then we denote by A ∗
± their adjoint operators considered

on M± and by D
±
M

their domains of definitions, i.e., f ∈ D
±
M

if f ∈ L2(M±,E|M±) and
A(f) ∈ L2(M±,E|M±

) in the distribution sense.
We must put two assumptions (a1) and (a2) on the selfadjoint elliptic operator A:

(a1): A satisfies the unique continuation property with respect to the hypersurface
Σ, that is,

(2.1) Ker(A ∗
± ) ∩D

±
m

= {0}.

(a2): On a tubular neighborhood N ∼= (−1, 1)×Σ the operator A is of the product
form, that is,

(2.2) A = σ
( ∂

∂u
+B0

)
,

where σ is a bundle map on E|N which does not depend on the normal variable u ∈ (−1, 1),
the operator B0 is a selfadjoint elliptic operator on Σ and also does not depend on the
normal variable u.

We identify N ∩M−
∼= (−1, 0]× Σ and N ∩M+

∼= [0, 1)× Σ.
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The selfadjointness of the operator A implies that

σ2 = − Id, tσ = −σ(2.3)

σ ◦B0 +B0 ◦ σ = 0,(2.4)

where the transpose tσ is taken with respect to a suitable metric on the vector bundle
E. We denote the inner product on the L2 sections of E by < ·, · >. Then σ defines an
almost complex structure and a compatible symplectic structure on L2(Σ,E|Σ)) = L2(Σ).

Let D0 be a subspace in H1(M−,E|M−) defined by

D0 =
{
f ∈ H1(M−,E|M−

)
∣∣ ∃f̃ ∈ H1(M,E) such that f̃ |M−

= f, and A(f) = 0 on M+

}
.

Hereafter we will state properties only for the case M−, but shall use the corresponding
results for M+, if necessary.

We denote the restriction of A ∗
− to D0 by AD0

, then under the two assumptions (a1)
and (a2) we have

Proposition 2.1. The operator AD0
satisfies the inequality:

(2.5) ‖f‖1 ≤ c(‖AD0
(f)‖+ ‖f‖), ∀f ∈ D0

with a positive constant c > 0, where ‖f‖1 denotes the first order Sobolev norm. And so
AD0

is selfadjoint and has compact resolvents.

This property is basic to state Theorem (2.7) below. We already made use of this
property in our paper ([FO]). The proof is given upon L2-reduction theorem of the Maslov
index in the infinite dimension. In the next section we explain some part of a proof of this
proposition, and together with the help of Rellich’s Theorem we prove Theorem (2.7).

Remark 2.2. If A is invertible on H1(M,E), then the same holds for AD0
as in the above

proposition without assumptions (a1) and (a2), because we have

‖f‖H1(M−,EM−
) ≤ C(‖f‖H1(M,E)+‖f‖L2(M)) = C(‖f‖H1(M−,E|M−

)+‖f‖L2(M)) ≤ C ′‖f‖H1(M−,E|M−
)

for f ∈ H1(M,E) satisfying A(f) = 0 on M+.

Let {ℓk}k∈Z\{0} be the eigenvalues of the operator B0 and we denote corresponding or-
thonormal eigensections by {ϕk}. From the properties (2.3) and (2.4) we have ℓk =
−ℓ−k > 0 for k = N0 + 1, N0 + 2, · · · with N0 = 1/2 · dimKer(B0) (see Remark (2.4)
below) and ℓk = 0 for 0 < |k| ≤ N0.

For a section ϕ on Σ let

ϕ =
∑

k∈Z\{0}

akϕk

be the eigensection-expansion, then the Sobolev space Hs(Σ,E|Σ) of order s ∈ R on Σ is
characterized as

Hs(Σ,E|Σ) =
{
ϕ =

∑

k∈Z\{0}

akϕk

∣∣ ∑

k∈Z\{0}

|ak|
2|ℓk|

2s <∞
}
.

Let D 0
APS be a subspace in H1(M−,E|M−

) such that

D
0
APS(2.6)

=
{
f ∈ H1(M−,E|M−

)
∣∣ if f |Σ =

∑

k∈Z\{0}

akϕk, then a−k = 0 for k = 1, 2, 3, · · ·
}
,



4 KENRO FURUTANI

and we denote the restriction of A ∗
− to D

0
APS by AD 0

APS
. This non-local boundary condi-

tion (2.6) is called “Atiyah-Patodi-Singer boundary condition”. Then

Proposition 2.3. ([APS]) The operator AD 0
APS

defined on D
0
APS is a selfadjoint operator

with compact resolvents.

Now let β− = D
−
M
/D−

m
be the space of boundary values. Here the maximal domain

D
−
M

is equipped with the norm ‖ · ‖G given by the graph inner product:

< f, g >G=< f, g > + < A ∗
− (f),A ∗

− (g) > .

The space β− has a structure of a symplectic Hilbert space with the symplectic form

(2.7) ω([f ], [g]) =< A ∗
− (f), g > − < f,A ∗

− (g) >, f, g ∈ D
−
M ,

and is realized in the distribution space on Σ:

β− =
{
f ∈ H−1/2(Σ,E|Σ)

∣∣ f =
∑

k∈Z\{0}

ckϕk, with
∑

k>0

|ck|
2ℓk <∞ and

∑

k<0

|ck|
2|ℓk|

−1 <∞
}

=
{
f ∈ H1/2(Σ,E|Σ)

∣∣ f =
∑

k>0

ckϕk, with
∑

k>0

|ck|
2ℓk <∞

}

+
{
f ∈ H−1/2(Σ,E|Σ)

∣∣ f =
∑

k<0

ckϕk, with
∑

k<0

|ck|
2|ℓk|

−1 <∞
}

= θ−+ + θ−− .

For the determination of the space β− see [Ho1] and [APS].

Remark 2.4. By the conditions (a1) and (a2) we know that Ker(B0) is a finite dimen-
sional symplectic subspace of β−, so that we choose eingensections {ϕk} for 0 < |k| ≤ N0

in such a way that the subspaces spanned by {ϕk}−N0≤k<0 and {ϕk}0<k≤N0
are mutually

transversal Lagrangian subspaces in Ker(B0).

Remark 2.5. Of course for smooth sections of E|Σ(and also for L2-sections) the symplectic
structure defined by σ coincides with ω defined in (2.7).

Let γ− : D
−
M

→ β− be the projection map, then the image γ−(Ker(A ∗
− )) is a La-

grangian subspace and the pairs
(
γ−(Ker(A ∗

− )), γ−(D 0
APS)

)
and

(
γ−(Ker(A ∗

− )), γ−(D0)
)

are Fredholm pairs. The spaces γ−
(
Ker(A ∗

− )
)
is called Cauchy data space. Further, for

each Lagrangian subspace λ ⊂ β− the operator A ∗
−
∣∣(γ−)−1(λ)

is a selfadjoint realization

and if
(
λ, γ−(Ker(A ∗

− ))
)
is a Fredholm pair, then A ∗

−
∣∣(γ−)−1(λ)

is a selfadjoint Fredholm

operator.

Remark 2.6. Note that the Lagrangian property of the Cauchy data space γ−
(
Ker(A ∗

− )
)

would not be trivial. To prove this property we rely on the existence of at least one
selfadjoint realization of A |D−

m

(= restriction of A ∗
− to a suitable subspace in D

−
M
) with

compact resolvents (or a unbounded selfadjoint Fredholm extension). For our case this
realization is given by the operator AD 0

APS
, and for which proof we use the assumption

(a2).
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We denote by FΛλ(β
−) the space of Lagrangian subspaces µ in β− such that (µ, λ) is

a Fredholm pair:

FΛλ(β
−) =

{
µ ⊂ β−

∣∣µ is a Lagrangian subspace and (µ, λ) is a Fredholm pair
}
.

Now we have

Theorem 2.7.

(2.8) FΛγ−(D0)(β
−) = FΛγ−(D 0

APS
)(β

−),

more precisely the orthogonal projection operators onto the subspace γ−(D0) and that onto
the subspace γ−(D 0

APS) = θ−+ differ by a compact operator.

We prove this in the next section.

Remark 2.8. Let H be a symplectic Hilbert space and we regard H as a complexification
of a Lagrangian subspace λ. Then a Lagrangian subspace µ is of the form U(λ) = µ
with a unitary operator U of the form Id+ compact operator, then FΛλ(H) = FΛµ(H).
Also this property is equivalent to the condition that the difference of the orthogonal
projection operators onto the Lagrangian subspaces λ and µ is compact. For such two
Lagrangian subspaces λ and µ and two arbitrary Lagrangian subspaces ν0 and ν1 in
FΛλ(H) = FΛµ(H) we have a well-defined integer σ(ν0, ν1;λ, µ), called Hörmander index.
This is the difference of the Maslov indexes

σH
(
ν0, ν1;λ, µ

)
= Mas

(
{c(t)}, λ

)
−Mas

(
{c(t)}, µ

)
,

where the path {c(t)} is in FΛλ(H) connecting ν0 and ν1 and the difference does not
depend on any such paths. Here the Maslov index Mas

(
{ct}, λ

)
is , in a sense, the

intersection number with the “Maslov cycle” Mλ =
{
µ ∈ FΛλ(H)

∣∣µ ∩ λ 6= {0}
}
([Ho2],

[Fu]).

3. Symplectic reduction theorem

In this section after recalling a symplectic reduction theorem ([Fu]) we prove Theorem
(2.7).

Let (B, ωB) and (L, ωL) be two symplectic Hilbert spaces (ωB is the symplectic form
and so on) with decompositions by Lagrangian subspaces θ−, θ+, L− and L+ (Polarized
symplectic Hilbert space):

(3.1) B = θ− + θ+, L = L− + L+.

We assume that there are continuous injective maps i+ : L+ → θ+ and i− : θ− → L−

having dense images such that

(3.2) ωB(i+(a), x) = ωL(a, i−(x)) for any x ∈ θ− and a ∈ L+.

Then

Proposition 3.1. ([Fu]) There is a continuous map τ : FΛθ−(B) → FΛL−(L) such that
for any continuous curve {c(t)}t∈[0,1] in FΛθ−(B)

Mas
(
{c(t)}, θ−

)
= Mas

(
{τ(c(t))}, L−

)
.
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The map τ is defined in the following way:

τ(ν) =
{
b+ a ∈ L = L+ + L−

∣∣ ∃x ∈ θ− such that i+(b) + x ∈ ν and a = i−(x)
}
.

For any decomposition of θ− = F + F ′ by closed subspaces F (dimF < +∞) and
F ′, we can decompose L+ by closed subspaces in such a way that L+ = G + G′ with
dimG = dimF and G + i−(F ) is a symplectic subspace in L. Also in this case the

subspace F + i+(G) is a symplectic subspace in B. Moreover the subspaces F + i+(G′)

and G+ i−(F ′) are Lagrangian subspaces.

Then by replacing θ− with F ′+ i+(G), θ+ with F + i+(G′), L− with G+ i+(F ′) and L+

with i−(F ) + G′ and also by replacing the maps i± in an obvious way we have a similar

situation as in (3.1) and (3.2). We shall denote these new maps by ĩ±, although the re-
sulting maps τ between Fredholm-Lagrangian-Grassmannians FΛθ−(B) = FΛF ′+i+(G)(B)
and FΛL−(L) = FΛG+i−(F ′)(L) coincides.

Note that the arguments above are guaranteed that the spaces B and L are Hilbert
spaces (see [KS] for symplectic Banach spaces).

We apply this proposition to the case B = β+ = θ++ + θ+− and L = β− = θ−+ + θ−− . Note
that the space β+ is defined as follows:

β+ =
{
f ∈ H−1/2(Σ,E|Σ) | f =

∑

k∈Z\{0}

ckϕk, with
∑

k>0

|ck|
2ℓ−1

k <∞ and

∑

k<0

|ck|
2|ℓk| <∞

}

=
{
f ∈ H−1/2(Σ,E|Σ)

∣∣ f =
∑

k>0

ckϕk, with
∑

k>0

|ck|
2ℓ−1

k <∞
}

+
{
f ∈ H1/2(Σ,E|Σ)

∣∣ f =
∑

k<0

ckϕk, with
∑

k<0

|ck|
2|ℓk| <∞

}

= θ++ + θ+− .

The maps i± here are given by inclusion maps.
Since (γ+(Ker(A ∗

+ )), θ+−) is a Fredholm pair, we can find a finite dimensional subspace
F in θ+− and a corresponding finite dimensional subspace G in θ−+ such that we have
decompositions

θ+− = F + F ′, θ−+ = G+G′

with suitable closed subspaces F ′ and G′ and that

F ′ + i+(G) and γ
+(Ker(A ∗

+ )) are transversal.

When we put F ′ + i+(G) = λ− and F + i+(G′) = λ+ we have a decomposition β+ =
λ+ + λ− with Lagrangian subspaces λ± and the Cauchy data space is expressed as a
graph of a continuous map K : λ+ → λ−. Then for such a Lagrangian subspace we have

τ(γ+(Ker(A ∗
+ ))) is the graph of the map ĩ− ◦ K ◦ ĩ+. Note here the maps ĩ± should be

defined in a suitable way according to the choices of the subspace F and G (for example,

ĩ+ is defined as i+ on F ′ and i −1
− on i−(G)).

Now the original maps i+ : θ−+ → θ++ and i− : θ+− → θ−− are compact operators by

Rellich’s Theorem and so the new maps ĩ± are also compact.
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Let us denote the orthogonal projection operator to a closed subspace E by PE. Then
the difference

(3.3) Pi+(F )+G′ −Pτ(Ker(A ∗
+

))

is a compact operator and the difference

(3.4) Pi+(F )+G′ − Pθ−
+

is a finite rank operator.
By the definition of the map τ we have γ−(D0) = τ(γ+(Ker(A ∗

+ ))), and (3.3) and
(3.4) imply that the difference of the orthogonal projection operators onto the subspaces
γ−(D 0

APS) = θ−+ and γ−(D0) is a compact operator.
So this gives us a proof of Theorem (2.7).

4. Cauchy data spaces and Hörmander index

Let L2(Σ) = L+ +L− be the polarization by L±, where L+ is the L2-completion of the
space spanned by {ϕk}k>0 and L− is the L2-completion of the space spanned by {ϕk}k<0.
Then by applying above arguments to the two pairs

(
β+ = β+

− + β+
+ , L2(Σ) = L− + L+

)

and
(
β− = β−

− + β−
+ , L2(Σ) = L− + L+

)
of polarized symplectic Hilbert spaces we have

four Lagrangian subspaces

γ±
(
Ker(A ∗

± )
)
∩ L2(Σ), L±

of L2(Σ) which satisfy following properties (h1) and (h2):

(h1) : γ±
(
Ker(A ∗

± )
)
∩ L2(Σ) and L∓ are Fredholm pairs,

(h2) : γ±
(
Ker(A ∗

± )
)
∩ L2(Σ) = U±(L±), where U± are unitary operators of

the form Id +compact operator.

Here we identify L2(Σ) ∼= L+ ⊗ C.
Now we can define the Hörmander index

(4.1) σH
(
γ+(Ker(A ∗

+ )) ∩ L2(Σ), L+; γ
−(Ker(A ∗

− )) ∩ L2(Σ), L−

)

of these four Lagrangian subspaces. Then its absolute value will express an asymmetry of
solution spaces of the operator A under the decomposition of M along a hypersurface Σ.
So, if there is a symmetry among these four Lagrangian subspaces, the value must vanish.
In fact

Proposition 4.1. Assume that σ
(
γ+(Ker(A ∗

+ ))∩L2(Σ)
)
= γ−

(
Ker(A ∗

− )
)
∩L2(Σ), then

the Hörmander index of these four Lagrangian subspaces vanishes:

σH
(
γ+(Ker(A ∗

+ )) ∩ L2(Σ), L+; γ
−(Ker(A ∗

− )) ∩ L2(Σ), L−

)
= 0.

Proof. First we assume that γ+(Ker(A ∗
+ )) ∩ L2(Σ) and L− are transversal. Then the

space γ+(Ker(A ∗
+ )) ∩ L2(Σ) is written as a graph of a compact operator T : L+ → L−

such that σ ◦ T is a selfadjoint operator on L+ and the space γ−(Ker(A ∗
− )) ∩ L2(Σ) is

also written as a graph of the map −σ ◦ T ◦ σ. These imply that the curve of Lagrangian
subspaces given by the graphs of

{
− t · σ ◦ T ◦ σ

}
0≤t≤1

is always transversal to both of

γ+(Ker(A ∗
+ )) ∩ L2(Σ) and L+. This curve is connecting γ−(Ker(A ∗

− )) ∩ L2(Σ) and L−.
Hence we have

σH
(
γ−(Ker(A ∗

− )) ∩ L2(Σ), L−; γ
+(Ker(A ∗

+ )) ∩ L2(Σ), L+

)
= 0.
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If γ+(Ker(A ∗
+ ))∩L2(Σ) and L− are not transversal, then we decompose the Lagrangian

subspace γ+(Ker(A ∗
+ )) ∩ L2(Σ) into the orthogonal sum

γ+(Ker(A ∗
+ )) ∩ L2(Σ) = ℓ0 + ν,

where ℓ0 =
(
γ+(Ker(A ∗

+ )) ∩ L2(Σ)
)
∩ L− and ν is the orthogonal complement of ℓ0 in

γ+(Ker(A ∗
+ )) ∩ L2(Σ). Also we decompose L− = ℓ0 + (L− ∩ ℓ ⊥

0 ) = ℓ0 + ℓ− and L+ =
σ(ℓ0) + (L+ ∩ σ(ℓ0)⊥) = σ(ℓ0) + ℓ+. Now we have

σH
(
γ−(Ker(A ∗

− )) ∩ L2(Σ), L−; γ
+(Ker(A ∗

+ )) ∩ L2(Σ), L+

)

= σH
(
σ(ℓ0), ℓ0; ℓ0, σ(ℓ0)

)
+ σH

(
σ(ν), ℓ−; ν, ℓ+

)
= 0,

by applying the first arguments to the second term.
Note that γ−(Ker(A ∗

− )) ∩ L2(Σ) = σ(ℓ0) + σ(ν) is an orthogonal decomposition and
the vanishing of the first term follows from a skew-symmetric property of the Hörmander
index. �

5. A splitting formula of a spectral flow

First we state a splitting formula for a spectral flow when we decompose a manifold into
two components. Then we give another form of it by replacing the boundary condition
with Atiyah-Patodi-Singer condition.

Let {Ct}t∈[0,1] be a continuous family of symmetric bundle maps of E and we assume
that each of the operator in the family {A + Ct} satisfies the conditions (a1’) and (a2)
where (a1’) is:

(a1’): There exists an ǫ0 > 0 such that for any |s| < ǫ0 and any t ∈ [0, 1]
the operators A + Ct + s satisfy the unique continuation property with respect to the
hypersurface Σ :

(5.1) Ker(A ∗
± + Ct + s) ∩D

±
m

= {0}.

Here Ct is regarded as a bounded selfadjoint operator on L2(M,E).
Now we have continuous families of Cauchy data spaces γ±(Ker(A ∗

± +Ct)) (Ct should
be considered as acting on the space D

±
M

respectively, and both of which are invariant
under this action). The splitting formula is stated as follows:

Theorem 5.1. ([FO])

(5.2) Sf
(
{A+ Ct}

)
= Sf

(
{AD0

+ Ct}
)
+ Sf

(
{AD1

+ Ct}
)
,

where

D0 =
{
f ∈ H1(M−,E|M−)

∣∣ ∃f̃ ∈ H1(M,E) such that f̃ |M− = f and (A+C0)(f̃) = 0 onM+

}

and

D1 =
{
g ∈ H1(M+,E|M+

)
∣∣ ∃g̃ ∈ H1(M,E) such that g̃|M+

= g and (A+C1)(g̃) = 0 onM−

}
.

Remark 5.2. Our proof of the general spectral flow formula bases on the property (a1’)
and (a2), and by making use of the general spectral flow formula and L2 reduction
theorem we prove the splitting formula above ([FO]).
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Let D 0
APS be the space defined in (2.6) for A replaced by A+ C0 and denote by D

1
APS

the similar space

D
1
APS(5.3)

=
{
f ∈ H1(M+,E|M+

)
∣∣ if f |Σ =

∑

k∈Z\{0}

akψk, then ak = 0 for k = 1, 2, 3, · · ·
}
.

Note that the sections {ψk} are now orthonormal eigensections of the tangential operator
B1 in the product form

(5.4) A + C1 = σ
( ∂

∂u
+B1

)

corresponding to the parameter t = 1 and should be chosen in such a way as noted in
Remark (2.4).

We have continuous curves
{
γ−(Ker(A ∗

− +Ct))
}
of Cauchy data spaces in the Fredholm-

Lagrangian-Grassmannian FΛD0
(β−) = FΛD 0

APS
(β−) and{

γ+(Ker(A ∗
+ + Ct))

}
in FΛD1

(β+) = FΛD 1
APS

(β+).

The Hörmander index is defined for four Lagrangian subspaces µ0, µ1, γ
−(D0) and

γ−(D 0
APS), where µi ∈ FΛD0

(β−) = FΛD 0
APS

(β−), also defined for ν0, ν1, γ
+(D1) and

γ+(D 1
APS)

(
νi ∈ FΛD1

(β+) = FΛD 1
APS

(β+)
)
, as noted in Remark (2.8).

Since

Sf
(
{AD0

+ Ct}
)

= Mas
(
{γ−(Ker(A ∗

− + Ct))}, γ
−(D0)

)

= Mas
(
{γ−(Ker(A ∗

− + Ct))}, γ
−(D 0

APS)
)

+ σH
(
γ−(Ker(A ∗

− + C0)), γ
−(Ker(A ∗

− + C1)); γ
−(D0), γ

−(D 0
APS)

)

we have

Theorem 5.3.

Sf
(
{A+ Ct}

)

= Mas
(
{γ−(Ker(A ∗

− + Ct))}, γ
−(D 0

APS)
)

+ σH
(
γ−(Ker(A ∗

− + C0)), γ
−(Ker(A ∗

− + C1)); γ
−(D0), γ

−(D 0
APS)

)

+Mas
(
{γ+(Ker(A+

∗ + Ct))}, γ
+(D 1

APS)
)

+ σH
(
γ+(Ker(A ∗

+ + C0)), γ
+(Ker(A ∗

+ + C1)); γ
+(D1), γ

+(D 1
APS)

)

= Sf
(
{AD 0

APS
+ Ct}

)
+ Sf

(
{AD 1

APS
+ Ct}

)

+ σH
(
γ−(Ker(A ∗

− + C0)), γ
−(Ker(A ∗

− + C1)); γ
−(D0), γ

−(D 0
APS)

)

+ σH
(
γ+(Ker(A ∗

+ + C0)), γ
+(Ker(A ∗

+ + C1)); γ
+(D1), γ

+(D 1
APS)

)
.

Corollary 5.4. If the family {A+ Ct} is a loop, i.e., C0 = C1, then we have

Sf
(
{A+ Ct}

)
= Sf

(
{AD 0

APS
+ Ct}

)
+ Sf

(
{AD 1

APS
+ Ct}

)
.(5.5)

Remark 5.5. Although it holds the spectral flow formula expressed in terms of the Maslov
index of Cauchy data spaces under the assumption (a1’), it would not be clear whether
the splitting formulas of the spectral flow like above formulas hold always without the
second assumption (a2). Such assumptions are fit to the framework of the symplectic
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Hilbert space theory, after once the spaces β± are determined. However it would be
expected that generalizations of splitting formula of spectral flow and the index similar
to (4.1) without the assumption (a2) would be carried out through a further analysis of
the pseudo-differential operator theory including the Calderón projector and the operator
Pτ(Ker(A ∗

+ )).
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