INVARIANTS OF UNIPOTENT TRANSFORMATIONS ACTING ON NOETHERIAN RELATIVELY FREE ALGEBRAS

VESSELIN DRENSKY

ABSTRACT. The classical theorem of Weitzenböck states that the algebra of invariants $K[X]^g$ of a single unipotent transformation $g \in GL_m(K)$ acting on the polynomial algebra $K[X] = K[x_1, \ldots, x_m]$ over a field K of characteristic 0 is finitely generated. This algebra coincides with the algebra of constants $K[X]^{\delta}$ of a linear locally nilpotent derivation δ of K[X]. Recently the author and C. K. Gupta have started the study of the algebra of invariants $F_m(\mathfrak{V})^g$ where $F_m(\mathfrak{V})$ is the relatively free algebra of rank m in a variety \mathfrak{V} of associative algebras. They have shown that $F_m(\mathfrak{V})^g$ is not finitely generated if \mathfrak{V} contains the algebra $UT_2(K)$ of 2×2 upper triangular matrices. The main result of the present paper is that the algebra $UT_2(K)$. As a by-product of the proof we have established also the finite generated by m generic $n \times n$ matrices and the traces of their products.

INTRODUCTION

Let K be any field of characteristic 0 and let $X = \{x_1, \ldots, x_m\}$, where m > 1. Let $g \in GL_m = GL_m(K)$ be a unipotent linear operator acting on the vector space $KX = Kx_1 \oplus \cdots \oplus Kx_m$. By the classical theorem of Weitzenböck [16], the algebra of invariants

$$K[X]^{g} = \{ f \in K[X] \mid f(g(x_{1}), \dots, g(x_{m})) = f(x_{1}, \dots, x_{m}) \}$$

is finitely generated. A proof in modern language was given by Seshadri [12]. An elementary proof based on the ideas of [12] was presented by Tyc [14]. Since g - 1 is a nilpotent linear operator of KX, we may consider the linear locally nilpotent derivation

$$\delta = \log g = \sum_{i \ge 1} (-1)^{i-1} \frac{(g-1)^i}{i}$$

called a Weitzenböck derivation. (The K-linear operator δ acting on an algebra A is called a derivation if $\delta(uv) = \delta(u)v + u\delta(v)$ for all $u, v \in A$.) The algebra of invariants $\mathbb{C}[X]^g$ coincides with the algebra of constants $\mathbb{C}[X]^{\delta}$ (= ker(δ)). See the book by Nowicki [10] for a background on the properties of the algebras of constants of Weitzenböck derivations.

Looking for noncommutative generalizations of invariant theory, see e.g. the survey by Formanek [8], let $K\langle X \rangle = K\langle x_1, \ldots, x_m \rangle$ be the free unitary associative

¹⁹⁹¹ Mathematics Subject Classification. 16R10; 16R30.

Key words and phrases. noncommutative invariant theory; unipotent transformations; relatively free algebras.

Partially supported by Grant MM-1106/2001 of the Bulgarian National Science Fund.

VESSELIN DRENSKY

algebra freely generated by X. The action of GL_m is extended diagonally on $K\langle X \rangle$ by the rule

$$h(x_{j_1}\cdots x_{j_n}) = h(x_{j_1})\cdots h(x_{j_n}), \ h \in GL_m, \ x_{j_1}, \dots, x_{j_n} \in X.$$

For any PI-algebra R, let $T(R) \subset K\langle X \rangle$ be the T-ideal of all polynomial identities in m variables satisfied by R. The class $\mathfrak{V} = \operatorname{var}(R)$ of all algebras satisfying the identities of R is called the variety of algebras generated by R (or determined by the polynomial identities of R). The factor algebra $F_m(\mathfrak{V}) = K\langle X \rangle / T(R)$ is called the relatively free algebra of rank m in \mathfrak{V} . We shall use the same symbols x_j and X for the generators of $F_m(\mathfrak{V})$. Since T(R) is GL_m -invariant, the action of GL_m on $K\langle X \rangle$ is inherited by $F_m(\mathfrak{V})$ and one can consider the algebra of invariants $F_m(\mathfrak{V})^G$ for any linear group G. As in the commutative case, if $g \in GL_m$ is unipotent, then $F_m(\mathfrak{V})^g$ coincides with the algebra $F_m(\mathfrak{V})^\delta$ of the constants of the derivation $\delta = \log q$.

Till the end of the paper we fix the integer m > 1, the variety \mathfrak{V} , the unipotent linear operator $g \in GL_m$ and the derivation $\delta = \log g$.

The author and C. K. Gupta [6] have started the study of the algebra of invariants $F_m(\mathfrak{V})^g$. They have shown that if \mathfrak{V} contains the algebra $UT_2(K)$ of 2×2 upper triangular matrices and g is different from the identity of GL_m , then $F_m(\mathfrak{V})^g$ is not finitely generated for any m > 1. They have also established that, if $UT_2(K)$ does not belong to \mathfrak{V} , then, for m = 2, the algebra $F_2(\mathfrak{V})^g$ is finitely generated.

In the present paper we close the problem for which varieties \mathfrak{V} and which m the algebra $F_m(\mathfrak{V})^g$ is finitely generated. Our main result is that this holds, and for all m > 1, if and only if the variety \mathfrak{V} does not contain the algebra $UT_2(K)$.

It is natural to expect such a result by two reasons. First, it follows from the proof of Tyc [14], see also the earlier paper by Onoda [11], that the algebra $K[X]^g$ is isomorphic to the algebra of invariants of certain SL_2 -action on the polynomial algebra in m + 2 variables. One can prove a similar fact for $F_m(\mathfrak{V})^g$ and $(K[y_1, y_2] \otimes_K F_m(\mathfrak{V}))^{SL_2}$. Second, the results of Vonessen [15], Domokos and the author [3] give that $F_m(\mathfrak{V})^G$ is finitely generated for all reductive G if and only if the finitely generated algebras in \mathfrak{V} are one-side noetherian. For unitary algebras this means that \mathfrak{V} does not contain $UT_2(K)$ or, equaivalently, \mathfrak{V} satisfies the Engel identity $[x_2, x_1, \ldots, x_1] = 0$. In our proof we use the so called proper polynomial identities introduced by Specht [13], the fact that the Engel identity implies that the vector space of proper polynomials in $F_m(\mathfrak{V})$ is finite dimensional and hence $F_m(\mathfrak{V})$ has a series of ideals such that the factors are finitely generated K[X]-modules. As a by-product of the proof we have established also the finite generated by m generic $n \times n$ matrices x_1, \ldots, x_m and and the traces of their products $\operatorname{tr}(x_i_1 \cdots x_{i_k}), k \geq 1$.

1. Preliminaries

We fix two finite dimensional vector spaces U and V, $\dim U = p$, $\dim V = q$, and representations of the infinite cyclic group $G = \langle g \rangle$:

$$\rho_U: G \to GL(U) = GL_p, \quad \rho_V: G \to GL(V) = GL_q,$$

where $\rho_U(g)$ and $\rho_V(g)$ are unipotent linear operators. Fixing bases $Y = \{y_1, \ldots, y_p\}$ and $Z = \{z_1, \ldots, z_q\}$ of U and V, respectively, we consider the free left K[Y]-module M(Y,Z) with basis Z. Then g acts diagonally on M(Y,Z) by the rule

$$g: \sum_{j=1}^{q} f_j(y_1, \dots, y_p) z_j \to \sum_{j=1}^{q} f_j(g(y_1), \dots, g(y_p)) g(z_j), \quad f_j \in K[Y]$$

where, by definition, $g(y_i) = \rho_U(g)(y_i)$ and $g(z_j) = \rho_V(g)(z_j)$. Let $M(Y,Z)^g$ be the set of fixed points in M(Y,Z) under the action of g. Since $\rho_U(g)$ and $\rho_V(g)$ are unipotent operators, the operators $\delta_U = \log \rho_U(g)$ and $\delta_V = \log \rho_V(g)$ are well defined. Denote by δ the induced derivation of K[Y]. We extend δ to a derivation of M(Y,Z), denoted also by δ , i. e. δ is the linear operator of M(Y,Z) defined by

$$\delta: \sum_{j=1}^q f_j(Y)z_j \to \sum_{j=1}^q \delta(f_j(Y))z_j + \sum_{j=1}^q f_j(Y)\delta(z_j).$$

It is easy to see that $\delta = \log g$ on M(Y, Z) and $M(Y, Z)^g$ coincides with the kernel of δ , i. e. the set of constants $M(Y, Z)^{\delta}$. Changing the bases of U and V, we may assume that δ_U and δ_V have the form

$$\delta_U = \begin{pmatrix} J_{p_1} & 0 & \cdots & 0 & 0 \\ 0 & J_{p_2} & \cdots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \cdots & J_{p_{k-1}} & 0 \\ 0 & 0 & \cdots & 0 & J_{p_k} \end{pmatrix}, \quad \delta_V = \begin{pmatrix} J_{q_1} & 0 & \cdots & 0 & 0 \\ 0 & J_{q_2} & \cdots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \cdots & J_{q_{l-1}} & 0 \\ 0 & 0 & \cdots & 0 & J_{q_l} \end{pmatrix},$$

where J_r is the $(r+1) \times (r+1)$ Jordan cell

(1)
$$J_r = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

with zero diagonal.

We denote by W_r the irreducible (r + 1)-dimensional SL_2 -module. It is isomorphic to the SL_2 -module of the forms of degree r in two variables x, y. This is the unique structure of an SL_2 -module on the (r + 1)-dimensional vector space which agrees with the action of δ (and hence of g) as the Jordan cell (1): We can think of δ as the derivation of K[x, y] defined by $\delta(x) = 0$, $\delta(y) = x$. We fix the "canonical" basis of W_r

(2)
$$u^{(0)} = x^r, u^{(1)} = \frac{x^{r-1}y}{1!}, u^{(2)} = \frac{x^{r-2}y^2}{2!}, \dots, u^{(r-1)} = \frac{xy^{r-1}}{(r-1)!}, u^{(r)} = \frac{y^r}{r!}.$$

We give U and V the structure of SL_2 -modules

(3)
$$U = W_{p_1} \oplus \dots \oplus W_{p_k}, \quad V = W_{q_1} \oplus \dots \oplus W_{q_l},$$

and extend it on K[Y] and M(Y,Z) via the diagonal action of SL_2 . Again, this agrees with the action of g and δ . Then K[U] and M(Y,Z) are direct sums of irreducible SL_2 -modules $U_{ri} \subset K[Y]$ and $W_{rj} \subset M(Y,Z)$ isomorphic to W_r , $i, j = 1, 2, \ldots, r = 0, 1, 2, \ldots$, with canonical bases $\{u_{ri}^{(0)}, u_{ri}^{(1)}, \ldots, u_{ri}^{(r)}\}$ and $\{w_{rj}^{(0)}, w_{rj}^{(1)}, \ldots, w_{rj}^{(r)}\}$, respectively.

VESSELIN DRENSKY

Lemma 1. The elements $u \in K[Y]$ and $w \in M(Y,Z)$ belong to $K[Y]^{\delta}$ and $M(Y,Z)^{\delta}$, respectively, if and only if they have the form

(4)
$$u = \sum_{r,i} \alpha_{ri} u_{ri}^{(0)}, \quad w = \sum_{r,j} \beta_{rj} w_{rj}^{(0)}, \quad \alpha_{ri}, \beta_{rj} \in K.$$

Proof. Almkvist, Dicks and Formanek [1] translated in the language of g-invariants results of De Concini, Eisenbud and Procesi [2] and proved that, in our notation, g(u) = u and g(w) = w if and only if u and w have the form (4). Since g(u) = u if and only if $\delta(u) = 0$, and similarly for w, we obtain that (4) holds if and only if u and w are δ -constants. (The same fact is contained in the paper by Tyc [14] but in the language of representations of the Lie algebra $sl_2(K)$.)

In each component W_r of U in (3), using the basis (2), we define a linear operator d by

$$d(u^{(k)}) = (k+1)(r-k)u^{(k+1)}, \quad k = 0, 1, 2, \dots, r,$$

i. e., up to multiplicative constants, d acts by $u^{(0)} \to u^{(1)} \to u^{(2)} \to \cdots \to u^{(r)} \to 0$. We extend d to a derivation of K[Y]. As in the case of δ , again we can think of d as the derivation of K[x, y] defined by d(x) = y, d(y) = 0.

Lemma 2. (i) The derivation d acts on each irreducible component U_{ri} of K[Y] by

$$d(u_{ri}^{(k)}) = (k+1)(r-k)u_{ri}^{(k+1)}, \quad k = 0, 1, \dots, r.$$

(ii) If $f = f(Y) \in K[Y]$, then $\delta^{s+1}(f) = 0$ if and only if f belongs to the vector space

(5)
$$K[Y]_s = \sum_{t=0}^s d^t (K[Y]^\delta).$$

Proof. Part (i) follows from the fact that the SL_2 -action on U is the only action which agrees with the action of δ as well as with the action of d (as the derivations of K[x, y] defined by $\delta(x) = 0$, $\delta(y) = x$ and d(x) = y, d(y) = 0, respectively), and the extension of this SL_2 -action to K[U] also agrees with the action of δ and d on K[U].

(ii) Since the irreducible SL_2 -submodules of K[Y] are δ - and d-invariant, it is sufficient to prove the statement only for $f \in W_r \subset K[Y]$. Considering the basis (2) of W_r , we have that $\delta^{s+1}(f) = 0$ if and only if

$$f = \alpha_0 u^{(0)} + \alpha_1 u^{(1)} + \dots + \alpha_s u^{(s)}, \quad \alpha_k \in K.$$

Since $W_r^{\delta} = Ku^{(0)}$ and $d^t(u^{(0)}) \in Ku^{(t)}$, we obtain that $W_r \cap K[Y]_s$ is spanned by $u^{(0)}, u^{(1)}, \ldots, u^{(s)}$ and coincides with the kernel of δ^{s+1} in W_r .

In principle, the proof of the following proposition can be obtained following the main steps of the proof of Tyc [14] of the Weitzenböck theorem. The proof of the three main lemmas in [14] uses only the fact that the ideals of the algebra K[Y] are finitely generated K[Y]-modules. Instead, we shall give a direct proof, using the idea of the proof of Lemma 3 in [14].

Proposition 3. The set of constants $M(Y,Z)^{\delta}$ is a finitely generated $K[Y]^{\delta}$ -module.

Proof. Let N_i be the K[Y]-submodule of M(Y,Z) generated by the basis elements z_i of $V = K z_1 \oplus \cdots \oplus K z_q$ corresponding to the *i*-th Jordan cell J_{q_i} . Since M(Y, Z) = $N_1 \oplus \cdots \oplus N_l$ and $M(Y,Z)^{\delta} = N_1^{\delta} \oplus \cdots \oplus N_l^{\delta}$, it is sufficient to show that each N_i^{δ} is a finitely generated $K[Y]^{\delta}$ -module. Hence, without loss of generality we may assume that q = r + 1 and $\delta(z_0) = 0$, $\delta(z_j) = z_{j-1}$, j = 1, 2, ..., r. Let

(6)
$$f = f_0(Y)z_0 + f_1(Y)z_1 + \dots + f_r(Y)z_r \in M(Y,Z)^{\delta}, \quad f_j(Y) \in K[Y].$$

Then

$$\delta(f) = (\delta(f_0) + f_1)z_0 + (\delta(f_1) + f_2)z_1 + \dots + (\delta(f_{r-1}) + f_r)z_{r-1} + \delta(f_r)z_r$$

and this implies that

$$\delta(f_j) = -f_{j+1}, \quad j = 0, 1, \dots, r-1,$$

$$\delta(f_r) = \delta^2(f_{r-1}) = \dots = \delta^r(f_1) = \delta^{r+1}(f_0) = 0.$$

Hence, fixing any element $f_0(Y)$ from $K[Y]_r$, we determine all the coefficients f_1, \ldots, f_r from (6). By Lemma 2 it is sufficient to show that the $K[Y]^{\delta}$ -module generated by $d^t(K[Y]^{\delta})$ is finitely generated. By the theorem of Weitzenböck, $K[Y]^{\delta}$ is a finitely generated algebra. Let $\{h_1, \ldots, h_n\}$ be a generating set of $K[Y]^{\delta}$. Then $d^t(K[Y]^{\delta})$ is spanned by the elements $d^t(h_1^{a_1}\cdots h_n^{a_n})$. Since d is a derivation, $d^t(K[Y]^{\delta})$ is spanned by elements of the form

$$h_1^{c_1} \cdots h_n^{c_n} \left(\prod d^{t_{i_1}}(h_1) \right) \cdots \left(\prod d^{t_{i_n}}(h_n) \right), \quad \sum t_{i_1} + \dots + \sum t_{i_n} = t.$$

There is only a finite number of possibilities for t_{i_1}, \ldots, t_{i_n} , and we obtain that $d^t(K[Y]^{\delta})$ generates a finitely generated $K[Y]^{\delta}$ -module.

Corollary 4. Let, in the notation of this section, U and V be polynomial GL_m modules, let $g \in GL_m$ be a unipotent matrix and let M(Y,Z) be equipped with the diagonal action of GL_m . Then, for every GL_m -submodule M_0 of M(Y,Z), the natural homomorphism $M(Y,Z) \to M(Y,Z)/M_0$ induces an epimorphism $M(Y,Z)^g \to$ $(M(Y,Z)/M_0)^g$, i. e. we can lift the g-invariants of $M(Y,Z)/M_0$ to g-invariants of M(Y, Z).

Proof. The lifting of the constants was established in [6] in the case of relatively free algebras and the same proof works in our situation. Since U and V are polynomial GL_m -modules, the module M(Y,Z) is completely reducible. Hence M(Y,Z) = $M_0 \oplus M'$ for some GL_m -submodule M' of M(Y,Z) and $M(Y,Z)/M_0 \cong M'$. If $w + M_0 = \bar{w} \in (M(Y,Z)/M_0)^g$, then $w = w_0 + w', w_0 \in M_0, w' \in M'$, and $g(w) = g(w_0) + g(w')$. Since $g(\bar{w}) = \bar{w}$, we obtain that g(w') = w' and the ginvariant \bar{w} is lifted to the *g*-invariant w'.

Remark 5. The proof of Proposition 3 gives also an algorithm to find the generators of $M(Y,Z)^{\delta}$ in terms of the generators of $K[Y]^{\delta}$. The latter problem is solved by van den Essen [7] and his algorithm uses Gröbner bases techniques.

2. The Main Results

The following theorem is the main result of our paper. For m = 2 it was established in [6] using the description of the g-invariants of $K\langle x, y \rangle$.

Theorem 6. For any variety \mathfrak{V} of associative algebras which does not contain the algebra $UT_2(K)$ of 2×2 upper triangular matrices, the algebra of invariants $F_m(\mathfrak{V})^g$ of any unipotent $g \in GL_m$ is finitely generated.

Proof. We shall work with the linear locally nilpotent derivation $\delta = \log g$ instead with q.

It is well known that any variety \mathfrak{V} which does not contain $UT_2(K)$ satisfies some Engel identity $[x_2, x_1, \ldots, x_1] = 0$. By the theorem of Zelmanov [17] any Lie algebra over a field of characteristic zero satisfying the Engel identity is nilpotent. Hence we may assume that \mathfrak{V} satisfies the polynomial identity of Lie nilpotency $[x_1, \ldots, x_{c+1}] = 0$. (Actually, this follows from much easier and much earlier results on PI-algebras.)

Let us consider the vector space $B_m(\mathfrak{V})$ of so called proper polynomials in $F_m(\mathfrak{V})$. It is spanned by all products $[x_{i_1}, \ldots, x_{i_k}] \cdots [x_{j_1}, \ldots, x_{j_l}]$ of commutators of length ≥ 2 . One of the main results of the paper by the author [4] states that if $\{f_1, f_2, \ldots\}$ is a basis of $B_m(\mathfrak{V})$, then $F_m(\mathfrak{V})$ has a basis

$$\{x_1^{p_1}\cdots x_m^{p_m}f_i \mid p_j \ge 0, i = 1, 2, \ldots\}.$$

Let $B_m^{(k)}(\mathfrak{V})$ be the homogeneous component of degree k of $B_m(\mathfrak{V})$. It follows from the proof of Theorem 5.5 in [4], that for any Lie nilpotent variety \mathfrak{V} , and for a fixed positive integer m, the vector space $B_m(\mathfrak{V})$ is finite dimensional. Hence $B_m^{(n)}(\mathfrak{V}) = 0$ for n sufficiently large, e. g. for $n > n_0$. Let I_k be the ideal of $F_m(\mathfrak{V})$ generated by $B_m^{(k+1)}(\mathfrak{V}) + B_m^{(k+2)}(\mathfrak{V}) + \cdots + B_m^{(n_0)}(\mathfrak{V})$. Since $wx_i = x_i w + [w, x_i], w \in \mathbb{C}$ $F_m(\mathfrak{V})$, applying Lemma 2.4 [4], we obtain that I_k/I_{k+1} is a free left K[X]-module with any basis of the vector space $B_m^{(k)}(\mathfrak{V})$ as a set of free generators. Since δ is a nilpotent linear operator of $U = KX = Kx_1 \oplus \cdots \oplus Kx_m$, it acts also as a nilpotent linear operator of $V_k = B_m^{(k)}(\mathfrak{V})$. Proposition 3 gives that $(I_k/I_{k+1})^{\delta}$ is a finitely generated $K[X]^{\delta}$ -module. Clearly, $B_m^{(0)}(\mathfrak{V}) = K$, $B_m^{(1)}(\mathfrak{V}) = 0$, $B_m^{(2)}(\mathfrak{V})$ is spanned by the commutators $[x_{i_1}, x_{i_2}]$, etc. Hence $I_0/I_1 \cong K[X]$ and by the theorem of Weitzenböck $(I_0/I_1)^{\delta}$ is a finitely generated algebra. We fix a system of generators $\bar{f}_1, \ldots, \bar{f}_a$ of the algebra $(I_0/I_1)^{\delta}$ and finite sets of generators $\{\bar{f}_{k1}, \ldots, \bar{f}_{kb_k}\}$ of the $K[X]^{\delta}$ -modules $(I_k/I_{k+1})^{\delta}$, $k = 2, 3, \ldots, n_0$. The vector space U is a GL_m -module and its GL_m -action makes V_k a polynomial GL_m -module. We apply Corollary 4 and lift all \bar{f}_i and \bar{f}_{kj} to some δ -constants $f_i, f_{kj} \in F_m(\mathfrak{V})^{\delta}$. The algebra S generated by f_1, \ldots, f_a maps onto $(I_0/I_1)^{\delta}$ and hence $(I_k/I_{k+1})^{\delta}$ is a left S-module generated by $\bar{f}_{k1}, \ldots, \bar{f}_{kb_k}$. The condition $I_{n_0+1} = 0$ together with Corollary 4 gives that the f_i and f_{kj} generate $F_m(\mathfrak{V})^{\delta}$.

Together with the results of [6] Theorem 6 gives immediately:

Corollary 7. For $m \geq 2$ and for any fixed unipotent operator $g \in GL_m$, $g \neq 1$, the algebra of g-invariants $F_m(\mathfrak{V})^g$ is finitely generated if and only if \mathfrak{V} does not contain the algebra $UT_2(K)$.

We refer to the books [9] and [5] for a background on the theory of matrix invariants. We fix an integer n > 1 and consider the generic $n \times n$ matrices x_1, \ldots, x_m . Let C_{nm} be the pure trace algebra, i. e. the algebra generated by the traces of products $\operatorname{tr}(x_{i_1} \cdots x_{i_k})$, $k = 1, 2, \ldots$, and let T_{nm} be the mixed trace algebra generated by x_1, \ldots, x_m and C_{nm} . It is well known that C_{nm} is finitely generated. (The Nagata-Higman theorem states that the nil polynomial identity $x^n = 0$ implies the identity of nilpotency $x_1 \cdots x_d = 0$. If d(n) is the minimal d with this property, one may take as generators $\operatorname{tr}(x_{i_1} \cdots x_{i_k})$ with $k \leq d(n)$.) Also, T_{nm} is a finitely generated C_{nm} -module. **Theorem 8.** For any unipotent operator $g \in GL_m$, the algebra T_{nm}^g is finitely generated.

Proof. Consider the vector space U of all formal traces $y_i = \operatorname{tr}(x_{i_1} \cdots x_{i_k}), i_j = 1, \ldots, m, 1 \leq k \leq d(n)$. Let Y be the set of all y_i . It has a natural structure of a GL_m -module and hence $\delta = \log g$ acts as a nilpotent linear operator on U. Also, consider a finite system of generators f_1, \ldots, f_a of the C_{nm} -module T_{nm} . We may assume that the f_j do not depend on the traces and fix some elements $h_j \in K\langle X \rangle$ such that $h_j \to f_j$ under the natural homomorphism $K\langle X \rangle \to T_{nm}$ extending the mapping $x_i \to x_i, i = 1, \ldots, m$. Let V be the GL_m -submodule of $K\langle X \rangle$ generated by the h_j . Again, δ acts as a nilpotent linear operator on V. We fix a basis $Z = \{z_1, \ldots, z_q\}$ of V. Consider the free K[Y]-module M(Y,Z) with basis Z. Proposition 3 gives that $M(Y,Z)^{\delta}$ is a finitely generated algebra. Since the algebra C_{nm} and the C_{nm} -module T_{nm} are homomorphic images of the algebra K[Y] and the K[Y]-module M(Y,Z), Corollary 4 gives that $K[Y]^{\delta}$ and $M(Y,Z)^{\delta}$ map on C_{nm}^{δ} and T_{nm}^{δ} , respectively. Hence T_{nm}^{δ} is a finitely generated module of the finitely generated algebra C_{nm}^{δ} and T_{nm}^{δ} .

References

- G. Almkvist, W. Dicks, E. Formanek, Hilbert series of fixed free algebras and noncommutative classical invariant theory, J. Algebra 93 (1985), 189-214.
- [2] C. De Concini, D. Eisenbud, C. Procesi, Young diagrams and determinantal varieties, Invent. Math. 56 (1980), 129-165.
- [3] M. Domokos, V. Drensky, A Hilbert-Nagata theorem in noncommutative invariant theory, Trans. Amer. Math. Soc. 350 (1998), 2797-2811.
- [4] V. Drensky, Codimensions of T-ideals and Hilbert series of relatively free algebras, J. Algebra 91 (1984), 1-17.
- [5] V. Drensky, E. Formanek, Polynomial Identity Rings, Advanced Courses in Mathematics, CRM Barcelona, Birkhäuser, Basel-Boston, 2004 (to appear).
- [6] V. Drensky, C. K. Gupta, Constants of Weitzenböck derivations and invariants of unipotent transformations acting on relatively free algebras, preprint.
- [7] A. van den Essen, An algorithm to compute the invariant ring of a G_a-action on an affine variety, J. Symbolic Computation 16 (1993), 551-555.
- [8] E. Formanek, Noncommutative invariant theory, Contemp. Math. 43 (1985), 87-119.
- [9] E. Formanek, The Polynomial Identities and Invariants of $n \times n$ Matrices, CBMS Regional Conf. Series in Math. **78**, Published for the Confer. Board of the Math. Sci. Washington DC, AMS, Providence RI, 1991.
- [10] A. Nowicki, Polynomial Derivations and Their Rings of Constants, Uniwersytet Mikolaja Kopernika, Torun, 1994.
- [11] N. Onoda, Linear actions of G_a on polynomial rings, Proceedings of the 25th Symposium on Ring Theory (Matsumoto, 1992), 11-16, Okayama Univ., Okayama, 1992.
- [12] C. S. Seshadri, On a theorem of Weitzenböck in invariant theory, J. Math. Kyoto Univ. 1 (1962), 403-409.
- [13] W. Specht, Gesetze in Ringen. I, Math. Z. 52 (1950), 557-589.
- [14] A. Tyc, An elementary proof of the Weitzenböck theorem, Colloq. Math. 78 (1998), 123-132.
- [15] N. Vonessen, Actions of Linearly Reductive Groups on Affine PI-Algebras, Mem. Amer. Math. Soc. 414, 1989.
- [16] R. Weitzenböck, Über die Invarianten von linearen Gruppen, Acta Math. 58 (1932), 231-293.
- [17] E.I. Zelmanov, On Engel Lie algebras (Russian), Sibirsk. Mat. Zh. 29 (1988), No. 5, 112-117. Translation: Sib. Math. J. 29 (1988), 777-781.

VESSELIN DRENSKY

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

E-mail address: drensky@math.bas.bg