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THE BAUM-CONNES CONJECTURE, NONCOMMUTATIVE POINCARÉ

DUALITY AND THE BOUNDARY OF THE FREE GROUP

HEATH EMERSON

Abstract. For every hyperbolic group Γ with Gromov boundary ∂Γ, one can form the cross
product C∗-algebra C(∂Γ)⋊Γ. For each such algebra we construct a canonical K-homology
class, which induces a Poincaré duality map K∗(C(∂Γ)⋊Γ) → K∗+1(C(∂Γ)⋊Γ). We show
that this map is an isomorphism in the case of Γ = F2 the free group on two generators. We
point out a direct connection between our constructions and the Baum-Connes Conjecture
and eventually use the latter to deduce our result.
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1. Introduction

The aim of this note is to point out a connection between the Baum-Connes conjecture
with coefficients for the free group F2 on two generators, and a Poincaré duality result for
the ‘noncommutative space’ ∂F2/F2, where ∂F2 is the Gromov boundary of F2, acted upon
minimally by F2 through homeomorphisms.

In order to formulate what Poincaré duality should mean for a noncommutative space
such as ∂F2/F2, one passes to the C∗-algebra cross product C(∂F2) ⋊ F2 and to K-theory
and K-homology for C∗-algebras. Poincaré duality for ∂F2/F2 then means an isomorphism
between the K-theory and K-homology of C(∂F2)⋊F2, induced by cap product with a fixed
K-homology class.

More generally one can speak of C∗-algebras having Poincaré duality, or, as we call
them in this paper, Poincaré duality algebras. It seems that such algebras are in some sense
noncommutative analogs of spinc manifolds. For the commutative examples of such C∗-
algebras are given precisely by the C∗-algebras C(M), whereM is a compact spinc manifold.
Such a manifold has, corresponding to the spinc-structure, a canonical elliptic operator on
it - the Dirac operator - and thus (see e.g. [9]) a canonical K-homology class. Cap product
with this class induces the Poincaré duality isomorphism.

Various noncommutative examples of Poincaré duality C∗-algebras have been produced
by A. Connes, the first of which was the irrational rotation algebra Aθ. Several other
examples now exist, but all have the same character insofar as they are in some sense
deformations of actual spinc-manifolds. Our example is somewhat different. The geometric
data underlying ∂F2/F2 is highly singular: the space ∂F2 is not a homology manifold, and
the group F2 is not a Poincaré duality group. It turns out to be true, however, that in
factoring the space by the action of the group, i.e. by forming the cross product C∗-algebra
C(∂F2)⋊ F2, the resulting noncommutative space satisfies Poincaré duality.

Part of our goal is thus to point out this example and also to place it in its proper
context: that of hyperbolic groups acting on their Gromov boundaries. The second part is
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to show as mentioned above, a connection between our constructions and the Baum-Connes
conjecture for F2.

We begin by constructing - in the full generality of hyperbolic groups - the K-homology
class cap product with which will induce our Poincaré duality isomorphism. It turns out
that with Gromov hyperbolic groups Γ in general there is a certain duality between functions
continuous on the Gromov boundary ∂Γ of Γ, and right translation operators on l2Γ. Using
this duality, we produce an algebra homomorphism C(∂Γ)⋊Γ⊗C(∂Γ)⋊Γ → Q(l2Γ), where
Q(l2Γ) = B(l2Γ)/K(l2Γ) denotes the Calkin algebra of l2Γ, and where Γ is an arbitrary
hyperbolic group. Since C(∂Γ) ⋊ Γ is nuclear ([3]), such an algebra homomorphism yields
via the Stinespring construction a class ∆ ∈ KK1(C(∂Γ)⋊Γ⊗C(∂Γ)⋊Γ,C), i.e. a class ∆
in the K-homology of C(∂Γ)⋊Γ⊗C(∂Γ)⋊Γ. Kasparov product with ∆ gives the required
‘cap-product’ map ∩∆ : K∗(C(∂Γ)⋊ Γ) → K∗+1(C(∂Γ)⋊ Γ).

We next wish to prove that cap product with ∆ as above gives an isomorphism in the
case of Γ = F2, the general case of hyperbolic groups being beyond the scope of this paper.
To this end we observe that a sort of geodesic flow on the Cayley graph of F2 may be used
to construct a dual element to ∆, this time in the K-theory of C(∂F2)⋊F2 ⊗C(∂F2)⋊ F2,
playing the same role in this context as does the Thom class of the normal bundle of M in
M ×M in the commutative setting. We obtain a putative inverse map K∗(C(∂F2)⋊F2) →
K∗+1(C(∂F2)⋊ F2).

We then set about calculating the composition of these two maps. The connection
with the Baum-Connes conjecture appears in that the composition K∗(C(∂F2) ⋊ F2) →
K∗(C(∂F2) ⋊ F2) turns out to be multiplication by the γ-element constructed by Julg and
Vallette.

As mentioned, the construction of our fundamental class ∆ makes sense for a general
hyperbolic group acting on its boundary, and in fact several of our other constructions
have their counterparts for arbitrary hyperbolic groups; thus for instance it is possible by
means of work of Gromov to make sense of ‘geodesic flow’ for an arbitrary hyperbolic group.
Furthermore, although the statement ‘γ = 1’ for general hyperbolic groups is false due
to the possible presence of Property T, it is nevertheless true by work of Tu ([12]) that
γ∂Γ⋊Γ = 1C(∂Γ), where γ∂Γ⋊Γ is the γ-element for the amenable groupoid ∂Γ ⋊ Γ, which
weaker statement is all we need. Nevertheless, the arguments for the general case, being
substantially more involved, will be dealt with in a later paper. We have chosen to emphasise
the free group case for two reasons: one, that the relationship to the Baum-Connes conjecture
is extremely explicit, and two, that the geometry of our constructions is particularly visible.

Finally, we note that our arguments tend to suggest that the phenomenom of Poincaré
duality for amenable groupoid algebras constructed from boundary actions of discrete groups
is relatively common. Specifically, the author expects similar results for uniform lattices in
semisimple lie groups acting on their Furstenberg boundaries, and for discrete, cocompact
isometry groups of affine buildings acting on the boundaries of these buildings. Along these
lines, we draw the attention of the reader to the work of Kaminker and Putnam on Cuntz-
Krieger algebras (see [8]); indeed, our result (in the case of the free group of two generators)
can be deduced from theirs. In fact, our work was partly motivated by the idea of finding a
geometric explanation for theirs.
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2. Geometric Preliminaries

In this section we work in the generality of a Gromov hyperbolic group Γ (see [5] or
[4]). So let Γ be such. Thus, we have fixed a generating set S for Γ and the corresponding
metric d(γ1, γ2) = |γ−1

1 γ2|, where | · | denotes the word length of a group element with
respect to S, and with this metric Γ is hyperbolic in the sense of Gromov as a metric space.
Note that the metric is clearly invariant under left translation.

Recall that with the hypothesis of hyperbolicity, the group Γ viewed as a metric space
can be compactified by addition of a boundary: thus there exists a compact metrizable
space Γ̄ = Γ ∪ ∂Γ such that Γ sits densely in Γ̄, and Γ̄ is compact. The compactification
is Γ-equivariant in the sense that the left translation action of Γ extends to an action by
homeomorphisms on Γ̄.

There turns out to be an interesting duality between functions on Γ which extend
continuously to the Gromov compactification Γ̄, and a certain class of operators on l2Γ, as
follows. First we recall a definition. For what follows, let ex, ey, etc, denote the standard

basis vectors in l2Γ corresponding to points x, y ∈ Γ. Also, if f̃ is a function on Γ, we shall
denote by Mf̃ the corresponding multiplication operator on l2Γ.

Definition 1. An operator T ∈ B(l2Γ) is finite propagation if there exists R > 0 such that
< T (ex), ey >= 0 whenever d(x, y) ≥ R.

The duality we have alluded to is stated in the following:

Lemma 2. If f̃ is a function on Γ which extends continuously to Γ̄, then [Mf̃ , T ] is a compact

operator for all finite propagation operators T on l2Γ.

For the proof, we shall need to use the following fact about the Gromov compactification
of a hyperbolic group (see [5]).

Note that here and elsewhere in this paper, Br(x), for r > 0 and x ∈ Γ, denotes the
ball of word-metric radius r centered at x.

Lemma 3. If f̃ is a continuous function on Γ̄, then for every R > 0, we have

lim
x→∞

sup{|f(x)− f(y)| | y ∈ BR(x)} = 0.

Proof. (of Lemma 2)

Let T be a finite propagation operator with propagation R, and f̃ a bounded function
on Γ which extends continuously to Γ̄. Then [Mf̃ , T ](ex) =

∑

y∈BR(x)

(

f̃(x) − f̃(y)
)

Txyey
where Txy denotes as usual < T (ex), ey >. Therefore < [Mf̃ , T ](ex), ey >= 0 if d(x, y) ≥ R,

and equals
(

f̃(x)− f̃(y)
)

Txy else. The result follows immediately from Lemma 3.
�

Let γ ∈ Γ, and ρ(γ) denote the unitary l2Γ → l2Γ induced from right translation by γ,
ρ(γ)ex = exγ−1. The relevance of the above remarks to us lies in the following observation:

Lemma 4. ρ(γ) is a finite propagation operator on l2Γ for all γ ∈ Γ.

Proof. One has d(x, xγ−1) ≤ |γ|, from which the result follows with R = |γ|.
�

Corollary 5. If γ ∈ Γ and f̃ is a function on Γ which extends continuously to Γ̄, then
[ρ(γ),Mf̃ ] is a compact operator.
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Now, consider the unitary I : l2Γ → l2Γ, induced from inversion ι : Γ → Γ. Then
Iρ(γ)I = λ(γ), where λ(γ) denotes left translation by γ; and IMf̃I = Mf̃◦ι. The following
follows from conjugating the equation appearing in Corollary 5 by the unitary I:

Corollary 6. The commutator [λ(γ),Mf̃◦ι] is a compact operator, for every γ ∈ Γ and f̃ a

function on Γ extending continuously to Γ̄.

In Section 3 we will show how the above constructions can be organized to produce a
K-homology class inducing a Poincaré duality isomorphism.

3. KK-theoretic preliminaries

In this section we recall some basic facts from KK-theory. For further details we refer
the reader to [1], or to [9].

KK. KK can be understood categorically ([6]): there is a category KK whose ob-
jects are separable, nuclear C∗-algebras and whose morphisms A → B are the elements of
KK(A,B). There is a functor from the category of C∗-algebras to the category KK. If
φ : A → B is an algebra homomorphism A → B, we denote its image under this functor as
[φ]. There is a composition, or intersection product operation KK(A,D) × KK(D,B) →
KK(A,B) which we denote by (α, β) 7→ α ⊗D β. If φ : A → B is an algebra homomor-
phism, and D is any C∗-algebra, we thus have a map φ∗ : KK(D,A) → KK(D,B), given by
α 7→ α⊗A [φ]. Similarly we have a map φ∗ : KK(B,D) → KK(A,D) given by β 7→ [φ]⊗B β.

We will sometimes use the notations φ∗([β]) and [φ] ⊗B β interchangeably, as is war-
ranted by clarity of notation. Similarly with φ∗.

If D is a C∗-algebra, there is a natural map KK(A,B) → KK(A ⊗D,B ⊗ D), α 7→
α⊗ 1D, and similarly a map KK(A,B) → KK(D ⊗A,D ⊗ B).

Graded Commutativity. There are higher KK groups KKi(A,B) for all i ∈ Z,
defined by KKi(A,B) = KK(A,B ⊗ Ci) where Ci is the ith complex Clifford algebra, and
one of the features of the theory is that the intersection product is graded commutative. If
A1, . . . , An are C∗-algebras, let σij denote the map

A1 ⊗ · · ·Ai ⊗ · · ·Aj ⊗ · · · ⊗An → A1 ⊗ · · ·Aj ⊗ · · ·Ai ⊗ · · · ⊗ An

obtained by flipping the two factors. Then by graded commutativity we mean the following:
if α ∈ KKi(A1, B1) and β ∈ KKj(A2, B2), then

(α⊗1A2)⊗B1⊗A2 (1B1⊗β) = (−1)ij (σ12)∗σ
∗
12

(

(β⊗1A1)⊗(1B2⊗α)
)

∈ KK(A1⊗A2, B1⊗B2).

K-theory and K-homology. For any C∗-algebra A, KKi(C, A) = Ki(A) is the
toplogical K-theory of A, and KKi(A,C) = Ki(A) is the K-homology of A by definition.

Description of Even Cycles. We let B(E) denote bounded operators on a Hilbert
module E , K(E) compact operators, and Q(E) the Calkin algebra B(E)/K(E). The quotient
map B(E) → Q(E) will always be denoted by π.

Following Kasparov ([9]), if E is a Hilbert B-module and A acts on E by a homomor-
phism A→ B(E), we will refer to E as a Hilbert (A,B)-bimodule.

Because all the algebras in this paper are ungraded – or alternatively, have trivial
grading – we can make certain simplifications in the definitions of the KK groups (see [1]).
With such ungraded A and B, cycles for KK(A,B) are given simply by pairs (E , F ) where
E is an (A,B)-bimodule, F commutes modulo compact operators with the action of A, and
a(F ∗F − 1) and a(FF ∗ − 1) are compact for every a ∈ A.
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Description of Odd Cycles. Cycles for KK1(A,B) are given by pairs (E , P ) for
which P is an operator on the (A,B)-bimodule E satisfying the three conditions [a, P ],
a(P 2 − P ), and a(P − P ∗) are compact for all a ∈ A.

Let (E , P ) be an odd cycle. Then we obtain a homomorphism A → Q(E) by the
formula a 7→ π(PaP ).

Conversely, let τ : A→ Q(E) be a homomorphism. Under the assumption of nuclearity

of all algebras concerned, there exists a potentially larger Hilbert B-module Ẽ , a representa-
tion of A on Ẽ , an isometry U : E → Ẽ , and an operator P on Ẽ such that a(P 2−P ), [a, P ],
and a(P − P ∗) are compact for all a ∈ A, and π(U∗PaPU) = τ(a) for all a ∈ A (see [1]).
The data (Ẽ , P ) makes up an odd cycle. The process of constructing a Ẽ , U , and P , from
an extension, we shall refer to as the Stinespring construction.

As a consequence, for A and B nuclear, we may regard KK1(A,B) as given by classes
of maps τ : A→ Q(E), where E is a right Hilbert B-module. This description of KK1-classes
will be particularly appropriate to our purposes.

Bott Periodicity. Recall that KK−1(C, C0(R)) ∼= Z and is generated by the class

[d̂R] of the multiplier f(x) = x√
1+x2 of C0(R), suitably interpreted in terms of the Clifford

gradings. The class [d̂R] allows us to identify, for any C∗-algebras A and B, the groups
KK1(C0(R)⊗ A,B), and KK(A,B), by the map KK1(C0(R)⊗ A,B) → KK(A,B), x 7→

[d̂R] ⊗C∗(R) x. We shall need to compute this map at the level of cycles in several simple
cases.

Let ψ be the function ψ(t) = −2i
t+i

in C0(R) It has the property that ψ + 1 is unitary in

C0(R)
+. We begin by stating the simplest version of what we shall need.

Lemma 7. Let τ be a homomorphism C0(R) → Q(H) to the Calkin algebra of some Hilbert
space H. Let [τ ] denote the class in KK1(C0(R),C) corresponding to τ . Then the class

[d̂R] ⊗C0(R) [τ ] ∈ KK(C,C) is represented by the cycle (H,U + 1), where U is any operator
on H such that π(U) = τ(ψ).

The significance of this simple lemma is that in the given setting it is not necessary
to explicitly represent [τ ] as a KK-cycle (that is, perform the Stinespring construction) in

order to calculate the Kasparov product of [d̂R] and [τ ]. This is true also of the situation in
the following lemma, which will be of direct use to us.

Lemma 8. Let A1, A2 be C∗-algebras and E be a right Hilbert A2-module. Let h be a homo-
morphism C0(R) ⊗ A1 → Q(E) and [h] its class, regarded as an element of KK1(C0(R) ⊗
A1, A2). Assume that h has the form x⊗ a1 7→ h′(x)h′′(a1), where h

′ and h′′ are homomor-

phisms. Suppose that the homomorphism h′′ lifts to a homomorphism h̃′′ : A1 → B(E). Then

the class [d̂R] ⊗C0(R) [h] ∈ KK(A1, A2) is represented by the following cycle. The module is
E with its original right A2-module structure and the left A1-module structure given by the
homomorphism h̃′′. The operator is given by U + 1 where U is any operator on E such that
π(U) = h′(ψ).

The proof of both lemmas involves an application of the axioms for the intersection
product, and is omitted (see [9]).

Equivariant KK. If Γ is a group acting on C∗-algebras A and B, we have in addition
to the group KK(A,B), an equivariant group KKΓ(A,B). We shall discuss this group
briefly in connection with the γ-element and the work of Julg and Valette. Suffice it to say
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that the cycles for KKΓ(A,B) consist of the same cycles as for KK(A,B), but with the
following extra conditions. (1) Γ acts as linear isometric maps on the Hilbert (A,B)-module
E , in such a way that γ(aξb) = γ(a)γ(ξ)γ(b) for a ∈ A, b ∈ B and ξ ∈ E ; (2) the operator F
satisfies: γ(F )− F is compact, for all γ ∈ Γ.

Regarding KKΓ as a category in its own right, with morphisms A → B the elements
of KKΓ(A,B), and objects Γ-C∗-algebras, there is a functor λ : KKΓ(A,B) → KK(A ⋊

Γ, B ⋊ Γ), called descent. The map λ : KKΓ(A,B) → KK(A⋊ Γ, B ⋊ Γ) can be explicitly
calculated on cycles; the formulas are given in [9]. Since λ is a functor, it takes the unit
1A ∈ KKΓ(A,A) to the unit 1A⋊Γ ∈ KK(A⋊ Γ, A⋊ Γ), which fact we will make use of.

4. construction of the fundamental class

For this section, we shall return to the generality of a hyperbolic group Γ. Since Γ acts
by homeomorphisms on ∂Γ, we can consider the cross product C∗-algebra C(∂Γ)⋊Γ, which
is our main object of interest in this paper. Note the cross product we are referring to is
the reduced cross product; however, by the proof of the following lemma (whose proof can
be found in [3]), the reduced and max cross products are in fact the same.

Lemma 9. The algebra C(∂Γ)⋊ Γ is nuclear and separable.

Our goal is to construct an element of the K-homology of the algebra C(∂Γ) ⋊ Γ ⊗
C(∂Γ) ⋊ Γ, specifically, an element of KK1(C(∂Γ) ⋊ Γ⊗ C(∂Γ) ⋊ Γ,C). This element will
be presented as an extension; that is, as a map C(∂Γ) ⋊ Γ⊗ C(∂Γ) ⋊ Γ → Q(H) for some
Hilbert space H . By our remarks in the previous section and Lemma 9, such a map does
produce a canonical class in KK1(C(∂Γ)⋊ Γ⊗ C(∂Γ)⋊ Γ,C).

We construct two commuting maps λ, ρ : C(∂Γ) ⋊ Γ → Q(l2Γ). Let f ∈ C(∂Γ) and

let f̃ denote any extension of f to a continuous function on Γ̄. Let Mf̃ denote as above

the multiplication operator on l2Γ corresponding to f̃ , and let λ(f) be the image in Q(l2Γ)
of the operator Mf̃ . Let λ(γ) be the image in Q(l2Γ) of the unitary uγ corresponding
to left translation by γ: uγ(ex) = eγx, x ∈ Γ. It is easy to check that the assignments
f → λ(f), γ → λ(γ), define a covariant pair for the C∗-dynamical system

(

C(∂Γ),Γ
)

, and
so a homomorphism

λ : C(∂Γ)⋊ Γ → Q(l2Γ).

Next, define
ρ : C(∂Γ)⋊ Γ → Q(l2Γ)

by ρ(a) = Iλ(a)I, where I is at the end of Section 2. Thus ρ(f) is the image in Q(l2Γ) of
the multiplication operator Mf̃◦ι, and ρ(γ) is the image in Q(l2Γ) of right translation by γ,
ex 7→ exγ−1 . The following follows from Corollaries 5 and 6.

Theorem 10. The homomorphisms, λ, ρ : C(∂Γ) ⋊ Γ → Q(l2Γ) commute, and so define a
homomorphism C(∂Γ)⋊ Γ⊗ C(∂Γ)⋊ Γ → Q(l2Γ) by a⊗ b→ λ(a)ρ(b).

Definition 11. Let ∆ ∈ KK1(C(∂Γ) ⋊ Γ ⊗ C(∂Γ) ⋊ Γ,C) denote the class corresponding
to the above homomorphism C(∂Γ)⋊ Γ⊗ C(∂Γ)⋊ Γ → Q(l2Γ).

We shall refer to the class ∆ as the fundamental class of the algebra C(∂Γ)⋊ Γ.
Before proceeding, let us note the following. Let σ12 : C(∂Γ)⋊Γ⊗C(∂Γ)⋊Γ → C(∂Γ)⋊

Γ⊗C(∂Γ)⋊ Γ the homomorphism which interchanges factors, and σ∗
12 : KK

1(C(∂Γ)⋊ Γ⊗
C(∂Γ)⋊Γ,C) → KK1(C(∂Γ)⋊Γ⊗C(∂Γ)⋊Γ,C) the corresponding homomorphism of KK
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groups. The following rather simple observation reflects a common property of ‘fundamental
classes,’ i.e. those classes implementing by cap product Poincaré duality isomorphisms; the
author knows of no case, either commutative or not, where the fundamental class does not
have it.

Lemma 12. We have: σ∗
12(∆) = ∆.

Proof. For σ∗
12(∆) is the class corresponding to the map C(∂Γ)⋊ Γ⊗C(∂Γ)⋊ Γ → Q(l2Γ),

a ⊗ b 7→ ρ(a)λ(b). But this is unitarily conjugate to the map a ⊗ b 7→ λ(a)ρ(b) via the
symmetry I.

�

We can now define the ‘cap-product map’ interchanging the K-theory and K-homology
of C(∂Γ) ⋊ Γ, which we are going to show is an isomorphism when Γ = F2. Specifically,
define:

∩∆ : K∗(C(∂Γ)⋊ Γ) → K∗+1(C(∂Γ)⋊ Γ)

by the formula
x 7→ (x⊗ 1C(∂Γ)⋊Γ)⊗C(∂Γ)⋊Γ⊗C(∂Γ)⋊Γ ∆.

Our main theorem is the following:

Theorem 13. For Γ = F2 and ∆ as in Defintion 11, the map ∩∆ is an isomorphism.

5. Connes’ notion of Poincaré duality

In order to prove that the map ∩∆ of the previous section is an isomorphism, we shall
use some ideas due to Connes.

Theorem 14. Let A be a separable, nuclear C∗-algebra, and ∆ a class in KKi(A⊗ A,C).

Suppose we can find a class ∆̂ ∈ KK−i(C, A ⊗ A) such that the following equations
hold:

(

∆̂⊗ 1A
)

⊗A⊗A⊗A

(

1A ⊗ σ∗
12∆

)

= 1A, (1)

and
(

(σ12)∗∆̂⊗ 1A
)

⊗A⊗A⊗A

(

1A ⊗∆
)

= (−1)i 1A. (2)

Then the map
∩∆ : Kj(A) → Kj+i(A)

defined previously, is an isomorphism with inverse (up to sign) the map Kj(A) → Kj−i(A),

y 7→ ∆̂⊗A⊗A (1A ⊗ y).

If A is as above, with classes ∆ and ∆̂ satisfying Equations (1) and (2), we will call A
a Poincaré duality algebra.

Proof. The hypotheses imply the two equations:
(

∆̂⊗ 1A
)

⊗A⊗A⊗A

(

1A ⊗ σ∗
12(∆)

)

= 1A, (3)

and
(

(σ12)∗(∆̂)⊗ 1A
)

⊗A⊗A⊗A

(

1A ⊗∆
)

= (−1)i 1A. (4)

We show that as a consequence of these two equations,

∆̂⊗A⊗A

(

1A ⊗ (y ∩∆)
)

= (−1)ij y, y ∈ KKj(C, A) (5)
7



Expanding the product involved in (5), we obtain:

∆̂⊗A⊗A

(

1A ⊗ y ⊗ 1A
)

⊗A⊗A⊗A (1A ⊗∆).

Consider the term (1A ⊗ y ⊗ 1A)⊗A⊗A⊗A (1A ⊗∆). It is easy to check this is the same
as

(

1A ⊗ 1A ⊗ y
)

⊗A⊗A⊗A

(

1A ⊗ σ∗
12(∆)

)

. Returning to the original product (5), we see the
latter can be written

(

∆̂⊗A⊗A (1A⊗A ⊗ y)
)

⊗A⊗A⊗A

(

1A ⊗ σ∗
12(∆)

)

.

Now, by skew-commutativity of the external tensor product,

∆̂⊗A⊗A (1A⊗A ⊗ y) = (−1)ij(σ23)∗(σ12)∗
(

y⊗A (1A ⊗ ∆̂)
)

= (−1)ijy⊗A (σ23)∗(σ12)∗(1A ⊗ ∆̂).

Furthermore, (σ23)∗(σ12)∗(1A ⊗ ∆̂) = ∆̂ ⊗ 1A. Hence, putting back into the main product,
we see that (5) can be written

(−1)ij y ⊗A

(

(∆̂⊗ 1A)⊗A⊗A⊗A (1A ⊗ σ∗
12(∆)

)

= (−1)ij y,

where the last equality follows from equation (1).
�

Remark 15. We note that if we happen to have ∆ and ∆̂ as above, and

σ∗
12(∆) = ∆

and
(σ12)∗(∆̂) = (−1)i ∆̂,

then the two equations (1) and (2) above would be the same, and it would suffice to show
that one of them holds. This is the case in the commutative setting of a compact spinc-
manifold, and will be the case for us, also, part of which we have already proven (Lemma
12).

We now set about proving Theorem 13 in the case of Γ = F2 by verifying the equations
(1) and (2) of Theorem 14 above, with, i.e. A = C(∂F2)⋊F2 and ∆ the fundamental class of

Definition 11. We need first produce an element ∆̂ ∈ KK−1(C, C(∂F2)⋊F2 ⊗C(∂F2)⋊F2)
playing the role of the dual element in Theorem 14. We will then verify equation (1), the
other being rendered superfluous as a consequence of Remark 15, which is applicable in this
case.

It will turn out, rather surprisingly, that equation (1) can be shown to be equivalent
to the equation

γ∂F2⋊F2 = 1C(∂F2),

where γ∂F2⋊F2 is the γ-element for the groupoid ∂F2⋊F2. Since this latter equation has been
established by Julg and Valette, and also by J.L. Tu, we will by this device, i.e. by means
of the Baum-Connes Conjecture, be done.

6. Construction of a dual element

In this section as for the rest of this note we specialize to the free group F2 on two
generators. We are going to define an element ∆̂ ∈ KK−1(C, C(∂F2) ⋊ F2 ⊗ C(∂F2) ⋊ F2)
serving as an ‘inverse’ to ∆.

∆̂ shall be constructed by use of the fact that any two points of ∂F2 may be connected
by a unique geodesic.
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By “geodesic” we shall mean an isometric map r : Z → F2. Topologize the collection
of such r by means of the metric

dGF2(r1, r2) =
∑

n∈Z
2−|n|d(r1(n), r2(n))

and denote the resulting metric space by GF2 (we follow [4]). Both F2 and Z act freely
and properly on GF2, the former by translation (γr)(n) = γr(n), and the latter by flow
(gnr)(k) = r(k−n). These actions commute. Note that GF2/F2 is compact, whereas GF2/Z
may be identified with the F2-space

∂2F2 = {(a, b) ∈ ∂F2 × ∂F2 | a 6= b}.

All these observations are easy to check. As a consequence of them, the C∗-algebras
C(GF2/F2)⋊Z and C0(∂

2F2)⋊F2 are strongly Morita equivalent (see [10]). Let [E] denote
the class of the strong Morita equivalence bimodule. It is an element of KK(C(GF2/F2)⋊
Z, C0(∂

2F2)⋊ F2).
On the other hand, if u is the generator of Z ⊂ C∗(Z) ⊂ C(GF2/F2)⋊ Z, we obtain a

natural homomorphism C0(R) → C(GF2/F2) ⋊ Z by the formula ψ 7→ u − 1 where, recall,
ψ is a specified generator of C0(R) satisfying ψ + 1 ∈ C0(R)

+ is unitary.
We denote the class in KK(C0(R), C(GF2/F2)⋊Z) of this homomorphism by [u− 1].
It will be convenient for our later computations to define an auxilliary class [D], which

will lie in KK−1(C, C0(∂
2
F2)⋊ F2), as follows.

Definition 16. The class [D] ∈ KK−1(C, C0(∂
2F2)⋊ F2) shall be defined by

[D] = [d̂R]⊗C0(R) [u− 1]⊗C(GF2/F2)⋊Z [E].

Next, note that the cross product C0(∂
2F2) ⋊ F2 may be regarded as a subalgebra of

C(∂F2)⋊ F2 ⊗ C(∂F2)⋊ F2, via the composition of inclusions:

C0(∂
2
F2)⋊F2 → C(∂F2×∂F2)⋊F2

∼=
(

C(∂F2)⊗C(∂F2)
)

⋊F2 → C(∂F2)⋊F2⊗C(∂F2)⋊F2.

Let i denote this composition.
Our class ∆̂ will be defined by:

Definition 17. Let ∆̂ = [D]⊗C0(∂2F2)⋊F2
[i] ∈ KK−1(C, C(∂F2)⋊F2 ⊗C(∂F2)⋊F2), where

[d̂R] is as in Section 3, and [u− 1] and [E] are as above.

It will be convenient to calculate more explicitly the cycle corresponding to the class
[u−1]⊗C(GF2/F2)⋊Z [E] ∈ KK(C0(R), C0(∂

2
F2)⋊F2). We will express it as a homomorphism

C0(R) → C0(∂
2F2)⋊F2; that is, as an element w ∈ C0(∂

2F2)⋊F2 such that w+1 is unitary

in
(

C0(∂
2
F2)⋊ F2

)+
.

We will first describe an element v ∈ C0(∂
2F2) ⋊ F2 satisfying v∗v = vv∗ = χ, where

χ is a projection. We will then set w = v − χ. Then, of course, w + 1 = v + 1 − χ will be

unitary in
(

C0(∂
2F2)⋊ F2

)+
.

As the method of discovering such an explicit description (that is, of transfering K-
classes under strong Morita equivalences) is well known (see [2] in which a similar calculation
is carried out in the context of Aθ) we give the outcome without further discussion.

As a function on ∂2F2×F2, v(a, b, γ) = 1 if and only if there exists a geodesic ra,b such
that ra,b(−∞) = a, ra,b(+∞) = b, ra,b(0) = e, and ra,b(−1) = γ. And v(a, b, γ) = 0 else.

9



Note that χ = v∗v = vv∗ is the locally constant function on ∂2F2 given by χ(a, b) = 1
if some (therefore any) geodesic from a to b passes through e, and equals 0 else.

We can describe v in group-algebra notation as follows. Fix γ a generator. Then
v(· , · , γ) is a function on ∂2F2, and in particular is a function on ∂F2 × ∂F2, whose repre-
sentation as a tensor product of two functions on ∂F2 is:

v(· , · , γ) = χγ ⊗ (1− χγ),

where

χγ(a) =

{

1 γ ∈ [e, a)

0 else
.

We can therefore represent v as

v =
∑

|γ|=1

χγγ ⊗ (1− χγ)γ ∈ C0(∂
2
F2)⋊ F2 ⊂ C(∂F2)⋊ F2 ⊗ C(∂F2)⋊ F2.

Similarly we we represent the function χ by χ =
∑

χγ ⊗ (1 − χγ), and it is easy to check
that v∗v = vv∗ = χ, as claimed.

Finally, we note the following:

Lemma 18. The class ∆̂ satisfies (σ12)∗(∆̂) = −∆̂.

Proof. We have ∆̂ = i∗([D]), and so (σ12)∗(∆̂) = (σ12)∗i∗([D]) = (σ12◦i)∗([D]) = (σ̄12)∗([D]),
where σ̄12 : C0(∂

2F2) ⋊ F2 → C0(∂
2F2) ⋊ F2 is the algebra homomorphism induced by the

F2-equivariant map ∂2F2 → ∂2F2, (a, b) 7→ (b, a). Now [D] = [d̂R] ⊗C0(R) [v − χ] and hence

(σ̄12)∗([D]) = [d̂R] ⊗C0(R) (σ̄12)∗([v − χ]) = [d̂R] ⊗C0(R) [v
∗ − χ] = −[d̂R] ⊗C0(R) [v

∗ − χ] by a
direct calculation and we are done.

�

In the following sections we will show that in an appropriate sense ∆̂ provides an
‘inverse’ to the extension ∆. More precisely, we will show that the conditions of Theorem
14 are met by ∆ the fundamental class, and the element ∆̂ above.

7. The γ-element

Before proceeding to verify the equations of Theorem 14, we will need to recall the
work of Julg and Vallette ([7]).

Up to now we have adopted the convention of writing even KK-cycles in the form
(E , F ), where F is an operator on the module E . A different definition is possible, in which
two modules are involved, and F is an operator between them. This was the set-up in the
paper of [7]. We will retain their notation temporarily. In a moment we will describe a
means of geometrically describing their class in a way consistent with our conventions.

Consider the Cayley graph Σ for F2, which is a tree with edges Σ1 and vertices Σ0.
Note that we work with geometric edges, i.e. set theoretic pairs of vertices {x, x′}. If x is a
vertex, let x′ be the vertex one unit closer to e, the origin, and let s(x) be the edge {x, x′}.
Define an operator

b : l2Σ0 → l2Σ1

by

b(ex) =

{

es(x) x 6= e

0 x = e
.
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Then it is clear that b is an isometry, is Fredholm, and has index 1. Next, note that F2 acts
unitarily on l2(Σ0) and l2(Σ1), and that, furthermore, γbγ−1 − b is a compact (in fact finite
rank) operator, for all γ ∈ F2.

It follows that the pair
(

l2Σ0 ⊕ l2Σ1,

(

0 b∗

b 0

)

)

defines a cycle for KKF2(C,C).

Let γ denote its class. That γ = 1 in this group implies the Baum-Connes conjecture
for F2. This fact (that γ = 1) was proved by Julg and Valette in [7].

We can produce a cycle for KKF2(C(∂F2), C(∂F2)), whose class we will denote by
γ∂F2, by tensoring all the above data with C(∂F2). Thus, let E0 = C(∂F2; l

2(Σ0)), and
E1 = C(∂F2; l

2(Σ1)). Let B : E0 → E1 be defined by (Bξ)(a) = b(ξ(a)). The Hilbert C(∂F2)-

modules E i carry obvious actions of F2. Let γ∂F2 be the class of the cycle
(

E0⊕E1,

(

0 B∗

B 0

)

).

It is easy to check that the process of tensoring with C(∂F2) in this way preserves units;
that is:

γ = 1 ⇒ γ∂F2 = 1C(∂F2)

in the ring KKF2(C(∂F2), C(∂F2)). Hence, we have:

Lemma 19. The cycle
(

E0⊕E1,

(

0 B∗

B 0

)

) is equivalent to the cycle corresponding to 1C(∂F2)

in the group KKF2(C(∂F2), C(∂F2)).

We now set about describing a cycle equivalent to the above but which is in some sense
simpler. To do this it will be notationally and conceptually simpler to work with fields.
Thus, we note that E0 and E1 may be viewed as sections of the constant fields of Hilbert
spaces {H0

a | a ∈ ∂F2}, respectively {H1
a | a ∈ ∂F2}, with H

0
a = l2(Σ0) and H1

a = l2(Σ1) for
all a ∈ ∂F2, and that the operator B may be regarded as the constant family of operators
{ba | a ∈ ∂F2} with ba = b for all a ∈ ∂F2. What we are going to do is eliminate edges from
the cycle at the expense of changing the constant field of operators to a nonconstant field.

To this end consider the field of unitary maps {Ua : H1
a → H0

a | a ∈ ∂F2} given by
Ua(es) = ex, where x is the vertex of s farthest from a. Note that the assignment a 7→ Ua,
though not constant, is strongly continuous. For if a and b are two boundary points, then
Ua = Ub except for edges lying on the geodesic (a, b). Consequently, if s is a fixed edge, and
a and b are close enough, then Ua(es) = Ub(es), since if a and b are sufficiently close, s does
not lie on (a, b).

Now, consider the composition

l2F2 = H0
a

ba−→ H1
a

Ua−→ H0
a = l2F2,

which we denote by Wa. We see that for x = e, Wa(ex) = 0, and for x 6= e we have:

Wa(ex) =

{

ex′ x ∈ [e, a)

ex else
,

where x′ is the vertex one unit closer to e than x.
Since the assignment a → Wa is continuous, we obtain a Hilbert C(∂F2)-module map

E0 → E0 by defining for ξ ∈ C(∂F2; l
2F2), (Wξ)(a) = Wa(ξ(a)). Then, by unitary invariance

of KK and the work of Julg and Vallette, we see:
11



Lemma 20. The cycle
(

E0⊕E0,

(

0 W ∗

W 0

)

)

is equivalent to the cycle corresponding to 1∂F2

in the group KKF2(C(∂F2), C(∂F2)).

Since we have now altered the cycle of Julg and Valette up to equivalence so that only
one Hilbert module is involved (it is now otherwise known as an ‘evenly graded’ Fredholm
module), we may now return as promised to our conventions and write it simply

(C(∂F2; l
2
F2),W ),

consistent with the way we have been writing (even) KK-cycles up to now.
To summarize, we have:

[(C(∂F2; l
2
F2),W )] = [1C(∂F2)] ∈ KKF2(C(∂F2), C(∂F2)).

We shall next apply the descent map

λ : KKF2(C(∂F2), C(∂F2)) → KK(C(∂F2)⋊ F2, C(∂F2)⋊ F2)

to the cycle described above, thus producing a cycle for KK(C(∂F2) ⋊ F2, C(∂F2) ⋊ F2)
which by functoriality of descent will be equivalent to the cycle corresponding to 1C(∂F2)⋊F2 .

A direct appeal to the definition of λ (see [9]) produces the cycle
(

C(∂F2)⋊ F2 ⊗ l2F2, W̄
)

,
where, regarding C(∂F2)⋊ F2 ⊗ l2F2 as given by functions F2 → C(∂F2)⊗ l2F2, the action
of W̄ on these functions is given by the formula (W̄ ξ)(γ) =W (ξ(γ)). We have:

Lemma 21. The cycle
(

C(∂F2)⋊ F2 ⊗ l2F2, W̄
)

is equivalent to the cycle corresponding to
1C(∂F2)⋊F2 in KK(C(∂F2)⋊ F2, C(∂F2)⋊ F2).

This concludes our preparatory work. We will now show that the class of the cycle
given in the above lemma is the same as the class of the Kasparov product of the elements
∆̂ and ∆, concluding thus as a consequence of the work of Julg and Valette that equation
(1) holds.

8. untwisting

We are interested in calculating the cycle corresponding to the Kasparov product
(

∆̂⊗ 1C(∂F2)⋊F2

)

⊗C(∂F2)⋊F2⊗C(∂F2)⋊F2⊗C(∂F2)⋊F2

(

1C(∂F2)⋊F2 ⊗ σ∗
12∆

)

.

In this section we will do something we call - following an analogous procedure in [8]
- ‘untwisting.’ A simple but fundamental property of hyperbolic groups - and in particular
of the free group - will be used: specifically, if two points a and b on ∂F2 are sufficiently
far apart then any geodesic connecting them passes quite close to the identity e of the group.
This follows immediately from the definition of the topology on the compactified space F2.
More precisely:

Lemma 22. Let Ñ be a neighbourhood of the diagonal {(a, a) | a ∈ ∂F2} in ∂F2 ×F2. Then

there exists R > 0 such that if (a, b) ∈ (∂F2 × F2)\Ñ , then the (unique) geodesic from a to b
passes through BR(e).

Note 23. To simplify notation in this section, we shall denote by A the cross product
C(∂F2)⋊ F2, and by B the algebra C0(∂

2F2)⋊ F2.
12



Consider then the product
(

∆̂ ⊗ 1A
)

⊗A⊗A⊗A

(

1A ⊗ σ∗
12∆

)

involved on the left hand
side of equation (1).

Since ∆̂ = i∗([D]) = [D]⊗B [i], we have
(

∆̂⊗ 1A
)

⊗A⊗A⊗A

(

1A ⊗ σ∗
12∆

)

=
(

[D]⊗ 1A
)

⊗B⊗A [i⊗ 1A]⊗A⊗A⊗A (1A ⊗ σ∗
12∆).

We will begin by examining the term [i⊗1A]⊗A⊗A⊗A (1A⊗σ
∗
12∆) ∈ KK1(B⊗A,A). It

is easy to describe the corresponding cycle explicitly. For since σ∗
12∆ is represented by a map

A⊗A→ Q(l2F2), so also 1A⊗σ∗
12∆ is represented by a map A⊗A⊗A → Q(A⊗ l2F2), and

[i⊗1A]⊗A⊗A⊗A (1A⊗σ
∗
12∆) is represented by a map B⊗A→ Q(A⊗ l2F2). By construction,

this map is given on the set of elementary tensors by the formula

a1 ⊗ a2 ⊗ a3 7→ a1 ⊗ ρ(a2)λ(a3), (6)

where we have suppressed the inclusion i : B → A⊗A, so that a1⊗a2 in the above expression
is understood as an element of B.

We shall first show that the above map up to unitary equivalence can be rewritten in
a much more tractable way.

Before proceeding, let G̃ be a function on ∂F2 × F2 not necessarily continuous in the
second variable, but continuous in the first. Then G̃ can be made to act on the right A-
module A⊗ l2F2 by the formula

G̃ · (a⊗ ey) = G̃( · , y)a⊗ ey,

noting that for each y ∈ F2, G̃(· , y) ∈ C(∂F2) ⊂ A.
Now let F be a continuous, compactly supported function on ∂2F2. Thus F is a

continuous function on ∂F2 × ∂F2 vanishing in a neighbourhood of the diagonal. So we
can extend it to a continuous function F̃ on ∂F2 × F2 by the Tietze Extension Theorem
and restrict the result to ∂F2 × F2. Let F̃ ′ denote the function on ∂F2 × F2 given by
(a, x) 7→ F̃ (x−1a, x−1). Note that F̃ ′ is continuous in the first variable but not in the second.

Hence F̃ ′ may be made to act on the Hilbert A-module A⊗l2F2 by the remark in the previous
paragraph. We can thus regard F̃ ′ as an element of B(A⊗ l2F2). Let τ(F ) denote the image
of the operator F̃ ′ in Q(A⊗ l2F2).

Remark that F 7→ τ(F ) is a well-defined homomorphism C0(∂
2
F2) → Q(A⊗ l2F2). For

any two extensions of F to functions on ∂F2 × F2 differ by a function - say H̃ - vanishing
on ∂F2 × ∂F2. Then H̃ ′ also vanishes on ∂F2 × ∂F2, and so defines an operator lying in
K(A⊗ l2F2).

Next, for γ ∈ F2, set τ(γ) = 1 ⊗ ρ(γ) ∈ Q(A ⊗ l2F2). It is a routine computation to
check that the assignments

F 7→ τ(F )

and

γ 7→ ρ(γ)

make up a covariant pair for the dynamical system
(

C0(∂
2F2),F2

)

, and hence a homomor-
phism

τ : B → Q(A⊗ l2F2).

Next, define a covariant pair for the dynamical system (C(∂F2),F2) by ϕ(f) = f ⊗ 1 ∈
B(A⊗ l2F2), and ϕ(γ) = γ ⊗ uγ ∈ B(A⊗ l2F2). It is similarly easy to check this makes up a
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covariant pair and so a homomorphism

ϕ : A→ B(A⊗ l2F2).

The following proposition is key to the untwisting argument.

Proposition 24. The class [i⊗ 1A]⊗A⊗A⊗A

(

1A ⊗ σ∗
12∆

)

∈ KK1(B ⊗ A,A) is represented
by the homomorphism ι : B ⊗A→ Q(A⊗ l2F2),

ι(b⊗ a) = τ(b)π(ϕ(a)), b ∈ B, a ∈ A

where ϕ, τ are as above.

We note that the homomorphisms τ and π ◦ ϕ commute, and so ι actually is a homo-
morphism. That ι is a homomorphism also follows, however, from the proof of Lemma 24
below, which shows that ι is unitarily conjugate to the map in Equation 6.

We will require the following:

Lemma 25. Let k ∈ Cc(∂
2F2 × ∂F2), and k̃ an extension of k to a continuous function on

∂F2 × F2 × F2. Then the two functions on ∂F2 × F2

(a, x) 7→ k̃(x−1(a), x−1, x)

and
(a, x) 7→ k̃(x−1(a), x−1, a)

are the same modulo C0(∂F2 × F2).

Proof. Let k be as in the statement of the lemma. Then for some neighbourhood N of the
diagonal in ∂F2×∂F2, k is supported on (∂F2×∂F2×∂F2)\(N×∂F2). It follows that we can

choose an extension k̃ of k to a function on ∂F2×F2×F2 such that there is a neighbourhood
Ñ of the diagonal in ∂F2 × F2 such that k̃ is supported in (∂F2 × F2 × F2)\(Ñ × F2).

Now by routine compactness arguments, it suffices to show that for a ∈ ∂F2 fixed and
xn a sequence in F2 converging to a boundary point b ∈ ∂F2, the sequence

k̃(x−1
n (a), x−1

n , xn)− k̃(x−1
n (a), x−1

n , a)

converges to 0 as n→ ∞. We may clearly also assume without loss of generality that for all
n the point (x−1

n (a), x−1
n ) lies in the complement of Ñ , else both terms are 0. By Lemma 22

there exists R > 0 such that any two points (c, z) ∈ ∂F2×F2 not in Ñ have the property that
the geodesic [z, c) passes through BR(e). Thus, for all n large enough, d(e, [x−1

n , x−1
n (a)) ≤ R.

But then d(xn, [e, a)) ≤ R for all n. If a sequence in a hyperbolic space remains at fixed,
bounded distance from a geodesic ray, it must converge to the endpoint of the ray. Hence
xn → a, and we are done by continuity of k̃ in the third variable.

�

Proof. (Of Proposition 24). Consider the class [i⊗ 1A]⊗A⊗A⊗A

(

1A ⊗ σ∗
12∆

)

, which is repre-
sented by the map B ⊗A→ Q(A⊗ l2F2) in Equation 6.

Define a unitary map of Hilbert modules U : A ⊗ l2F2 → A ⊗ l2F2 by the formula
U(a ⊗ ex) = x · a ⊗ ex. Let AdU denote the inner automorphism of Q(A ⊗ l2F2) given by
π(T ) 7→ π(UTU∗) and let ι′ denote the homomorphism B ⊗A→ Q(A⊗ l2F2)

ι′(a1 ⊗ a2 ⊗ a3) = AdU

(

a1 ⊗ ρ(a2)λ(a3)
)

.

We claim that ι′ = ι. It is a simple matter to check that ι|B⊗C∗
r (F2)

= ι′|B⊗C∗
r (F2)

, where

B ⊗ C∗
r (F2) is viewed as a sub-algebra of B ⊗ A, and that for b ∈ B and f ∈ C(∂F2),
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we have ι(b ⊗ f) = τ(b)π(f ⊗ 1) whereas ι′(b ⊗ f) = τ(b)
(

1 ⊗ λ(f)
)

. Thus it remains to

prove that τ(b)π
(

1 ⊗Mf̃ − f ⊗ 1
)

= 0 in the Calkin algebra Q(A ⊗ l2F2) whenever b ∈ B,

f ∈ C(∂F2) and f̃ is an extension of f to F2. The collection of b of the form
∑

γFγ with
each Fγ ∈ Cc(∂

2F2) is dense in B, and hence it suffices to prove the result for b having this
form. Hence it is sufficient to prove the result for b = F ∈ Cc(∂

2F2). We are now done by
Lemma 25 with k(a, b, c) = F (a, b)f(c).

�

9. conclusion of the proof

Now consider the class [i⊗1A]⊗A⊗A⊗A (1A⊗σ
∗
12∆), which we have shown has the form

[ι], where ι is as in Proposition 24. We are interested in calculating the Kasparov product
of the class of this extension, and the class [D]⊗ 1A ∈ KK−1(A,B ⊗A).

Recall that

[D] = [d̂R]⊗C0(R) [v − χ]

where [v−χ] is the class of the homomorphism C0(R) → B induced by mapping ψ to v−χ.

Hence [D]⊗ 1A = ([d̂R]⊗ 1A)⊗C0(R)⊗A ([v−χ]⊗ 1A), where [v− χ]⊗ 1A is represented
by the homomorphism C0(R)⊗ A→ B ⊗ A induced by mapping ψ ⊗ a 7→ (v − χ)⊗ a.

The Kasparov product

([D]⊗ 1A)⊗B⊗A [i⊗ 1A]⊗A⊗A⊗A (1A ⊗ σ∗
12(∆)

therefore has the form

([d̂R]⊗ 1A)⊗C0(R)⊗A

(

([v − χ]⊗ 1A)⊗B⊗A [ι]
)

and ([v− χ]⊗ 1A)⊗B⊗A [ι] is represented by the homomorphism C0(R)⊗A→ Q(A⊗ l2F2)
induced by mapping

ψ ⊗ a 7→ τ(v − χ)π(ϕ(a)).

But this homomorphism has the form stated in the hypothesis of Lemma 8. By that lemma,

([d̂R]⊗ 1A)⊗C0(R)⊗A ([v − χ]⊗ 1A)⊗B⊗A [ι]

is represented by the KK(A,A) cycle
(

A⊗ l2F2, Ū + 1
)

, where Ū is any lift to B(A⊗ l2F2)
of the element τ(v − χ) ∈ Q(A⊗ l2F2); where the Hilbert (A,A)-bimodule A⊗ l2F2 has its
standard right A-module structure; and where it has the left A-module structure given by
the homomorphism ϕ : A→ B(A⊗ l2F2).

In particular, the bimodule is in fact the same as the bimodule appearing in the Julg
and Vallette cycle appearing in Lemma 21.

It remains to calculate a lift Ū of τ(v − χ) and show that in fact such a lift can be
chosen which agrees with the operator W̄ of Lemma 21.

We first construct a lift of τ(v). Recall that v =
∑

γ∈S χγγ⊗(1−χγ)γ, where S is a basis
for F2. Each γ is mapped under τ to the image in the Calkin algebra of the right translation
operators 1⊗ρ(γ) : A⊗ l2F2 → A⊗ l2F2. Consider each term Fγ = χγ⊗ (1−χγ) ∈ Cc(∂

2F2).
Let χ̃γ denote the function on F2 given by

χ̃γ(g) =

{

1 γ ∈ [e, g]

0 else
.
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Then χ̃γ extends continuously to F2 and the restriction of χ̃γ to ∂F2 is χγ. Let then

F̃γ = χγ ⊗ (1− χ̃γ),

which is an extension to ∂F2 × F2 of Fγ . Forming F̃ ′
γ as per the recipe described in the

definition of τ , we obtain the function

F̃ ′
γ(a, g) = F̃γ(g

−1a, g−1) =

{

1 γ ∈ [e, g−1a) and γ /∈ [e, g−1]

0 else
.

We remind the reader that the statement: “x ∈ [e, y],” for x, y ∈ F2 may be equivalently
read: “the reduced expression of y contains x as an initial subword,” or more shortly, “y
begins with x.”

With this in mind, consider the first case above. If g−1a begins with γ but g−1 does
not, it follows there is cancellation between g−1 and a; more precisely, a must begin with g,
followed by γ. (Since g−1 does not begin with γ, g does not end in γ−1, and hence gγ is in
fact reduced.) We have:

F̃ ′
γ(a, g) =

{

1 gγ ∈ [e, a), and g does not end in γ−1

0 else
.

Now consider the operator F̃ ′
γ (1⊗ vγ) ∈ A⊗B(l2F2) ⊂ B(A⊗ l2F2). This operates by

(
∑

fhh)⊗ eg 7→ (
∑

F̃ ′
γ( · , gγ

−1)fhh)⊗ egγ−1

for
∑

fhh an arbitrary element of the cross product A. From our above work, we see that

F̃ ′
γ( · , gγ

−1) = 0 unless g ends in γ. On the other hand, if g does end in γ, gγ−1 does not

end in γ−1. Hence we see that the above operator sends

(
∑

fhh)⊗ eg 7→

{

(
∑

χgfhh)⊗ egγ−1 g ends in γ

0 else
.

We see finally, that V̄ =
∑

γ∈S F̃
′
γ · (1⊗ vγ), which is a lift of τ(v), acts on A⊗ l2F2 by

(
∑

fhh)⊗ eg 7→ (
∑

χgfhh)⊗ eg′,

where the prime notation is as in the discussion just prior to Lemma 20.
In particular, V̄ as an operator on A⊗ l2F2, where the latter is regarded as functions

F2 → C(∂F2)⊗ l2F2, has the form

(V̄ ξ)(g) = V (ξ(g)),

where V is the operator C(∂F2)⊗ l2F2 → C(∂F2)⊗ l2F2,

V (f ⊗ eg) = χgf ⊗ eg′ .

Otherwise expressed, let ξ be an element of C(∂F2; l
2F2) of the form ξ(a) =

∑

ξg(a)eg, where
each ξg is a scalar-valued function on ∂F2. Then

(V ξ)(a) =
∑

g∈[e,a)
ξg(a)⊗ eg′.

Now apply the same calculations to the element τ(χ). We obtain the operator (pro-

jection) P̄ on A⊗ l2F2 given by P̄ =
∑

F̃ ′
γ ∈ A⊗ B(l2F2) ⊂ B(A⊗ l2F2).
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We have: V̄ − P̄ is an operator whose projection to the Calkin algebra is τ(v − χ) as
required. Let it be denoted by Ū . Form F̄ = Ū + 1.

Our calculations show that F̄ is an operator having the form

(F̄ ξ)(g) = F (ξ(g)),

where F : C(∂F2)⊗ l2F2 → C(∂F2)⊗ l2F2 is the operator

(Fξ)(a) =
∑

g∈[e,a)
ξg(a)⊗ eg′ +

∑

g /∈[e,a)
χg(a)⊗ eg,

which is precisely the operator W of Lemma 20. That is, F = W and therefore F̄ = W̄ ∈
B(A⊗ l2F2).

We are now done, having shown by direct computation that

([D]⊗ 1A)⊗B⊗A [i⊗ 1A]⊗A⊗A⊗A (1A ⊗ σ∗
12∆) = [

(

C(∂F2)⋊ F2 ⊗ l2F2, W̄
)

] = λ(γ∂F2⋊F2)

and therefore that

([D]⊗ 1A)⊗B⊗A [i⊗ 1A]⊗A⊗A⊗A (1A ⊗ σ∗
12∆) = 1A.
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